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Abstract

Consider a large population containing a small number of defective items. A commonly

encountered goal is to identify the defective items, for example, to isolate them. In the

classical non-adaptive group testing (NAGT) approach, one groups the items into sub-

sets, or pools, and runs tests for the presence of a defective item on each pool. Using the

outcomes the tests, a fundamental goal of group testing is to reliably identify the com-

plete set of defective items with as few tests as possible. In contrast, this thesis studies

a non-defective subset identification problem, where the primary goal is to identify a

“subset” of “non-defective” items given the test outcomes. The main contributions of

this thesis are:

• We derive upper and lower bounds on the number of nonadaptive group tests

required to identify a given number of non-defective items with arbitrarily small

probability of incorrect identification as the population size goes to infinity. We

show that an impressive reduction in the number of tests is achievable compared

to the approach of first identifying all the defective items and then picking the

required number of non-defective items from the complement set. For example,

in the asymptotic regime with the population size N → ∞, to identify L non-

defective items out of a population containing K defective items, when the tests

are reliable, our results show that O
(

K
logK

L
N

)

measurements are sufficient when

L ≪ N − K and K is fixed. In contrast, the necessary number of tests using

the conventional approach grows with N as O
(

K
logK

log N
K

)

measurements. Our

results are derived using a general sparse signal model, by virtue of which, they

are also applicable to other important sparse signal based applications such as

compressive sensing.
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• We present a bouquet of computationally efficient and analytically tractable non-

defective subset recovery algorithms. By analyzing the probability of error of the

algorithms, we obtain bounds on the number of tests required for non-defective

subset recovery with arbitrarily small probability of error. By comparing with

the information theoretic lower bounds, we show that the upper bounds bounds

on the number of tests are order-wise tight up to a log(K) factor, where K is the

number of defective items. Our analysis accounts for the impact of both the ad-

ditive noise (false positives) and dilution noise (false negatives). We also pro-

vide extensive simulation results that compare the relative performance of the

different algorithms and provide further insights into their practical utility. The

proposed algorithms significantly outperform the straightforward approaches of

testing items one-by-one, and of first identifying the defective set and then choos-

ing the non-defective items from the complement set, in terms of the number of

measurements required to ensure a given success rate.

• We investigate the use of adaptive group testing in the application of finding a

spectrum hole of a specified bandwidth in a given wideband of interest. We pro-

pose a group testing based spectrum hole search algorithm that exploits sparsity

in the primary spectral occupancy by testing a group of adjacent sub-bands in a

single test. This is enabled by a simple and easily implementable sub-Nyquist

sampling scheme for signal acquisition by the cognitive radios. Energy-based

hypothesis tests are used to provide an occupancy decision over the group of

sub-bands, and this forms the basis of the proposed algorithm to find contiguous

spectrum holes of a specified bandwidth. We extend this framework to a multi-

stage sensing algorithm that can be employed in a variety of spectrum sensing

scenarios, including non-contiguous spectrum hole search. Our analysis allows

one to identify the sparsity and SNR regimes where group testing can lead to sig-

nificantly lower detection delays compared to a conventional bin-by-bin energy

detection scheme. We illustrate the performance of the proposed algorithms via

Monte Carlo simulations.



Notation

Vectors are denoted by boldface lower case letters. Matrices are denoted using upper-

case bold letters. Scalar random variables are represented by capital non-bold alpha-

bets. Indexed random variables are denoted using the index set as sub-script, e.g., with

S = {1, 3, 5, 8}, ZS denotes a set of 4 random variables {Z1, Z3, Z5, Z8}. Pr{A} denotes

the probability of occurrence of an event A and Pr{A|B} denotes the conditional prob-

ability of occurrence of event A given event B. The notation used in this thesis is listed

in the table below:

[N ] : {1, 2, . . . , N} for any positive integer N
{∅} : Null set
For sets A and B
Ac : Complement of set A
|A| : Cardinality of set A
A\B : A ∩Bc, i.e., elements of A that are not in B

For vectors a and b
a(i) : ith component of vector a
supp(a) : Support of a, i.e., the set {j : a(j) > 0}
{a = c} : {j : a(j) = c} for any c
ac : Component wise boolean complement of a

boolean vector a
a 4 b : Component-wise inequality, i.e., a(i) ≤ b(i) ∀i
a ◦ b : Component-wise product, i.e., ∀i

(a ◦ b)(i) = a(i)b(i)

1n : All-ones vector of size n
0n : All-zeros vector of size n
diag(a) : The diagonal matrix with diagonal entries given

by the entries of a

v
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For a given matrix Y

y(r)
i

: The ith row of Y

y
j

: The jth column of Y

Y(S, :) : The sub-matrix of Y that consists only of rows
indexed by set S

Y(:, S) or YS : The sub-matrix of Y that consists only of columns
indexed by set S

Functions
IA : Indicator function of set A. Returns 1

if the event A is true, and returns 0 otherwise
Q(.) : The standard Gaussian tail function
sgn(.) : The signum function
Hb(p) : The binary entropy function, i.e., for any 0 ≤ p ≤ 1

Hb(p) = −p log(p)− (1− p) log(1− p)
E[.] : Expectation operator

Big-O notation
x(n) = O(y(n)) : Implies that ∃ B > 0 and n0 > 0, such that

|x(n)| ≤ B|y(n)| for all n > n0

x(n) = Ω(y(n)) : Implies that ∃ B > 0 and n0 > 0, such that
|x(n)| ≥ B|y(n)| for all n > n0

N (m, s2) : The Gaussian distribution with mean m and variance s2

χ2 (k) : The Chi-squared distribution with k degrees of freedom
B(q) : The Bernoulli distribution with parameter q, q ∈ [0, 1]
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Chapter 1

Introduction

Identification of “defective” members of a population of “items” is an interesting and

challenging task especially when the population size is large. Consider a population

consisting of N items, of which an unknown subset of K(≪ N) items is defective. Sup-

pose the items possess a certain testable property, e.g., the presence of an antigen in

a blood sample, presence of a pollutant in an air sample, etc. One pertinent goal in

this context is to identify the subset of defective items in the population. A straightfor-

ward approach is to test all N items one-by-one, but this would lead to prohibitively

high testing times (or high hardware cost for testing items in parallel), when N is large.

However, if it is possible to group multiple items together in a test, e.g., pooling blood

samples from multiple individuals, mixing the pollutant gases from multiple environ-

mental areas etc., intuitively speaking, we can expect to achieve a significant reduction

in the number of tests, especially if most of the items being tested are non-defective.

This simple idea forms the basis of a powerful testing framework called group testing.

1
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1.1 Group testing

Group testing [2–4] is an efficient way of identifying a small number of defective items

from a large population of items. A defining notion of this framework is that items

are grouped or pooled together, and a test is run on the aggregate pooled sample. The

outcome of the test is a binary indication as to whether or not the property of interest

is present collectively in the group. A negative indication implies that none of the tested

items possess this property. That is, none of the items tested in that group are defective.

A positive outcome implies that at least one of the items possesses the given property. Us-

ing the outcomes of multiple such group tests, a basic goal of group testing is to identify

the defective set of items with as few tests as possible. Intuitively, the merit in the idea

of group testing lies in the following fact: Since a test with negative outcome implies

(when the tests are reliable) that all the items included in the test are non-defective, no

further testing is required for items tested in pools with negative outcomes, leading to a

reduction in number of tests. The reduction is particularly dramatic when the number

of defective items is small compared to the size of the population, and the number of

items tested in each pool is chosen judiciously.

Group testing was proposed in 1943 by Dorfman [2], as a strategy to reduce the

number of blood tests required to identify the men infected with syphilis among the

prospective entrants into the US military service during the World War II. Instead of

testing blood sample for each inductee for the infection, Dorfman suggested that the

blood samples of multiple individuals be pooled and analyzed together. Thus, the

blood samples of all the inductees denote the set of “items”, an infected blood sam-

ple denotes a “defective” item and the test performed to detect the presence of the
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syphilitic antigen in the pooled sample corresponds to the “group test”. By analyzing

the outcomes of the tests performed on each of the pools, the goal was to identify all the

syphilis infected inductees. Interestingly, group testing was never used in the applica-

tion for which it was proposed and the concept lay dormant until Sobel and Groll [5]

proposed its use for industrial testing design.1 Since then, the framework of group test-

ing has found applications in diverse engineering fields such as industrial testing [5,7],

data pattern mining [8], DNA sequencing [3,4,9], medical screening [4,10], multi-access

communications [4, 11], data streaming [12, 13], food contamination testing [14], viral

epidemiology [15], Graph constrained group testing [16].

1.1.1 Non-Adaptive Group Testing

Group testing can be broadly classified into two categories: adaptive and non-adaptive

group testing. In the adaptive framework the tests are designed to be run sequentially,

and the future tests take into account the outcomes of the previous tests. In the non-

adaptive framework, all tests (pools) are specified in advance and can be conducted

simultaneously, i.e., the tests do not use the information provided by the outcome of any

other test. In many applications, e.g., in molecular biology, DNA library screening etc.,

the test procedure is long and can take several hours or even days, and the sequential

testing associated with the adaptive framework leads to prohibitively high testing time.

