E2 212: Matrix Theory: Video Lectures and Notes

  • Lecture 1: Basic definitions, vector space, basis. VideoNotes.
  • Lecture 2: Basis, dimension, linear transforms, fundamental subspaces associated with a linear transform. VideoNotes.
  • Lecture 3: Fundamental subspaces associated with a linear transform, rank. VideoNotes.
  • Lecture 4: Rank, inner product, Cauchy-Schwarz inequality. VideoNotes.
  • Lecture 5: Gram-Schmidt algorithm, determinants. VideoNotes.
  • Lecture 6: Determinants. VideoNotes.
  • Lecture 7: Properties of determinants, norms. VideoNotes.
  • Lecture 8: Properties of norms. VideoNotes.
  • Lecture 9: Dual norms, matrix norms. VideoNotes.
  • Lecture 10: Properties of matrix norms, induced norms. VideoNotes.
  • Lecture 11: Induced norms, spectral radius. VideoNotes.
  • Lecture 12: Properties of spectral radius, Banach lemma. VideoNotes.
  • Lecture 13: Levy-Desplanques theorem, equivalence of matrix norms, errors in inverses of linear systems. VideoNotes.
  • Lecture 14: Errors in inverses, errors in solving systems of linear equations. VideoNotes.
  • Lecture 15: Eigenvalues and eigenvectors, the characteristic polynomial. VideoNotes.
  • Lecture 16: Similar matrices, diagonalizability. VideoNotes.
  • Lecture 17: Simultaneous diagonalizability, eigenvectors, principle of biorthogonality. VideoNotes.
  • Lecture 18: Unitary matrices, unitary equivalence. VideoNotes.
  • Lecture 19: Schur’s unitary triangularization theorem, Cayley-Hamilton theorem. VideoNotes.
  • Lecture 20: Uses of Cayley-Hamilton theorem, diagonalizability revisited, normal matrices. VideoNotes.
  • Lecture 21: Properties of normal matrices, QR decomposition, canonical forms. VideoNotes.
  • Lecture 22: Jordan canonical form. VideoNotes.
  • Lecture 23: Properties of the Jordan canonical form, convergent matrices. VideoNotes.
  • Lecture 24: Properties of convergent matrices, polynomials and matrices, Gaussian elimination. VideoNotes.
  • Lecture 25: Gauss transforms, LU decomposition. VideoNotes.
  • Lecture 26: LU decomposition with pivoting, LDM, LDLt decomposition. VideoNotes.
  • Lecture 27: Cholesky decomposition, uses, Hermitian and symmetric matrices. VideoNotes.
  • Lecture 28: Properties of Hermitian matrices, variational characterization of eigenvalues, Rayleigh-Ritz theorem. VideoNotes.
  • Lecture 29: Courant-Fischer theorem. VideoNotes.
  • Lecture 30: Weyl’s theorem, eigenvalues of bordered matrices. VideoNotes.
  • Lecture 31: Interlacing theorems for Hermitian matrices. VideoNotes.
  • Lecture 32: Further interlacing theorems, majorization of eigenvalues. VideoNotes.
  • Lecture 33: Location and perturbation of eigenvalues: dominant diagonal theorem, Gersgorin disc theorem. VideoNotes.
  • Lecture 34: Properties of Gersgorin discs, condition of eigenvalues. VideoNotes.
  • Lecture 35: Perturbation of eigenvalues, Birkhoff’s theorem, Hoffman-Weilandt theorem. Video1,Video2Notes.
  • Lecture 36: Singular value decomposition (SVD). VideoNotes.
  • Lecture 37: Properties of the SVD, generalized inverses of matrices. VideoNotes.
  • Lecture 38: Least squares problems, generalized SVD theorem, constrained least squares. VideoNotes.