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Spectrum Sensing
» In most of the CR-SS literature,

Ho : (signal absent)Y; = n;
Hq : (signal present)Y;=h;sj+n;, i=1,2,--- .M

» Classical Goodness-of-Fit Test formulation

Ho : Yi~fy, ieM

» Threshold : chosen s.t. for o € [0, 1], =
pr = P{reject Ho|Ho is true} < ay.
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» Receiver noise in communication systems ~ N(0, 02)
» Tests against Gaussianity should suffice?!
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» Receiver noise in communication systems ~

» Tests against Gaussianity should suffice?!
» Bad assumption to begin with!

N(O, JG)
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» Receiver noise in communication systems ~ N(0,02) :
bad assumption!

» In signal processing for telecommunication systems, under
Ho: [Middleton1999]

v, =9+ v 1y,

/ Class A Clasis B

\/
(1-efg+efr SaS(a)

(B)

» Approximations due to [Vatsola1984] and [Mlddleton1999] =
(and earlier works of Middleton) i
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» As seen earlier,
> YO 4 YA (1= e)fg + efr, with 0 < e < 1.
> fp £ N(0,08)
» L N(0, o2) [Vatsola1984], [AazhangPoor1987], or
fr £ £(0, o) [MillerThomas1976], with o2 /o3 € (10, 100).
> Y,-(B) ~ Sas(a)
» Characteristic function of the Sa.S(vo, @) distribution
dg(W, 70, @) = exp(—|w|*), % >0,0<a<2. (1)
> No closed form for PDF; except for the cases o = 2
(Gaussian), o = 1 (Cauchy) and o = 0.5 (Lévy)
» Should not ignore the Gaussian component! (opposed to
[Chavali2012], and references therein)
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LNoise Uncertainties

Noise Uncertainties

» Noise Model Uncertainty (NMU)

» Uncertainty in knowledge of fy = either class A, B or both,
and PDF of fr
» Noise Parameter Uncertainty (NPU)

» Uncertainty in the parameter set (03, 02, ¢, )
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L Noise Uncertainties

An Existing Technique

» Proposed by [Shen et al. 2011], called the Blind Detector
(BD).

» Robust to the classical noise variance uncertainty, when
fv £ N(0,02)

» M observations are divided into n windows of m samples
each. Choose nto be small.

» Calculate sample mean and sample variances from each
window. Their ratio is student-t distributed with parameter
m—1.

» Over the obtained n samples, run an Anderson-Darling
GoFT.
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Weighted Zero-Crossings based Sensing

» In an earlier work, [KedemSlud1982] have studied for the
Gaussian case (both i.i.d. and correlated)

» Consider the first k order difference operators:

VY, 2 Y-V,
V2Y, = V(VY)=Y,-2Y_4+ Vi,

k
v = (e iz @
=0
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Weighted Zero-Crossings based Sensing

» The k™ order ZC is said to occur, if the sign of VA=Y is
different from that of VA=Y,

D'I,Ma j: 17

Ajm=S Dim—Diim, =2, k=1 (3)
(M71)7Dk—1,M7 j:k7

Lj.m = EA],Ma]: 1a )kv (4)

» For a given set of weights w;, a W2 Statistic-based
Detector (V,,SD) is given by
'707-[0
Vi = ) (5)
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We consider the following cases for comparison with BD

Equal and unit weights: [KedemSlud1982] W2 ~ y3(11).
Choose the threshold ¥ such that

0y (VAT.\/¥) =ar ©

Exponential weights: W2 ~ F(17.5,7). Choose the
threshold 7,ysp such that

17'57_m‘~USD
17 (L2 875 35) —
(17.5T,WSD+7’8 5’35> R (7)

Note that the statistic and the threshold are independent of
variance of fy! ﬁ
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Robustness to NPU and NMU: Intuition

v

When fr ~ N(0, 02), no problem at all.

The PDF of any member of the SasS family, for 1 < a <2
can be written as [West1987]

)= [~ (3) (%) oo ®)

v

v

where g(-) is the standard Gaussian PDF, and
h:RT — R is some function (can as well be a PDF).

West extends this result to exponential family, which
includes the Laplace distribution.
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L Robustness

More Advantages

» For large M, the number of zero-crossings for any
symmetric distribution is M/2.

» Works with distributions with infinite variance.

» Works with distributions with infinite mean! = works as
long as the median exists.

» Given that it is a GoFT, can be used with any signal and
fading models.

» Computational complexity: same as the energy detector,
and less intense that the blind detector.

» One disadvantage

F=—t
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LSimulaticms

Primary, and Fading models for simulations

» Primary signal models

» Model 1 : Constant primary
» Model 2 : Sinusoid primary

» Fading models
» Rayleigh fading (i.i.d., and first order ARMA correlated)
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Figure: Detection of primary model 1 under Rayleigh fading, with
Gaussian + Sa$S model.

v

o ni



ZCDh

LSimulaticms

—m— BD, Model 2,p,

sfe— BD. Model 2, p;

m. ¥,SD.Model 2, |1

o
o

o
%

0.7rm Lofe D Model 2,p, |4
N 2
061 — - ¥SD Model2,p, ||
AY
- - Y- £SD. Model 2, p,
0.5

0.4

03F

Probability of declaring "not HU”

0.2F

0.1

Parameter o

Figure: Detection of primary model 2 under Rayleigh fading, with
Gaussian + Sa$S model.
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Figure: Detection of primary models 1 and 2 under Rayleigh fading,
with e-mixture model, e = 0.05, and fr ~ N(0, o?).
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Figure: Detection of primary models 1 and 2 under Rayleigh fading,

with e-mixture model, e = 0.05, and fr ~ L£(0?).
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LSimulations
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Figure: Detection of primary models 1 and 2 under pure Gaussian

noise, with noise variance uncertainty= 3dB, M = 300, a; = 0.05.

Average pr obtained through simulations for BD, wSD and mVSD are
0.0498, 0.05, and 0.0501, respectively. ﬁ\*";
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LSimulations
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Figure: Detection of primary models 1 and 2 under first order AR
correlated fading (with p = 0.5) and pure Gaussian Noise, with noise
variance uncertainty= 3dB, M = 300, s = 0.05.
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Figure: Detection of primary model 1 under Gaussian + class A +
class B noises, with noise variance uncertainty= 3dB,
M = 300, as = 0.05, ¢ = 0.05, fr ~ N(0,10003).
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Figure: Detection of primary model 2 under Gaussian + class A +
class B noises, with noise variance uncertainty= 3dB,

M = 300, oy = 0.05, ¢ = 0.05, fz ~ A’(0, 10002). T
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Figure: Optimal threshold calculation under Gaussian + class A +
class B noises, with noise variance uncertainty= 3dB,
M = 300, as = 0.05, ¢ = 0.05, fr ~ N(0,10003).
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