Similarly, in many other applications, e.g., in spectrum hole search for cognitive radios,

the overall test (search) time is of critical importance and needs to be kept as small as

possible. For such applications, non-adaptive group testing (NGT) framework is the

1In fact, the term group testing was coined by Sobel and Groll [5]. For more interesting historical facts
on group testing, the reader is referred to [6].
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preferred choice, and will be the main focus of the work presented in this thesis.

A non-adaptive group testing setup can be described using a boolean valued test ma-

trix (see Figure 1.1) where the rows are labeled by tests/pools and the columns are

labeled by items. The ith row describes the items included in the ith group test, and

these correspond to the columns that have a 1 in the ith row. The jth column of the test

matrix describes the pools in which jth item is included. Each test is associated with a

boolean outcome, with a 1 indicating that at least one defective item is present in the

pool and a 0 indicating that none of the items included in the pool are defective. Using

the test outcome vector and the test matrix, a primary goal in non-adaptive group test-

ing is to identify the defective set. A toy example demonstrating a typical non-adaptive

group testing setup is presented in Figure 1.1.

An important aspect of the non-adaptive group testing is the pooling strategy, i.e,

how to determine the set of individuals that go into each group test. Two main ap-

proaches exist [4]: First, a combinatorial approach, see e.g., [17–19], which considers

explicit constructions, e.g., using superimposed codes, to design test matrices/pools

with properties2 that lead to guaranteed detection of a small number of defective items.

The second pooling strategy for non-adaptive group testing is to use a probabilistic

pooling approach, see e.g., [4,15,20]. Here, the items included in the group test are cho-

sen uniformly at random from the population. Further, the items in different pools are

chosen independently of each other, leading to a test matrix with random i.i.d. entries.

2One such property is disjunctness [4]. A test matrix, with tests indexing the rows and items indexing
the columns, is said to be k-disjunct if the boolean sum of every k columns does not equal any other
column in the matrix.
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1 1 0 1 0 0 0 1 0 0

0 0 1 0 1 0 1 0 1 0

0 0 0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 0 0 1

1 0 0 1 0 0 0 1 0 0

0

1

1

1

0

Items

Tests

TestTest Matrix (X)
Outcomes(y)

Defective set (Sd): {5, 9}

Pool 1

Pool 3

Items tested in Pool 1: {1, 2, 4, 8}

Given y and X identify the defective set.

Decoding/Recovery

Algorithm

y, X Ŝd

Estimate of Sd

Figure 1.1: A toy example demonstrating the noiseless non-adaptive group testing
setup: The number of items is N = 10, the number of defective items is K = 2, the
defective set is {5, 9}, and the number of tests is M = 5. Pools are described by rows of
the test matrix X. For example, Pool 1 is described by the first row, and indicates that
items 1, 2, 4 and 8 are included in test 1. Also, column 1 indicates that item 1 is tested
in Pools 1 and 5. The outcome vector y denotes the outcome of each test. For example,
Pool 1 does not include any defective item and hence its output is 0. Pool 2 includes
two defective items and one non-defective item. Its output is 1, indicating that there is
at least one defective item included in the pool. The goal of the recovery algorithm is to
use the test outcomes and the knowledge of the test matrix to identify the defective set.
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Note that, with random constructions, there is always a (small) chance that a given in-

stance of the test matrix will not be successful in identifying a defective set, even in the

noiseless case. The combinatorial approach highlights the “design” approach towards

the group testing. Explicit constructions are attractive as they are efficient and often

lead to simpler decoding algorithms. However, only a few such constructions exist, see

e.g., [4, Chapter 5]. Our main interest lies in the random pooling designs since these can

always be constructed. Moreover, the random pooling design is amenable to compre-

hensive analysis, leading to critical insights on the impact of system parameters such as

the number of tests on the performance of the group tests. However, a key issue with

the random construction of the test matrix is the design of computationally efficient

algorithms for defective set identification, given the set of test outcomes.

The example in Figure 1.1 shows a setup where the test outcomes are noiseless, i.e., the

outcome is always a 1 if the pool includes at least one defective item, and, 0 otherwise.

However, in real world situations, due to practical impairments, the group test out-

comes can be noisy and unreliable. Two type of noise effects are typically considered in

the group testing literature: (a) Additive noise: This noise accounts for the false alarms

(or false positives) in the test outcomes. That is, a test output can be 1 even if none of

the defective items are included in the pool. (b) Dilution noise: This noise accounts for

the missed detection (or false negatives) in the test outcomes. It refers to a case when a

defective item that is included in a test appears as absent. If all the defective items in a

given test get diluted then the outcome will come out to be negative, thereby leading to

a false conclusion that the pool does not contain any defectives. Historically, the name

dilution noise is motivated by the dilution of blood samples when many samples are
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pooled together. When the concentration of the infectious agents (or the correspond-

ing antigen) goes below detectable levels due to the dilution, the test outcome would

appear negative, even though the pool contains defective items.

With the above background, we are now ready to describe the central problem con-

sidered in this thesis.

1.2 Non-Defective Subset Identification

Consider the general test setup consisting of a set ofN items, where an unknown subset

of K(≪ N) items are defective. Let us denote the defective subset by Sd. Its comple-

ment set, i.e., Sh , [N ]\Sd, is referred to as the “non-defective” or “healthy” subset.

Note that |Sh| = N −K. In many applications, as described below, the items of interest

belong to the non-defective set (as opposed to the defective set) and we wish to identify

a subset of items of size L(≤ N−K) belonging to Sh. We refer to this as the non-defective

subset identification problem, and is the main focus of the work presented in this thesis.

1.2.1 Non-Defective Subset Identification: Example Applications

We now present several practical scenarios where the primary goal is to identify a sub-

set of non-defective items.

• Spectrum hole search in cognitive radio networks: Consider the spectrum hole

search problem in a cognitive radio (CR) network setup. It is known that the

primary user occupancy is sparse in the frequency domain, over a wide band of

interest [21,22]. This is equivalent to having a small subset of defective items (bins

with primary occupancy) embedded in a large set of candidate frequency bins.
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The secondary users do not need to identify all the frequency bins occupied by

the primary users (defective set identification); they only need to discover small

unoccupied sub-bands to setup the secondary communications. This, in turn, is a

non-defective subset identification problem when the bins to be tested for primary

occupancy can be pooled together into group tests [23]. For example, consider a

CR network being setup on the Bluetooth band with a requirement of 8 MHz for

its operations. The Bluetooth band consists of 80 1-MHz channels (items). In this

case, a defective item is equivalent to a channel occupied by a Bluetooth user. At a

given location and time, if, say, 4 Bluetooth users are active, the cognitive network

needs to find a set of 8 non-defective items from a population of 80 items, out of

which 4 are defective.

• Data stream sketch queries: This is an example from the data stream domain [12,

24]. We receive a high volume SMS data stream as the response to a trivia con-

test run during a television show. The SMS data stream is processed to ascertain

whether the answer is correct. The outcome is streamed to the server at the TV

studio as 〈phone.number, flag〉, where flag is a binary valued variable, with flag = 1

indicating a correct answer and flag = −1 indicating a wrong answer. Owing to

the simplicity of trivia questions, typically, a large majority of the flag variables

are equal to 1. That is, each processed SMS record is an item, and the records

with flag = −1 are considered to be defective. Due to the large number of re-

ceived records and severe memory constraints, the data stream is often summa-

rized using a small number of “sketches” using measurement/test matrices, and

this sketch vector is equivalent to the test outcome vector in the non-adaptive
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group testing setup [13, 24]. The objective is to use the sketch vector to identify a

small group of responders with correct answers, i.e., the winners of the contest,

and is thus a non-defective subset identification problem, since the goal is to find a

small subset of non-defectives from a large population of items.

• Food contamination: Consider a food contamination testing setup where food

samples, e.g., sprout samples, from different vendors is being tested for contam-

ination by bacteria of a specific type [14]. A small subset of vendors with uncon-

taminated food samples (non-defective items) has to be identified for an urgent

food consignment delivery. Once again, the interest here is in the identification of

a subset of the non-defective items using as few group tests as possible.

1.2.2 Scope of Work

In classical group testing, the defective set identification problem has been studied in

detail, see e.g., [4, 6] and references therein. There exist bounds on the number of tests

required to identify the defective set, both in the noiseless and noisy settings, and both

for computationally efficient decoding algorithms as well as under general information

theoretic models [4, 13, 15, 17–20, 25–30]. However, to the best of our knowledge, the

problem of non-defective subset identification has not been studied before. For exam-

ple, no results are available that relate the parameter L, the size of non-defective subset,

to the number of tests required to identify it.

The defective set identification problem is a special case of the non-defective subset

identification problem: we obtain the former by setting L = N − K in the latter. Fur-

ther, we note that a straightforward way to identify a set of L(≤ N −K) non-defective
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items is to first identify all the defective items and subsequently choose any L items

from the complement set. Thus, a solution to defective set identification is also a (sub-

optimal) solution to the non-defective subset identification. Hence, the number of tests

that are sufficient for defective set identification is an upper bound on the number of

tests that are sufficient for non-defective subset identification. However, intuitively,

a much smaller number of tests should suffice for non-defective subset identification,

since it is not necessary to identify all the defective items. A formalization of the above

intuition by quantifying the number of tests required to identify an L sized subset of

non-defective items is one of the key highlights of this work. In particular, we have

studied the following two aspects in detail:

(a) Fundamental Limits: Here, our goal is to derive information theoretic upper and

lower bounds on the number of tests required for identifying L non-defective items

in a non-adaptive framework. The utility of deriving such bounds is two-fold:

First, it aids comparison with the existing bounds for defective set identification prob-

lem and thereby substantiates the need to separately study the non-defective sub-

set identification problem. Second, such analysis provides a rigorous benchmark

against which the performance of computationally efficient and practically useful

algorithms can be compared.

