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Introduction

I Motivation
I System model
I Weighted Zero-Crossings based Detector (WZCD)
I Robustness to noise uncertainties : parameter, model
I Simulation results
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System Model

Spectrum Sensing
I In most of the CR-SS literature,

H0 : (signal absent)Yi = ni

H1 : (signal present)Yi = hi si + ni , i = 1,2, · · · ,M

I Classical Goodness-of-Fit Test formulation

H0 : Yi ∼ fN, i ∈M

I Threshold : chosen s.t. for αf ∈ [0,1],
pf , P{reject H0|H0 is true} ≤ αf .
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I Receiver noise in communication systems ∼ N (0, σ2
G)

I Tests against Gaussianity should suffice?!
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I Receiver noise in communication systems ∼ N (0, σ2
G)

I Tests against Gaussianity should suffice?!
I Bad assumption to begin with!
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System Model

I Receiver noise in communication systems ∼ N (0, σ2
G) :

bad assumption!
I In signal processing for telecommunication systems, under
H0: [Middleton1999]

Yi = Y
(G)
i + Y

(A)
i + Y

(B)
i

Gaussian Class A Class B

(1− ǫ)fG + ǫfI SαS(α)

I Approximations due to [Vatsola1984] and [Middleton1999]
(and earlier works of Middleton)
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I As seen earlier,
I Y (G)

i + Y (A)
i ∼ (1− ε)fG + εfI , with 0 < ε� 1.

I fG
d.
= N (0, σ2

G)

I fI
d.
= N (0, σ2

I ) [Vatsola1984], [AazhangPoor1987], or
fI

d.
= L(0, σ2

I ) [MillerThomas1976], with σ2
I /σ

2
G ∈ (10, 100).

I Y (B)
i ∼ SαS(α)
I Characteristic function of the SαS(γ0, α) distribution

ΦB(w , γ0, α) = exp (−γ0|w |α) , γ0 > 0, 0 < α ≤ 2. (1)

I No closed form for PDF; except for the cases α = 2
(Gaussian), α = 1 (Cauchy) and α = 0.5 (Lévy)

I Should not ignore the Gaussian component! (opposed to
[Chavali2012], and references therein)
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Noise Uncertainties

I Noise Model Uncertainty (NMU)
I Uncertainty in knowledge of fN ⇒ either class A, B or both,

and PDF of fI
I Noise Parameter Uncertainty (NPU)

I Uncertainty in the parameter set (σ2
G, σ2

I , ε, α)
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Noise Uncertainties

An Existing Technique

I Proposed by [Shen et al. 2011], called the Blind Detector
(BD).

I Robust to the classical noise variance uncertainty, when
fN

d .
= N (0, σ2

G)

I M observations are divided into n windows of m samples
each. Choose n to be small.

I Calculate sample mean and sample variances from each
window. Their ratio is student-t distributed with parameter
m − 1.

I Over the obtained n samples, run an Anderson-Darling
GoFT.
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WZCD

Weighted Zero-Crossings based Sensing

I In an earlier work, [KedemSlud1982] have studied for the
Gaussian case (both i.i.d. and correlated)

I Consider the first k order difference operators:

∇Yi , Yi − Yi−1

∇2Yi = ∇(∇Yi) = Yi − 2Yi−1 + Yi−2
...

∇kYi =
k∑

j=0

(
k
j

)
(−1)jYi−j , i ≥ k + 1. (2)
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WZCD

Weighted Zero-Crossings based Sensing

I The k th order ZC is said to occur, if the sign of ∇k−1Yi is
different from that of ∇k−1Yi+1

∆j,M ,


D1,M , j = 1,
Dj,M − Dj−1,M , j = 2, · · · , k − 1
(M − 1)− Dk−1,M , j = k ,

(3)

µj,M , E∆j,M , j = 1, · · · , k , (4)

I For a given set of weights wj , a Ψ2
w Statistic-based

Detector (ΨwSD) is given by

Ψ2
w

�H0
≷
∼H0

τΨ
w , (5)
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WZCD

I We consider the following cases for comparison with BD
I Equal and unit weights: [KedemSlud1982] Ψ2

1 ∼ χ2
3(11).

