Zero-Crossings Based Spectrum Sensing Under Noise Uncertainties

Sanjeev G.

SPC Lab. Dept. of ECE IISc, Bangalore

9 November 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ</p>

- Motivation
- System model
- Weighted Zero-Crossings based Detector (WZCD)
- Robustness to noise uncertainties : parameter, model
- Simulation results

・ロット (雪) (コ) (コ)

Spectrum Sensing

- In most of the CR-SS literature,
 - \mathcal{H}_0 : (signal absent) $Y_i = n_i$
 - \mathcal{H}_1 : (signal present) $Y_i = h_i s_i + n_i, i = 1, 2, \cdots, M$

Classical Goodness-of-Fit Test formulation

$$\mathcal{H}_0$$
 : $Y_i \sim f_{\mathbb{N}}, i \in \mathcal{M}$

► Threshold : chosen s.t. for $\alpha_f \in [0, 1]$, $p_f \triangleq \mathcal{P}\{\text{reject } \mathcal{H}_0 | \mathcal{H}_0 \text{ is true}\} \leq \alpha_f.$

- Receiver noise in communication systems ~ N(0, \(\sigma_G^2\))
- Tests against Gaussianity should suffice?!

・ロ・・ (日・・ 日・・ (日・)

- Receiver noise in communication systems ~ N(0, σ_G²)
- Tests against Gaussianity should suffice?!
- Bad assumption to begin with!

・ロ・・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ (口) ・ ((D)) \cdot ((D)) \cdot

- Receiver noise in communication systems ~ N(0, \sigma_G^2) : bad assumption!
- In signal processing for telecommunication systems, under *H*₀: [Middleton1999]

 Approximations due to [Vatsola1984] and [Middleton1999] (and earlier works of Middleton)

As seen earlier,

•
$$Y_i^{(\mathcal{G})} + Y_i^{(\mathcal{A})} \sim (1 - \epsilon) f_{\mathcal{G}} + \epsilon f_{\mathcal{I}}$$
, with $0 < \epsilon \ll 1$.

•
$$f_{\mathcal{G}} \stackrel{d.}{=} \mathcal{N}(\mathbf{0}, \sigma_{\mathrm{G}}^2)$$

- $f_{\mathcal{I}} \stackrel{d.}{=} \mathcal{N}(0, \sigma_{1}^{2})$ [Vatsola1984], [AazhangPoor1987], or
 - $f_{\mathcal{I}} \stackrel{d.}{=} \mathcal{L}(0, \sigma_{\mathrm{I}}^2)$ [MillerThomas1976], with $\sigma_{\mathrm{I}}^2 / \sigma_{\mathrm{G}}^2 \in (10, 100)$.

•
$$Y_i^{(\mathcal{B})} \sim S\alpha S(\alpha)$$

Characteristic function of the SαS(γ₀, α) distribution

 $\Phi_{B}(\boldsymbol{w},\gamma_{0},\alpha)=\exp\left(-\gamma_{0}|\boldsymbol{w}|^{\alpha}\right), \quad \gamma_{0}>0, \ 0<\alpha\leq 2. \quad (1)$

- No closed form for PDF; except for the cases α = 2 (Gaussian), α = 1 (Cauchy) and α = 0.5 (Lévy)
- Should not ignore the Gaussian component! (opposed to [Chavali2012], and references therein)

-Noise Uncertainties

Noise Uncertainties

- Noise Model Uncertainty (NMU)
 - ► Uncertainty in knowledge of f_N ⇒ either class A, B or both, and PDF of f_I
- Noise Parameter Uncertainty (NPU)
 - Uncertainty in the parameter set $(\sigma_{\rm G}^2, \sigma_{\rm I}^2, \epsilon, \alpha)$

イロン 不良 とくほう イロン

An Existing Technique

- Proposed by [Shen et al. 2011], called the Blind Detector (BD).
- ► Robust to the classical noise variance uncertainty, when $f_{\mathbb{N}} \stackrel{d}{=} \mathcal{N}(\mathbf{0}, \sigma_{\mathrm{G}}^2)$
- M observations are divided into n windows of m samples each. Choose n to be small.
- Calculate sample mean and sample variances from each window. Their ratio is student-t distributed with parameter m - 1.
- Over the obtained *n* samples, run an Anderson-Darling GoFT.

・ ロ ト ・ 同 ト ・ 日 ト ・

Weighted Zero-Crossings based Sensing

- In an earlier work, [KedemSlud1982] have studied for the Gaussian case (both i.i.d. and correlated)
- Consider the first k order difference operators:

$$\nabla Y_{i} \triangleq Y_{i} - Y_{i-1}$$

$$\nabla^{2} Y_{i} = \nabla (\nabla Y_{i}) = Y_{i} - 2Y_{i-1} + Y_{i-2}$$

$$\vdots$$

$$\nabla^{k} Y_{i} = \sum_{j=0}^{k} {\binom{k}{j}} (-1)^{j} Y_{i-j}, \quad i \ge k+1.$$
(2)