(b) Computationally Efficient and Analytically Tractable Algorithms: Here we study

computationally efficient algorithms to recover/identify a set of L non-defective

items given the set of noisy outcomes in a non-adaptive group testing setup. An-

other key requirement for these algorithms is analytical tractability. Thus, an impor-

tant aspect of this work is the derivation of sample complexity guarantees for each
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algorithm, i.e., the number of tests required to identify a subset of non-defective

items with arbitrarily small probability of error.

In addition to studying the non-defective subset identification problem in a general

mathematical framework, we have investigated it in the context of a specific applica-

tion. We have studied the use of group testing for finding a spectrum hole of a specified

bandwidth in a given wideband of interest. An interesting aspect of this work is the de-

sign of the group test, i.e., a test that operates on multiple items (sub-bands in this case)

and provides a binary decision regarding the presence of the primary in the any of the

sub-bands included in the test. The proposed test is based on a simple and easily imple-

mentable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios.

Since running multiple tests in parallel would entail a prohibitively high hardware cost,

we study this problem in an adaptive framework.

1.3 Organization of the Thesis and Summary of Main Con-

tributions

The remainder of this dissertation is organized as follows:

In Chapter 2, we study the information theoretic aspects of the non-defective subset

identification problem. We derive mutual information based upper and lower bounds

on the number of nonadaptive group tests required to identify a given number of “non-

defective” items from a large population containing a small number of “defective”

items with arbitrarily small probability of incorrect identification as the population size

goes to infinity. We formulate the problem of non-defective subset identification as

a detection problem using observations obtained from a general sparse signal model.
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Using multiple observations from this framework, we propose and analyze decoding

schemes to identify L non-defective items. The upper bounds are derived by analyz-

ing the error probability of these decoding schemes. We use a modified form of Fano’s

inequality to derive a lower bound on the number of observations required to identify

L inactive variables with arbitrarily small probability of error. We show that an im-

pressive reduction in the number of tests is achievable compared to the approach of

first identifying all the defective items and then picking the required number of non-

defective items from the complement set. For example, in the asymptotic regime with

the population size N → ∞, to identify L non-defective items out of a population con-

taining K defective items, when the tests are reliable, our results show that O
(

K
logK

L
N

)

measurements are sufficient when L≪ N−K and K is fixed. In contrast, the necessary

number of tests using the conventional approach grows with N as O
(

K
logK

log N
K

)

mea-

surements. As mentioned earlier, a highlight of our analysis is that it is based on a very

general sparse signal model, by virtue of which, the results obtained are also applicable

to other important sparse signal based applications such as compressive sensing.

In Chapter 3, the main focus is on developing non-defective subset recovery algo-

rithms. We present a bouquet of computationally efficient and analytically tractable

algorithms for non-defective subset identification in the noisy, non-adaptive group test-

ing with random pooling framework. We analyze the probability of error of the algo-

rithms and obtain bounds on the number of tests required for non-defective subset re-

covery with arbitrarily small probability of error. Our analysis also helps to determine

the parameters of the algorithms that offer the best performance in terms of optimizing

the error upper bounds. By comparing with the information theoretic lower bounds
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presented in Chapter 2, we show that the upper bounds on the number of tests are

order-wise tight up to a log(K) factor, where K is the number of defective items. We

also provide extensive simulation results that compare the relative performance of the

different algorithms and provide further insights into their practical utility.

In Chapter 4, we investigate the use of adaptive group testing for finding a spectrum

hole of a specified bandwidth in a given wide band of interest. We propose a group

testing based search algorithm that is enabled by a simple and easily implementable

sub-Nyquist sampling scheme for signal acquisition. The sampling scheme deliberately

introduces aliasing during signal acquisition, resulting in a signal that is the sum of sig-

nals from adjacent sub-bands. The acquisition scheme entails only a minimal hardware

change, compared to the narrowband energy detector. The proposed group test, which

is an energy-based hypothesis test and provides an occupancy decision over the group

of adjacent sub-bands, forms the basis of the proposed algorithm to find contiguous

spectrum holes of a specified bandwidth. We also propose a multi-stage sensing algo-

rithm that can be employed in a variety of spectrum sensing scenarios, e.g., spectrum

sensing with frequency hopping primaries, non-contiguous spectrum hole search etc.

Further, we theoretically analyze the detection delay behavior of the algorithm, and use

it to optimize the parameters (group size, samples per test, and detection thresholds) of

the search algorithm. Our analysis allows one to identify the sparsity and SNR regimes

where group testing can lead to significantly lower detection delays compared to a con-

ventional bin-by-bin energy detection scheme. We provide extensive simulation results

that corroborate our theoretical results.

The appendices containing supplementary material for each chapter (Appendix A for
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Chapter 2, Appendix B for Chapter 3 and Appendix C for Chapter 4) are included at

the end of this dissertation.
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Chapter 2

Finding a Subset of Non-Defective

Items: Fundamental Bounds

In this chapter, we derive information theoretic upper and lower bounds on the number

of nonadaptive group tests required to identify a given number of non-defective items

from a large population containing a small number of defective items. We adopt a gen-

eral sparse signal model used in the literature, that is applicable in a variety of areas

such as compressive sensing [31], group testing [2, 4], signal de-noising [32], subset se-

lection [33], etc. In the sparse signal model, out of a given number N of input variables,

only a small subset of size K(≪ N) contributes to the observed output, and the output

is independent of the other variables. For example, in a non-adaptive group testing

setup, the output is independent of whether or not any items from the non-defective

set participate in the group test. Similarly, in a compressive sensing setup, the output

signal is a set of random projections of a sparse signal. Hence, the output only depends

on the non-zero entries (support set) of the input vector. This salient subset of inputs is

referred to by different names, e.g., defective items, sick individuals, support set, etc.

In this chapter, we will refer to it as the active set, and its complement as the inactive set.

17
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In this chapter, we address the issue of the inactive subset recovery. That is, we focus

on the task of finding an L (≤ N − K) sized subset of the inactive set (of size N − K),

given the observations from a sparse signal model withN inputs, out of whichK(≪ N)

are active. The problem of finding a subset of items belonging to the inactive set is of

interest in many applications, and we refer the reader to Section 1.2.1 for a discussion

of example applications.

Related work: In the group testing literature, the problem of bounding the number

of tests required to identify the defective items in a large pool has been studied, both

in the noiseless and noisy settings, both for tractable decoding algorithms as well as

under general information theoretic models [13, 15, 17–20, 25–30]. A combinatorial ap-

proach has been adopted in [17–19], where explicit constructions for the test matrices

are used, e.g., using superimposed codes, to design matrices with properties that lead

to guaranteed detection of a small number of defective items. Two such properties were

considered: disjunctness and separability [4].1 A probabilistic approach was adopted

in [13, 15, 25, 26], where random test matrix designs were considered, and upper and

lower bounds on the number of tests required to satisfy the properties of disjunctness

or separability with high probability were derived. In particular, [15] analyzed the per-

formance of group testing under the so-called dilution noise. A recent study [20] uses

random test designs, and develops computationally efficient algorithms for identifying

defective items from the noisy test outcomes by exploiting the connection with com-

pressive sensing. The authors also show that the algorithms are near-optimal in terms

1A test matrix, with tests indexing the rows and items indexing the columns, is said to be k-disjunct
if the boolean sum of every k columns does not equal any other column in the matrix. Also, a test matrix
is said to be k-separable if the boolean sum of every set of k columns is unique.
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of the number of tests required for a guaranteed performance. A general sparse signal

model for studying group testing problems, that turns out to be very useful in deal-

ing with noisy settings, was proposed and used in [27–30]. In this framework, the

group testing problem was formulated as a detection problem and a one-to-one corre-

spondence was established with a communication channel model. Using information

theoretic arguments, mutual information based expressions (that are easily computable

for a wide variety of noisy channels) for upper and lower bounds on the number of

tests were obtained [30]. In the related field of compressive sensing, an active line of

research has focused on the conditions under which reliable signal recovery from obser-

vations drawn from a linear sparse signal model is possible, for example, conditions on

the number of measurements required and on isometry properties of the measurement

matrix ([34, 35], and references therein). In particular, there exists a good understand-

ing of the bounds on the number of measurements required for support recovery from

noisy linear projections (e.g., [36–40]).