Choose the threshold τΨ
1 such that

Q 3
2

(√
11,
√
τΨ

1

)
=αf , (6)

I Exponential weights: Ψ2
w ∼ F(17.5,7). Choose the

threshold τmΨSD such that

1− I
(

17.5τmΨSD

17.5τmΨSD + 7
,8.75,3.5

)
= αf , (7)

I Note that the statistic and the threshold are independent of
variance of fN!
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Robustness

Robustness to NPU and NMU: Intuition

I When fI ∼ N (0, σ2
G), no problem at all.

I The PDF of any member of the SαS family, for 1 ≤ α ≤ 2
can be written as [West1987]

p(X ) =

∫ ∞
0

(
1
σ

)
g
(

X
σ

)
h(σ) dσ, (8)

I where g(·) is the standard Gaussian PDF, and
h : R+ → R+ is some function (can as well be a PDF).

I West extends this result to exponential family, which
includes the Laplace distribution.
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Robustness

More Advantages

I For large M, the number of zero-crossings for any
symmetric distribution is M/2.

I Works with distributions with infinite variance.
I Works with distributions with infinite mean! ⇒ works as

long as the median exists.
I Given that it is a GoFT, can be used with any signal and

fading models.
I Computational complexity: same as the energy detector,

and less intense that the blind detector.
I One disadvantage
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Simulations

Primary, and Fading models for simulations

I Primary signal models
I Model 1 : Constant primary
I Model 2 : Sinusoid primary

I Fading models
I Rayleigh fading (i.i.d., and first order ARMA correlated)
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Figure: Detection of primary model 1 under Rayleigh fading, with
Gaussian + SαS model.
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Figure: Detection of primary model 2 under Rayleigh fading, with
Gaussian + SαS model.
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Figure: Detection of primary models 1 and 2 under Rayleigh fading,
with ε-mixture model, ε = 0.05, and fI ∼ N (0, σ2

I ).



ZCD

Simulations

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

σ
I

2

P
ro

b
ab

il
it

y
 o

f 
d

ec
la

ri
n

g
 "

n
o

t 
H

0
"

 

 

BD, Model 1
Ψ

1
SD, Model 1

Ψ
e
SD, Model 1

BD, Model 2
Ψ

1
SD, Model 2

Ψ
e
SD, Model 2

Figure: Detection of primary models 1 and 2 under Rayleigh fading,
with ε-mixture model, ε = 0.05, and fI ∼ L(σ2

I ).



ZCD

Simulations

−20 −18 −16 −14 −12 −10 −8 −6 −4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

P
ro

b
ab

il
it

y
 o

f 
d

ec
la

ri
n

g
 "

n
o

t 
H

0
"

 

 

BD, Model 1
Ψ

e
SD, Model 1

Ψ
1
SD, Model 1

BD, Model 2
Ψ

e
SD, Model 2

Ψ
1
SD, Model 2

Figure: Detection of primary models 1 and 2 under pure Gaussian
noise, with noise variance uncertainty= 3dB, M = 300, αf = 0.05.
Average pf obtained through simulations for BD, ΨSD and mΨSD are
0.0498, 0.05, and 0.0501, respectively.
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Figure: Detection of primary models 1 and 2 under first order AR
correlated fading (with ρ = 0.5) and pure Gaussian Noise, with noise
variance uncertainty= 3dB, M = 300, αf = 0.05.
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Figure: Detection of primary model 1 under Gaussian + class A +
class B noises, with noise variance uncertainty= 3dB,
M = 300, αf = 0.05, ε = 0.05, fI ∼ N (0,100σ2

G).
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Figure: Detection of primary model 2 under Gaussian + class A +
class B noises, with noise variance uncertainty= 3dB,
M = 300, αf = 0.05, ε = 0.05, fI ∼ N (0,100σ2

G).
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Figure: Optimal threshold calculation under Gaussian + class A +
class B noises, with noise variance uncertainty= 3dB,
M = 300, αf = 0.05, ε = 0.05, fI ∼ N (0,100σ2

G).
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