Weighted Zero-Crossings based Sensing

The kth order ZC is said to occur, if the sign of ∇^{k-1}Y_i is different from that of ∇^{k-1}Y_{i+1}

$$\Delta_{j,M} \triangleq \begin{cases} D_{1,M}, & j = 1, \\ D_{j,M} - D_{j-1,M}, & j = 2, \cdots, k-1 \\ (M-1) - D_{k-1,M}, & j = k, \end{cases}$$
(3)
$$\mu_{j,M} \triangleq \mathbb{E}\Delta_{j,M}, j = 1, \cdots, k,$$
(4)

 For a given set of weights w_j, a Ψ²_w Statistic-based Detector (Ψ_wSD) is given by

$$\Psi^{2}_{w} \underset{\sim \mathcal{H}_{0}}{\overset{\sim \mathcal{H}_{0}}{\gtrsim}} \tau^{\Psi}_{w},$$

(5)

・ロット (雪) (日) (日)

- We consider the following cases for comparison with BD
- Equal and unit weights: [KedemSlud1982] $\Psi_1^2 \sim \chi_3^2(11)$. Choose the threshold τ_1^{Ψ} such that

$$Q_{\frac{3}{2}}\left(\sqrt{11},\sqrt{\tau_{1}^{\Psi}}\right) = \alpha_{f},\tag{6}$$

Exponential weights: Ψ²_w ~ 𝓕(17.5,7). Choose the threshold τ_{mΨSD} such that

$$1 - \mathcal{I}\left(\frac{17.5\tau_{m\Psi SD}}{17.5\tau_{m\Psi SD} + 7}, 8.75, 3.5\right) = \alpha_f,$$
(7)

Note that the statistic and the threshold are independent of variance of *f*_ℕ!

Robustness to NPU and NMU: Intuition

- When $f_{\mathcal{I}} \sim \mathcal{N}(0, \sigma_{\rm G}^2)$, no problem at all.
- ► The PDF of any member of the SαS family, for 1 ≤ α ≤ 2 can be written as [West1987]

$$p(X) = \int_0^\infty \left(\frac{1}{\sigma}\right) g\left(\frac{X}{\sigma}\right) h(\sigma) \, d\sigma, \tag{8}$$

- where g(·) is the standard Gaussian PDF, and h : ℝ⁺ → ℝ⁺ is some function (can as well be a PDF).
- West extends this result to exponential family, which includes the Laplace distribution.

・ コット (雪ット (ヨット)

More Advantages

- ► For large *M*, the number of zero-crossings for any symmetric distribution is *M*/2.
- Works with distributions with infinite variance.
- ► Works with distributions with infinite mean! ⇒ works as long as the median exists.
- Given that it is a GoFT, can be used with any signal and fading models.
- Computational complexity: same as the energy detector, and less intense that the blind detector.
- One disadvantage

-Simulations

Primary, and Fading models for simulations

- Primary signal models
 - Model 1 : Constant primary
 - Model 2 : Sinusoid primary
- Fading models
 - Rayleigh fading (i.i.d., and first order ARMA correlated)

Figure: Detection of primary model 1 under Rayleigh fading, with Gaussian + $S\alpha S$ model.

<ロ> < (回) < (回) < (回) < (回) < (回) < (回) < ((u) < (u) < (u) < ((u) < (u) < ((u) < (((u) < (((u) < ((u) < ((u) < (((u) < ((u) < (((u) < ((u

Figure: Detection of primary model 2 under Rayleigh fading, with Gaussian + $S\alpha S$ model.

Figure: Detection of primary models 1 and 2 under Rayleigh fading, with ϵ -mixture model, $\epsilon = 0.05$, and $f_{\mathcal{I}} \sim \mathcal{N}(0, \sigma_{I}^{2})$.

Figure: Detection of primary models 1 and 2 under Rayleigh fading, with ϵ -mixture model, $\epsilon = 0.05$, and $f_{\mathcal{I}} \sim \mathcal{L}(\sigma_1^2)$.

ZCD

Figure: Detection of primary models 1 and 2 under pure Gaussian noise, with noise variance uncertainty= 3dB, M = 300, $\alpha_f = 0.05$. Average p_f obtained through simulations for BD, Ψ SD and m Ψ SD are 0.0498, 0.05, and 0.0501, respectively.

Figure: Detection of primary models 1 and 2 under first order AR correlated fading (with $\rho = 0.5$) and pure Gaussian Noise, with noise variance uncertainty= 3*dB*, M = 300, $\alpha_f = 0.05$.

Figure: Detection of primary model 1 under Gaussian + class A + class B noises, with noise variance uncertainty= 3dB, $M = 300, \alpha_f = 0.05, \epsilon = 0.05, f_{\mathcal{I}} \sim \mathcal{N}(0, 100\sigma_G^2)$.

< ロ > < 四 > < 三 > < 三 > 、 三 > 、 三 。

Figure: Detection of primary model 2 under Gaussian + class A + class B noises, with noise variance uncertainty= 3dB, $M = 300, \alpha_f = 0.05, \epsilon = 0.05, f_{\mathcal{I}} \sim \mathcal{N}(0, 100\sigma_G^2)$.

Figure: Optimal threshold calculation under Gaussian + class A + class B noises, with noise variance uncertainty= 3dB, $M = 300, \alpha_f = 0.05, \epsilon = 0.05, f_T \sim \mathcal{N}(0, 100\sigma_G^2)$.