Thus, to the best of our knowledge, fundamental bounds on the number of tests

needed to find L non-defective items, which is the focus in this chapter, have not been

derived in the existing literature. A recent work [41] studies the problem of finding

zeros in a sparse vector in the framework of compressive sensing. The authors propose

computationally efficient recovery algorithms and study their performance through

simulations. In contrast, our work builds on our earlier work [42], and focuses on

deriving information theoretic upper and lower bounds on the number of measure-

ments needed for identifying a given number of inactive items in a large population

with arbitrarily small error probability.
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For the fundamental bounds, we consider the general sparse signal model employed

in [27, 30] in the context of the problem of defective set recovery. The model consists of

N input variables, out of which, an unknown subset S of size K is “active”; in the sense

that, only the variables in the set S are relevant to the output. Mathematically, this is

modeled by assuming that, conditioned on the active set S, the output Y is independent

of remaining input variables. The probability distribution of the output conditioned on

a given active set is assumed to be known for all possible active sets. Given multiple

observations from this model, we propose and analyze decoding schemes to identify a

set of L inactive variables. We compare two alternative schemes: (a) Decode the active

set and then choose L variables randomly from the complement set, and, (b) Decode the

inactive subset directly from the observations. Our main contributions are as follows:

1. We analyze the average probability of error for both the decoding schemes. We

use the analysis to obtain mutual information based upper bounds on the number

of observations required to identify a set of L inactive variables with the proba-

bility of error decreasing exponentially with the number of observations.

2. We specialize the above bounds to various noisy non-adaptive group testing sce-

narios, and characterize the number of tests required to identify L non-defective

items, in terms of L, N and K.

3. Using Fano’s inequality, we also derive a lower bound on the number of observa-

tions required to identify L inactive variables with arbitrarily small error proba-

bility.
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Our results show that, compared to the conventional approach of identifying an in-

active subset by first decoding the active set, directly searching for an L-sized inactive

subset offers a substantial reduction in the number of observations (tests/measurements),

especially when L is small compared to N −K. For example, in the asymptotic regime

as N → ∞, L → ∞, L
N

= α0 and fixed K, when the tests are reliable, O
(

K
logK

L
N

)

obser-

vations are sufficient when α0 is small. In contrast, the number of observations required

by the conventional approach grows as O
(

K
logK

log N
K

)

[30].

The rest of the chapter is organized as follows. Section 2.1 describes the signal model

and problem setup. We present our upper and lower bounds on the number of observa-

tions in Sections 2.2 and 2.3, respectively. An application of the bounds to group testing

is described in Section 2.4. The proofs for the main results are provided in Section 2.5,

and concluding remarks are offered in Section 2.6.

2.1 Problem Setup

In this section, we describe the signal model and problem setup. Let X[N ] =
[

X1, X2, . . .

. . . , XN

]

denote a set of N independent and identically distributed input random vari-

ables (or items). Let eachXj belong to a finite alphabet denoted by X and be distributed

as Pr{Xj = x} = Q(x), x ∈ X , j = 1, 2, . . . , N . For a group of input variables, e.g.,

X[N ], Q(X[N ]) =
∏

j∈[N ]Q(Xj) denotes the joint distribution for all the input variables.

We consider a sparse signal model where only a subset of the input variables are active

(or defective), in the sense that only a subset of the input variables contribute to the out-

put. Let S ⊂ [N ] denote the set of input variables that are active, with |S| = K. Let

Sc , [N ]\S denote the set of variables that are inactive (or non-defective). Let the output
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belong to a finite alphabet denoted by Y . We assume that Y is generated according to

a known conditional distribution P (Y |X[N ]). Then, in our observation model, we as-

sume that given the active set, S, the output signal, Y , is independent of the other input

variables. That is, ∀ Y ∈ Y ,

P (Y |X[N ]) = P (Y |XS). (2.1)

We observe the outputs corresponding to M independent realizations of the input vari-

ables, and denote the inputs and the corresponding observations by {X,y}. Here, X is

an M ×N matrix, with its ith row representing the ith realization of the input variables,

and y is an M × 1 vector, with its ith component representing the ith observed output.

Note that, the independence assumption across the input variables and across different

observations implies that each entry in X is independent and identically distributed

(i.i.d.). Let L ≤ N − K. We consider the problem of finding a set of L inactive vari-

ables given the observation set, {X,y}. That is, we wish to find an index set SH ⊂ Sc

such that |SH | = L. In particular, our goal is to derive information theoretic bounds

on the number of observations (measurements/group tests) required to find a set of L

inactive variables with the probability of error exponentially decreasing with the num-

ber of observations. Here, an error event occurs if the chosen inactive set contains one

or more active variables. Now, one way to find L inactive variables is to find all the

active variables and then choose any L variables from the complement set. Thus, ex-

isting bounds on M for finding the active set are an upper bound on the number of

observations required for solving our problem. However, intuitively speaking, fewer

observations should suffice to find L inactive variables, since we do not need to find
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{i1, i2, . . . , iK}

Active Set
Codebook

X ∈ XM×N

[x1,x2, . . . ,xN ]
S

P(y|XS)
XS ∈ XM×K y ∈ YM

[xi1
,xi2

, . . . ,xiK
]

Encoder Channel

Figure 2.1: Sparse signal model: An equivalent random codebook based channel coding
model.

the full active set. This is confirmed by our results presented in the next section.

The above signal model can be equivalently described using Shannon’s random code-

book based channel coding framework. The active set S, that corresponds to one

of the
(

N
K

)

possible active sets with K variables, constitutes the input message. Let

X ∈ XM×N be a random codebook consisting of N codewords of length M ; each as-

sociated with one of the N input variables. Let xi denote the codeword associated

with ith input variable. The encoder outputs the length-M message XS ∈ XM×K , that

comprises of the K codewords chosen according to the index set S from X. That is,

XS = [xi1 xi2 . . .xiK ], where S = {i1, i2, . . . , iK}. The encoded message is transmitted

through a discrete memoryless channel [43, 44], denoted by (XM , P (y|XS),YM), where

P (y|XS) =
∏M

i=1 P (y(i)|X
(i)
S ) and the distribution function P (y(i)|X(i)

S ) is known for

each active set S. Here, X
(i)
S denotes the ith row of the matrix XS , and y(i) denotes the

ith component of y. Given the codebook X and the output message y, our goal is to

find a set of L variables not belonging to the active set S. See Fig. 2.1 for a pictorial

representation of the channel model.
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We also note that our signal model, proposed and used earlier in [27, 30], is a general-

ization of the signal models employed in some of the popular non-adaptive measure-

ment systems such as compressed sensing2 and non-adaptive group testing. Thus, the

general mutual information based bounds on number of observations to find a set of

inactive items obtained using the above model are applicable in a variety of practical

scenarios. We elaborate on this in the following paragraphs.

We now discuss the above signal model in context of a specific non-adaptive mea-

surement system, namely the random pooling based, noisy non-adaptive group testing

framework [4, 30]. In a group testing framework [4, 27, 30], we have a population of N

items, out of which K are defective. Let G ⊂ [N ] denote the defective set, such that

|G| = K. The group tests are defined by a boolean matrix, X ∈ {0, 1}M×N , that as-

signs different items to the M group tests (pools). In the ith test, the items correspond-

ing to the columns with 1 in the ith row of X are tested. Thus, M tests are specified.

As in [30], we consider an i.i.d. random Bernoulli measurement matrix, where each

Xij ∼ B(p) for some 0 < p < 1. Here, p is a design parameter that controls the av-

erage group size. If the tests are completely reliable, then the output of the M tests is

given by the boolean OR of the columns of X corresponding to the defective set G. In

group testing, two different noise models are considered [15, 30]: (a) An additive noise

model, where there is a probability, q ∈ (0, 1], that the outcome of a group test contain-

ing only non-defective items comes out positive; (b) A dilution model, where there is a

probability, u ∈ (0, 1], that a given item does not participate in a given group test. Let

di ∈ {0, 1}M . Let di(j) ∼ B(1 − u) be chosen independently for all j = 1, 2, . . .M and

2Although we focus on models with finite alphabets in this work, our results easily extend to models
with continuous alphabets, following along the lines of [45, 46].
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for all i = 1, 2, . . . N . Let Di , diag(di). Let “
∨

” denote the boolean OR operation. The

output vector y ∈ {0, 1}M can be represented as

y =
∨

i∈G
Dixi

∨

w, (2.2)

where xi ∈ {0, 1}M is the ith column of X, w ∈ {0, 1}M is the additive noise with the ith

component w(i) ∼ B(q). Note that, for the noiseless case, u = 0, q = 0. In an additive

model, u = 0, q > 0. In a dilution model, u > 0, q = 0.

The above “logical-OR” signal model arises in many practical non-adaptive group

testing measurement systems. For example, consider a medical screening application,

where a large number of individuals need to be tested for the presence of a specific

antigen in their blood. The blood samples drawn from the different individuals are

pooled together, according to a randomly generated test matrix X (as described above),

into multiple pools. Each pool is tested for the presence of the antigen. This test is well

modeled by the OR-operation described above, i.e., when the tests are reliable, a test

outcome is positive if one or more samples in the pool contain the antigen, and, a test

outcome is negative only if none of the samples in the pool contain the antigen. Note

that, given the knowledge of the set of individuals having the antigen, the test outcome

is independent of whether the blood sample from any other individual is included in

the pool or not. Another interesting concrete example of the above model, from the

domain of viral epidemiology, is provided in [15]. The goal is to identify virally-infected

people in a large population using a few number of group tests. A group test is realized

through an “agent”, who is a person that makes contact with multiple people chosen

randomly from the large population. The basic idea is that when the agent contacts an
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infected person, there is a chance that the agent also gets infected. Multiple such agents

comb a given area and at the end of the “mingling” procedure, each agent is tested for

the viral infection. It is easy to see that the “OR-model” captures the process of viral

infection for the agent. If the agent is infected, then it implies that it has made contact

with one or more infected individuals from the population. Note that, even when the

agent comes in contact with the infected person there is a chance that agent does not get

infected, which can be modeled using the dilution noise model. Several other use case

scenarios for the above described measurement system can be found in [4, 8, 11, 24].

We now relate the non-adaptive group testing model with the general sparse signal

model described in (2.1). Note that, X = {0, 1}, Y = {0, 1}. Each item in the group

testing framework corresponds to one of the N input variables. The ith row of the test

matrix corresponds to the ith realization of the input variables, which also specifies the

ith random pool. From (2.2), we note that, given the defective set G, the ith test outcome

y(i) is independent of values of input variables from the set [N ]\G. That is, for the test

outcome, it is irrelevant whether or not the items from the set [N ]\G are included in

the pool. Thus, G corresponds to the active set S. The probability distribution func-

tion P (y|XG) for any G, is fully determined from (2.2) and the statistical models for

the dilution and additive noise. Thus, the group testing framework is a special case

of the general sparse model that we have considered; and the number of group tests

corresponds to the number of observations in the sparse model.

We now define two quantities that are very useful in the development to follow. Let

S be a given active set. For any 1 ≤ j ≤ K, let S(j) and S(K−j) represent a partition of S
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such that S(j) ∪ S(K−j) = S, S(j) ∩ S(K−j) = {∅} and |S(j)| = j. Define

E0(ρ, j, n) = − log
∑

Y ∈Y

∑

X
S(K−j)∈XK−j







∑

X
S(j)∈X j

Q(XS(j)) (P (Y,XS(K−j)|XS(j)))
1

1+ρn







1+ρn

(2.3)

for any positive integer n and any ρ ∈ [0, 1]. Define I(j) , I(Y,XS(K−j);XS(j)) as the

mutual information between {Y,XS(K−j)} and XS(j) [43, 44]. Mathematically,

I(j) =
∑

Y ∈Y

∑

X
S(K−j)∈XK−j

∑

X
S(j)∈X j

P (Y,XS(K−j)|XS(j))Q(XS(j)) log
P (Y,XS(K−j)|XS(j))

P (Y,XS(K−j))
.

(2.4)

Using the independence assumptions in the signal model, for a given j, E0(ρ, j, n) and

I(j) are independent of the specific choice of S, and of the specific partitions of S. It is

easy to verify that
dE0(ρ, j, n)

dρ
|ρ=0 = nI(j). Furthermore, it can be shown that E0(ρ, j, n)

is a concave function of ρ [43].

2.2 Sufficient Number of Observations

We first present results on the sufficient number of observations to find a set of L inac-

tive variables. The general methodology used to find the upper bounds is as follows:

(a) Given a set of inputs and observations, {X,y}, we first propose a decoding algo-

rithm to find an L-sized inactive set, SH ; (b) For the given decoding scheme, we find (or

upper bound) the average probability of error, where the error probability is averaged

over the random set {X,y} as well as over all possible choices for the active set. An

error event occurs when the decoded set of L inactive variables contains one or more

active variables. That is, with S as the active set and SH as the decoded inactive set, an
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error occurs if S ∩ SH 6= {∅}; (c) We find the relationships between M , N , L and K that

will drive the average probability of error to zero. Section 2.2.1 describes the straight-

forward decoding scheme where we find the inactive variables by first isolating the

active set followed by choosing the inactive set randomly from the complement set.

This is followed by the analysis of a new decoding schemes we propose in Section 2.2.2

and 2.2.3 , where we directly search for an inactive subset of the required cardinality.

2.2.1 Decoding scheme 1: Look into the Complement Set

One way to find a set of inactive (or non-defective) variables is to first decode the ac-

tive (defective) set and then pick a set of L variables uniformly at random from the

complement set. Here, we employ maximum likelihood based optimal decoding [30]

to find the active set. Note that, intuitively, even if we choose a wrong active set, there

is still a nonzero probability of picking a correct inactive set, since there remain only a

few active variables in the complement set. The probability of error in identifying the

active set was analyzed in [30]. The error probability when the same decoding scheme

is employed to identify a inactive subset is similar, with an extra term to account for

the probability of picking an incorrect set of L variables from the complement set. For

this decoding scheme, we present the following result, without proof, as a corollary to

(Theorem III.I, [30]).

Corollary 1. Let N , M , L and K be as defined above. Let Pe be the average probability of error

in finding L inactive variables. If

M > max
1≤j≤K

log
[

(

N−K
j

)(

K
j

)

C0(L,N,K, j)
]

I(j)
, (2.5)
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where

C0(L,N,K, j) ,
∑j

i=1

(

N−K−j
L−i

)(

j
i

)

(

N−K
L

) , (2.6)

then there exists a positive constant, ǫ, such that Pe ≤ K exp(−Mǫ). That is, for all fixed

K ≥ 1, Pe approaches zero exponentially with the number of observations.

Thus, we have obtained a bound that gives us the sufficient number of observations

to find a set of L inactive variables. Since C0 ≤ 1, this bound is tighter than the bound

obtained by using the same number of observations as is required to find the active

set [30]. Can we do better? The answer is yes. The key idea, as we discuss in the next

subsection, is to look at the problem independently of the problem of finding the full

active set.

2.2.2 Decoding Scheme 2: Find the Inactive Subset Directly, K = 1

case

For simplicity of exposition, we describe this decoding scheme in two stages: First,

we present the result for the K = 1 case, i.e., when there is only one active variable.

This case brings out the fundamental difference between finding active and inactive

variables. We then generalize our decoding scheme to K ≥ 1.

We start by proposing the following decoding scheme:

• Given {X,y}, compute P (y|xi) for all i ∈ [N ] and sort them in descending order.

SinceK = 1, we know P (Y |Xi) for all i ∈ [N ], and hence P (y|xi) can be computed

using the independence assumption across different observations.

• Pick the last L indices in the sorted array as the set of L inactive variables.
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Note that, in contrast to finding active set, the problem of finding L inactive variables

does not have unique solution (except for L = N −K). The proposed decoding scheme

provides a way to pick a solution, and the probability of error analysis takes into ac-

count the fact that an error event happens only when the inactive set chosen by the

decoding algorithm contains an active variable.

Theorem 1. Let N , M , L and K be as defined above. Let K = 1. Let E0 and I(j) be as defined

in (2.3) and (2.4). Let ρ ∈ [0 1]. With the above decoding scheme, the average probability of

error, Pe, in finding L inactive variables is upper bounded as

Pe ≤ exp

[

−M
(

E0(ρ, 1, N − L)−
ρ log

(

N−1
L−1

)

M

)]

. (2.7)

Further, if

M >
log
(

N−1
L−1

)

(N − L)I(1) , (2.8)

then there exists a positive constant, ǫ, such that Pe ≤ exp(−Mǫ), i.e., Pe approaches zero

exponentially with the number of observations.

We make the following observations:

(a) Figure 2.2(a) compares the above bound on the number of observations with the

bounds in (2.5) and in Theorem III.I [30], for the K = 1 case.

(b) Consider the case L = N − 1, i.e., we want to find all the inactive variables. This

task is equivalent to finding the active variable. The above decoding scheme for

finding N − 1 inactive variables is equivalent3 to the maximum likelihood criterion

3The decoding schemes are equivalent in the sense that an error in finding K active variables implies
an error in finding N −K inactive variables, and vice-versa.
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based decoding scheme used in Theorem III.I in [30] for finding 1 active variable.

This is also reflected in the above result, as the number of observations sufficient for

finding N − 1 inactive variables matches exactly with the number of observations

sufficient for finding 1 active variable (see Figure 2.2(a)).

We now consider the K ≥ 1 case and establish that there exist decoding schemes that

achieve similar gains as in the K = 1 case.

2.2.3 Decoding Scheme 2: Find the Inactive Subset Directly, K ≥ 1

case

First, it is easy to see that the decoding scheme for K = 1 does not directly extend to the

K > 1 case. For example, let us arrange P (y|XSd
) in decreasing order for all Sd ⊂ [N ]

such that |Sd| = K. Since the different Sd are not necessarily disjoint, it is possible that

the sets towards the end of the sorted list have overlapping entries. Thus, it is not clear

how many sets from the end of the list we need to choose, in order to find at least L

distinct inactive variables.4 Hence, we propose to use a multi-stage algorithm where

we collect the required inactive variables in a greedy fashion. We start with considering

all N variables as candidate inactive variables. Then at each stage, we find K inactive

variables, which are then removed from the candidate set for the next stage.

Decoding Scheme:

1. Initialize T1 = [N ]; SH = [ ];

2. For i = 1, 2, . . . ,
⌈

L
K

⌉

do:

4Clearly, since the sets are distinct, picking the last L sets is sufficient. However, this leads to a weaker
bound than the scheme proposed in this section.
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• Given {X,y}, compute P (y|XSω) for all Sω ⊂ Ti and |Sω| = K. Find:

S(i)
ω = argmin

Sω⊂Ti,|Sω|=K
P (y|XSω). (2.9)

• Set SH = [SH S
(i)
ω ] and Ti+1 = Ti\S(i)

ω .

End do.

3. Output SH as the decoded set of inactive variables.

The probability of error analysis of the above multi-stage algorithm leads to a sufficient

condition on M . We summarize the result in the following theorem; we provide its

proof in Sec. 2.5.

Theorem 2. Let N , M , L and K be as defined above. Let Nstg ,
⌈

L
K

⌉

, Lj , (N − K) −

(NstgK − j) and C2(L,N,K, j) ,
(

N−K
Lj

)(

KNstg−j
K−j

)(

K
1

)(

K−1
j−1

)

. Let ρ ∈ [0 1]. With the above

decoding scheme, the average probability of error, Pe, in finding L inactive variables is upper

bounded as

Pe ≤
K
∑

j=1

exp

[

−M
(

E0(ρ, 1, Lj)−
ρ logC2(L,N,K, j)

M

)]

. (2.10)

Further, if

M > max
1≤j≤K

logC2(L,N,K, j)

LjI(1)
, (2.11)

then there exists a positive constant, ǫ, such that Pe ≤ K exp(−Mǫ), i.e., for all fixed K ≥ 1,

Pe approaches zero exponentially with the number of observations.

We make following observations about the above result:
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(a) Let Γu2 , max1≤j≤K
logC2(L,N,K,j)

Lj
, Γud , log

[(

N−K
1

)(

K
1

)]

, and let

Γu1 , Γud + log

[

(N−K−1
L−1 )

(N−K
L )

]

. The bounds in (2.5), (2.11) and in Theorem III.I [30]

are all of the form Γu

I(1)
, with Γu1, Γu2 and Γud being the shorthand notation for Γu

for each mentioned scheme, respectively.5 Figure 2.2(b) presents a comparison be-

tween these multiplicative factors. We see that the approach of directly finding an

L-sized inactive set, especially for small L, requires far fewer number of observa-

tions compared to the other approaches.

(b) We now characterize the limiting behavior of the bounds, as N → ∞, on the suf-

ficient number of observations required to find L inactive variables, with K fixed.

We derive the exact scaling laws in the regime where K grows linearly with N in

the next section, in the context of group testing. For the puropose of this discussion,

all the limits are with N → ∞, e.g., a → a0 implies limN→∞ a = a0. Let α , L−1
N−K ,

and note that α ∈ [0, 1). We consider the following scaling regimes for L asN →∞:

(i) L
N
→ 0, K fixed: That is, L is varying sub-linearly with N , which includes the

case where L is fixed. Using (A.1) in Lemma 3, Appendix A.1, we note that

since α→ 0, limN→∞ Γu2 = 0, i.e., we do not need any observations. This is in-

tuitive, as, with N →∞, we can choose any L set of variables, and it will con-

stitute an inactive set with high probability. In contrast, Γu1 = O(log(KL)) is

positive and non-decreasing in N , while Γud = O(log(KN)) increases with N .

(ii) L
N

= α0 for any 0 < α0 < 1, K fixed: That is, L scales linearly with N . Note

that, α → α0. From Lemma 3, we note that, for a given α0, Γu2 decreases

5Note that Γu1/I
(1) and Γud/I

(1) in fact further lower bound the sufficient number of observations
given in (2.5) and Theorem III.I [30], respectively.
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monotonically with N (see Figure A.1 in Appendix A.1), and limN→∞ Γu2 ≤
Hb(α0)
1−α0

, where Hb(.) denotes the binary entropy function. In contrast, both

Γu1 = O(log(KL)) and Γud = O(log(KN)), i.e., both increase as log(N). It

is interesting to note that for large N , Γu2 depends on N , L and K only as a

function of α. Hence, the size of inactive set, L, impacts the sufficient number

of observations only through α, the fraction of inactive variables that need to

be found.

(c) We note that the decoding scheme for the K ≥ 1 is a generalization of the scheme

for K = 1 case. Due to this, the bound in (2.11) reduces to the bound in Theorem

1 when K = 1. However, for L = N − K, unlike the K = 1 case, the decoding

scheme for finding L inactive variables with K > 1 is not equivalent to the max-

imum likelihood criterion based decoding scheme for finding K active variables.

Our focus in this work is on low to moderate values of α (or L), for which the

proposed decoding scheme gives excellent results. Nonetheless, it would be an in-

teresting challenge to find decoding schemes to identify inactive variables that are

equivalent to the schemes for finding all active variables directly when L = N −K,

and which also perform as well as or better than the scheme proposed in this paper,

for smaller L.

2.3 Necessary Number of Observations

In this section, we derive lower bounds on the number of observations M required to

find a set of L inactive variables. Here, we need to lower bound the probability of error
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Figure 2.2: Sufficiency bounds on the number of observations required to find L inac-
tive variables. Panel (a) K = 1 case; Panel (b) K = 8 case. The comparison is presented
with respect to the value of MI(1), as the application-dependent mutual information
term I(1) is common to all the bounds. The approach of finding the L inactive vari-
ables directly, especially for small values of L, requires significantly fewer number of
observations compared to the approach of finding the inactive variables indirectly, after
first identifying the active variables. The plot corresponding to the curve labeled Find
Active Directly refers to the number of observations that are sufficient for finding
the K active variables [30].
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in choosing a set of L inactive variables. To do so, we employ an adaptation of Fano’s

inequality [43, 44].

Let Id ,
{

ω1, ω2, . . . , ω(NK)

}

be the collection of all K sized subsets of [N ] such that

|Sωi
| = K ∀i = 1, 2, . . .

(

N
K

)

. For each ω ∈ Id let us associate a collection of sets, Ihω ,
{

α1, α2, . . . , α(N−K
L )

}

, such that |Sαi
| = L and Sαi

∩Sω = {0}, i = 1, 2, . . . ,
(

N−K
L

)

. That is,

Ihω is the collection of all L-sized subsets of all-inactive variables with Sω representing

the active set. Also, let IH denote the set of all L-sized subsets of [N ]. Note that |IH | =
(

N
L

)

. Given the observation vector, y ∈ YM , let φ : YM → IH denote a decoding

function, such that α̂ = φ(y) is the decoded set of L inactive variables. Given an active

set ω and an observation vector y, an error occurs if α̂ /∈ Ihω . Define

Pe = P (α̂ /∈ Ihω). (2.12)

Define a binary error RV, E, as E , I{α̂ /∈Ih
ω}. Note that Pe = Pr(E = 1). We state the

necessary condition on the number of observations in the following theorem.

Theorem 3. Let N , M , L and K be as defined before. Let I(j) and Pe be as defined in (2.4) and

(2.12), respectively. A necessary condition on the number of observations M required to find

L inactive variables with asymptotically vanishing probability of error, i.e., limN→∞ Pe = 0, is

given by

M ≥ max
1≤j≤K

Γl(L,N,K, j)

I(j)
, where Γl(L,N,K, j) , log

[
(

N−K+j
j

)

(

N−K+j−L
j

)

]

. (2.13)

That is, any sequence of random codebooks that achieves limN→∞ Pe = 0, must satisfy

the above bound on the length of the codewords. Let Γl1 , Γl(L,N,K, 1). From (2.13),

we note that Γl1/I
(1) further lower bounds necessary number of observations, and thus,
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by comparing Γl1 with Γu2, we can characterize the gap between necessary and suffi-

cient number of observations. Consider the scaling regime where L varies linearly with

N , i.e., L,N → ∞, L
N

= α0 and K fixed. We note that, limN→∞ Γl1 = log 1
1−α0

. Thus,

using Lemma 3 in Appendix A.1, it is easy to see that the gap is asymptotically smaller

than f(α0)

I(1)
, where f(α) , α

1−α log
(

1
α

)

. The function f(α) is bounded, with f(α) < 1,

∀ α ∈ (0, 1). Thus, the gap between the necessary and sufficient number of observa-

tions is asymptotically smaller than 1
I(1)

. Given a specific application, we can bound I(j)

for each j = 1, 2, . . . , K, and thereby obtain an even tighter characterization of the gap

between the necessary and sufficient number of observations, as we show in the next

section.

2.4 Finding Non-Defective Items Via Group Testing

In this section, we apply the above mutual information based results to the specific

case of non-adaptive group testing, and characterize the number of tests to identify a

subset of non-defective items of a large population. In particular, we consider a ran-

dom pooling based noisy non-adaptive group testing framework [4, 30], as described

in Section 2.1 Our goal here is to find upper and lower bounds on the number of tests

required to identify an L sized subset belonging to [N ]\G using the observations y, with

vanishing probability of error as N →∞. In this subsection, we consider the parameter

regime where L varies linearly with N , i.e., L,N → ∞, L
N

= α0 for a fixed α0 ∈ (0, 1)

and K fixed; in the next subsection, we extend these results to the scaling regime where

K grows with N .
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To compute the bounds on the number of tests, we need to bound the mutual infor-

mation term, I(j), for the group testing signal model given in (2.2). Using the bounds

on I(j) [47], with6 p = 1
K

and u ≤ 0.5, we summarize the order-accurate upper and

lower bounds on the number of tests to find a set of L non-defective items in Tables

2.1 and 2.2, respectively. A brief sketch of the derivation of these results is provided

in Appendix A.2. Here, for simplicity, we have considered L to be an integer multiple

of K. The second column in both the tables presents an approximation of the bounds

that is valid for small values of α, which shows that the upper and lower bounds match

to a first order of approximation. It is clear that our approach of directly looking for

non-defective items offers a significant advantage over the indirect but straightforward

approach of finding the defective set, and then picking the requisite number of non-

defective items from its complement. For example, for small values of α, with the direct

approach, O
(

K
logK

L
N

)

tests are sufficient to ensure a vanishing probability of error. In

contrast, the indirect approach will require at least O
(

K
logK

log N
K

)

[30] tests, without

which the probability of error is bounded strictly away from zero. Similar observations

can be made in the noisy settings also, i.e., the direct approach leads to a significantly

smaller number of tests being required to find L non-defective items compared to the

indirect approach [15, 30].

Some additional observations are as follows:

1. If L is small, it is seemingly reasonable to test items one by one. In this case, the

number of tests scales linearly with L, with slope greater than or equal to 1. Our

sufficiency results indicate that, with large N , group tests will offer a reduction in

6In the noiseless case, it can be seen that p ≈ 1/K is optimal by setting dI(1)

dp
= 0.
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Table 2.1: Finding a subset of L non-defective items: Order results for sufficient number
of group tests which hold asymptotically as N → ∞, L → ∞, L

N
→ α0 with 0 < α0 < 1

and K fixed.
0 ≤ α0 < 1 Small α, e.g., α ≤ 0.5

No Noise O

(

K

logK

Hb(α0)

(1− α0)

)

O

(

Kα0

logK

)

Dilution Noise O

(

K

(1− u) logK
Hb(α0)

1− α0

)

O

(

Kα0

(1− u) logK

)

Additive Noise O

(

K

log 1
q

Hb(α0)

(1− α0)

)

O

(

Kα0

log 1
q

)

Table 2.2: Finding a subset ofL non-defective items: Order results for necessary number
of group tests which hold asymptotically as N → ∞, L → ∞, L

N
= α0 with 0 < α0 < 1

and K fixed.
0 ≤ α0 < 1 Small α0, e.g., α0 ≤ 0.5

No Noise Ω

(

K

logK
log

1

(1− α0)

)

Ω

(

Kα0

logK

)

Dilution Noise Ω

(

K

(1− u) logK log
1

1− α0

)

Ω

(

Kα0

(1− u) logK

)

Additive Noise Ω

(

K

log 1
q

log
1

(1− α0)

)

Ω

(

Kα0

log 1
q

)

the number of tests whenever 3K
N
< 1, since it ensures that the sufficient number

of observations will increase with L at a rate strictly less than 1.

2. Although I(1) depends on p, the value of p that minimizes the number of tests

does not depend upon L. This is easily seen from the expressions for the sufficient

number of tests, since L only appears in the combinatorial term Γu2, which is

independent of p. Hence, the p that minimizes the sufficient number of tests does

not depend on the number of non-defective items we want to find, which is a

desirable feature from a practical point of view.
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2.4.1 Sufficiency Results when K Grows with N

In comment (b), Section 2.2.3, we characterized the asymptotic behavior of the sufficient

number of observations for the case when K is fixed as L,N → ∞. In this subsection,

we extend these results, in the context of group testing, to the scaling regime when

both K and L grow with N . The overall average probability of error, as given in (2.10),

is a sum of K terms. In contrast to the fixed K case, it is no longer sufficient to drive

each term in the summation to zero, since the number of terms grows with N . Hence,

we need stronger conditions on M to drive the overall probability of error to zero. As

an example, we consider the noiseless group testing scenario and derive the sufficient

number of tests required to find L non-defective items under the asymptotic regime

whenK grows linearly withN . The following lemma presents the bound onM required

to drive the overall probability of error to zero.

Lemma 1. Let Pe be the average probability of error in finding L inactive variables under the

decoding scheme described in Section 2.2.3, which is upper bounded by (2.10). Let Lj and

C2(L,N,K, j) be as defined in Theorem 2. Let L < N −2K and letK ≥ K0, where K0 is some

positive constant. Define C3 , − log
[

1− (1− 1
K0

)K0 + exp(−2)
]

. For the noiseless group

testing case, if

M >
1

C3
K max

1≤j≤K

logC2(L,N,K, j)

L1
+

logK

C3
, (2.14)

then there exists a positive ǫ such that Pe ≤ exp (−Mǫ) , and hence, limN→∞ Pe = 0.

Note that, in contrast with the above result, the bound on the probability of error

in Theorem 2 was of the form Pe ≤ K exp(−Mǫ), due to which, it required K to be
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fixed. The result in the above Lemma is valid even when K grows linearly with N .

To prove the result, we analyze the behavior of E0(ρ, j, n) for ρ > 0 and show, by us-

ing a lower bound, that the negative exponent in the probability of error can be made

strictly greater than 0 when (2.14) is satisfied. We provide an outline of the proof in

Appendix A.3.

Let us characterize the above bound as N → ∞. Let K = βN and L = γ(N − K),

where β and γ are fixed constants and 0 < β, γ < 1. Let α , L−1
N−K . We note that α→ γ as

N → ∞. Using Lemma 3 in Appendix A.1 to bound max1≤j≤K
logC2(L,N,K,j)

L1
, we arrive

at an upper bound for the right hand side (R.H.S.) of (2.14), which we denote by Mu. It

can be verified that

lim
N→∞

Mu =
K

C3

Hb(γ)

(1− γ) +
K

C3(1− γ)

[

β

1− β

(

log
γ(1− β)

β
+ 2

)]

+ C ′
3 logK, (2.15)

where C ′
3 =

1
C3

[

1 + β
(1−β)(1−γ)

]

.

Compared to the fixed K case (see Table 2.1), there are extra terms that contribute

towards the number of tests required to find L inactive variables. The second and third

terms above arise due to the fact that K increases linearly with N . The second term is

of the same order as the first term; and its contribution to Mu depends upon β and the

ratio L/K.

2.5 Proofs of the Main Results

We now present the proofs of Theorems 1, 2 and 3, which constitute the main results in

this chapter.
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2.5.1 Proof of Theorem 1: Sufficient Number of Observations, K = 1

Case

At the heart of the proof of this theorem is the derivation of an upper bound on the

average probability of error in finding L inactive variables using the decoding scheme

described in Section 2.2.2. In turn, the upper bound is obtained by characterizing the

error exponents on the average probability of error [43]. Without loss of generality, due

to the symmetry in the model, we can assume that the RV X1 is active. Given that X1

is the active variable, the decoding algorithm will make an error if P (y|X1) falls within

the last L entries of the sorted array generated as described in the decoding scheme.

Let E , {error|X1 is active,X1,y}. The overall average probability of error, Pe, can be

expressed as

Pe =
∑

y,X1

P (y|X1)Q(X1)Pr(E). (2.16)

Let Sz ⊂ [N ]\1 such that |Sz| = N − L. Let Sz denote a set of all possible Sz. Further,

let ASz ⊂ {XSz} be such that, ASz = {XSz : P (y|Xj) ≥ P (y|X1) ∀ j ∈ Sz}. It is easy to

see that E ⊂ A ,
⋃

Sz∈Sz
ASz , i.e., an error event implies that there exists a set of N − L

variables, Sz, such that P (y|Xj) ≥ P (y|X1) ∀ j ∈ Sz. Thus, Pr(E) ≤ Pr(A). Let s be

a optimization variable such that 0 ≤ s ≤ 1. The following set of inequalities upper
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bound Pr(E) [43, Section 5.6]:

Pr(E) ≤
∑

Sz∈Sz

∑

XSz∈ASz

Q(XSz)

(a)

≤
∑

Sz∈Sz

∑

XSz∈ASz

Q(XSz)
∏

j∈Sz

[

P (y|Xj)

P (y|X1)

]s

(b)

≤
∑

Sz∈Sz

∑

XSz

∏

j∈Sz

Q(Xj)

[

P (y|Xj)

P (y|X1)

]s

(c)

=
∑

Sz∈Sz

∏

j∈Sz

∑

Xj

Q(Xj)

[

P (y|Xj)

P (y|X1)

]s

(d)

=

(

N − 1

L− 1

)







∑

Xj

Q(Xj)

[

P (y|Xj)

P (y|X1)

]s






N−L

. (2.17)

In the above, (a) follows since we are multiplying with terms that are all greater than

1 and (b) follows since we are adding extra nonnegative terms by summing over all

XSz . We also use the independence of XSz across variables, i.e., Q(XSz) =
∏

j∈Sz
Q(Xj).

(c) uses the fact that P (y|Xj) is independent of P (y|Xk) for all j 6= k and j, k ∈ Sz. (d)

follows since the value of the expression inside the product term does not depend upon

any particular j.

Let 0 ≤ ρ ≤ 1. If the R.H.S. in (2.17) is less than 1, then raising it to the power ρ makes

it bigger, and if it is greater than 1, it remains greater than 1 after raising it to the power

ρ. Thus, using the Gallager bounding technique [43, Section 5.6], we get the following

upper bound on Pr(E):

Pr(E) ≤
(

N − 1

L− 1

)ρ







∑

Xj

Q(Xj)

[

P (y|Xj)

P (y|X1)

]s






ρ(N−L)

. (2.18)
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Substituting this into (2.16) and simplifying, we get

Pe ≤
(

N − 1

L− 1

)ρ
∑

y

∑

X1

Q(X1)P (y|X1)
1−ρ(N−L)s







∑

Xj

Q(Xj)P (y|Xj)
s







ρ(N−L)

. (2.19)

Putting s = 1/(1 + ρ(N − L)), we get

Pe ≤
(

N − 1

L− 1

)ρ
∑

y







∑

Xj

Q(Xj)P (y|Xj)
1

1+ρ(N−L)







1+ρ(N−L)

. (2.20)

Finally, using the independence across observations and using the definition ofE0(ρ, j, n)

from (2.3) with j = 1 and n = N − L, we get

Pe ≤
(

N − 1

L− 1

)ρ







∑

Y ∈Y







∑

Xj∈X
Q(Xj)P (Y |Xj)

1
1+ρ(N−L)







1+ρ(N−L)






M

= exp[−MF (ρ)], where F (ρ) = E0(ρ, 1, N − L)−
ρ log

(

N−1
L−1

)

M
. (2.21)

Hence (2.7) follows.

For the following discussion, we treat F and E0 as functions of ρ only and all the

derivatives are with respect to ρ. The average probability of error will approach zero

exponentially with M if F (ρ) > ǫ > 0 for some 0 < ρ ≤ 1 and ǫ > 0. Note that

F
′

(ρ) = E
′

0(ρ)−
log (N−1

L−1)
M

. It is easy to see that E0(0) = 0 and hence F (0) = 0. With some

calculation (see, e.g., [30], [43, Section 5.6]), we get,

E
′

0(ρ)|ρ=0 = (N − L)
∑

Y,X

P (Y,X) log
P (Y |X)

P (Y )
= (N − L)I(1). (2.22)

Thus, the condition on M given in (2.7) ensures that F
′

(ρ) > 0 at ρ = 0. Hence, from the

mean value theorem [48], ∃ a sufficiently small ρ > 0 such that F (ρ) > 0. This completes
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the proof.

2.5.2 Proof of Theorem 2: Sufficient Number of Observations, K ≥ 1

Case

Let Nstg ,
⌈

L
K

⌉

be the number of stages in the decoding algorithm. With a slight abuse

of notation, let E denote the event that the multi-stage algorithm makes an error. Let E ′

i

denote the event that the algorithm makes an error in the ith stage, given that no errors

were made in any of the previous i− 1 stages. In other words, E ′

i denotes the event that

an error occurs for the first time at ith stage. It is easy to verify that E can be expressed

as

E =
Nstg

∪
i=1
E ′

i . (2.23)

Since up to K errors can occur at any stage, E ′

i = ∪Kj=1E
′

ij , where E ′

ij denotes the event

that exactly j (1 ≤ j ≤ K) errors occur at the ith stage, given that no errors were made

in previous stages. Let E ′′

j , ∪Nstg

i=1E
′

ij . Thus, from (2.23), E = ∪Kj=1E
′′

j . Let Pej denote

the average probability of the event E ′′

j . The overall average probability of error, Pe, in

finding L inactive variables via the multi-stage decoding algorithm can thus be upper

bounded as

Pe ≤
K
∑

j=1

Pej. (2.24)

In the above, the probability is averaged over all possible instantiations of {X,y} as

well as over all possible active (or defective) sets.

We now upper bound Pej for j = 1, 2, . . . , K. By symmetry, the average probability
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of error is the same for all active sets. Hence, we fix the active set and then compute

average probability of error with this set. Let S1 ⊂ [N ] be the active set such that

|S1| = K. We note that E ′′

j is the union of events where exactly j errors occur, and the

error occurs for the first time. Let this first erroneous set of variables be denoted by Sω,

where |Sω| = K. Define S1ω , S1∩Sω, S1cω , Sc1∩Sω and S1ωc , S1∩Scω. Since there are

j errors, |S1ω| = j. Further, let S1ω be partitioned as S1ω = S1d∪S2d with S1d∩S2d = {∅},

|S1d| = 1 and |S2d| = j − 1. Define

B , {E ′′

j |S1 is the active set,y,XS1,XS1cω
}. (2.25)

With this notation, Pej can be expressed as

Pej =
∑

y

∑

XS1

P (y|XS1)Q(XS1)
∑

XS1cω

Q(XS1cω
) [Pr(B)]

=
∑

y

∑

XS1cω

∑

XS1

P (y,XS1cω
|XS1)Q(XS1) [Pr(B)]

=
∑

y

∑

XS1cω

∑

XS1ω

∑

XS1ωc

P (y,XS1cω
,XS1ωc |XS1ω)Q(XS1ω) [Pr(B)]

=
∑

y

∑

XS1cω

∑

XS1d

∑

XS2d

∑

XS1ωc

P (y,XS1cω
,XS2d

,XS1ωc |XS1d
)Q(XS1d

) [Pr(B)] . (2.26)

In the above equation, we have used the fact that given the active set S1, y is inde-

pendent of other input variables. Thus, P (y,XS1cω
|XS1) = P (y|XS1)Q(XS1cω

). Define

Sz ⊂ [N ]\S1 such that |Sz| = Lj , where Lj = (N − K) − (NstgK − j). Note that, when

the algorithm terminates with j errors, there are at most Lj inactive variables in the

complement of the set output by the algorithm. Further, let Sz be the collection of all
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possible Sz. It is easy to see that |Sz| =
(

N−K
Lj

)

. Define ASz ⊂ {XSz} and A as follows:

ASz = {XSz : P (y|XS1cω
,XS2d

,XSα) ≥ P (y|XS1cω
,XS2d

,XS1d
) ∀ Sα ⊂ Sz and |Sα| = 1},

(2.27)

A =
⋃

Sz∈Sz

ASz . (2.28)

Proposition 1. B ⊂ A.

Proof. We will show that the event B implies the event A.

Let Siz ⊂ [N ]\S1 be such that |Siz| = Lij , where Lij = (N − K) − (iK − j). Suppose

the event Bi , {E ′

ij|S1 is active set,y,XS1,XS1cω
} occurs for some i = 1, 2, . . . , Nstg. This

implies that there are no errors in the first i−1 stages, and hence, in those stages, (i−1)K

inactive variables are found. Since, at the ith stage, the chosen set ofK variables contains

j variables from the active set S1, there exists XSiz
such that P (y|XS1cω

,XS2d
,XSα) ≥

P (y|XS1cω
,XS2d

,XS1d
) ∀ Sα ⊂ Siz and |Sα| = 1. Since Lij ≥ Lj for all i = 1, 2 . . . , Nstg,

this implies that ∃Sz ⊂ Siz with |Sz| = Lj such that

P (y|XS1cω
,XS2d

,XSα) ≥ P (y|XS1cω
,XS2d

,XS1d
) ∀ Sα ⊂ Sz and |Sα| = 1.

That is, the event A occurs.

Using the above proposition, we can upper bound Pr(B) with Pr(A) in (2.26). Next,

we upper bound Pr(A) as follows:

Pr(A) ≤
∑

Sz∈Sz

∑

S1cω∈S1cω

∑

S1d∈S1d

∑

S2d∈S2d

qj , (2.29)
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where qj , Pr{ASz |S1 is active set,y,XS1,XS1cω
, Sz, S1d, S2d, S1cω}. Here, the random-

ness comes from the set of variables in Sz, i.e., XSz . Let s be such that 0 ≤ s ≤ 1.

Following similar steps as in (2.17), we have

qj ≤
∑

XSz∈ASz

Q(XSz)

≤
∑

XSz∈ASz

Q(XSz)
∏

Sα∈Sz

[

P (y|XS1cω
,XS2d

,XSα)

P (y|XS1cω
,XS2d

,XS1d
)

]s

≤
∑

XSz

Q(XSz)
∏

Sα∈Sz

[

P (y|XS1cω
,XS2d

,XSα)

P (y|XS1cω
,XS2d

,XS1d
)

]s

≤
Lj
∏

l=1

∑

XSα

Q(XSα)

[

P (y|XS1cω
,XS2d

,XSα)

P (y|XS1cω
,XS2d

,XS1d
)

]s

=







∑

XSα

Q(XSα)

[

P (y|XS1cω
,XS2d

,XSα)

P (y|XS1cω
,XS2d

,XS1d
)

]s






Lj

=







∑

XSα

Q(XSα)

[

P (y,XS1cω
,XS2d

|XSα)

P (y,XS1cω
,XS2d

|XS1d
)

]s






Lj

. (2.30)

From the above equation, qj depends on values of XSz , XS1cω
, XS1d

and XS2d
and not

on the particular index sets, Sz, S1cω S2d and S1d, respectively. For a given S1, there

are
(

K
1

)

and
(

K−1
j−1

)

different permutations of S1d and S2d for a given value of XS1d
and

XS2d
, respectively. As already mentioned there are

(

N−K
Lj

)

ways of choosing Sz, and

there are
(

KNstg−j
K−j

)

different permutations of S1cω for a given value of XS1cω
. Let C2 ,

(

N−K
Lj

)(

KNstg−j
K−j

)(

K
1

)(

K−1
j−1

)

. Thus, from (2.29), for some 0 ≤ ρ ≤ 1, we get

Pr(A) ≤



C2







∑

XSα

Q(XSα)

[

P (y|XS1cω
,XS2d

,XSα)

P (y|XS1cω
,XS2d

,XS1d
)

]s






Lj




ρ

. (2.31)

We note, as in the previous theorem, that by raising the expression in above equation to

a power 0 < ρ ≤ 1, we still get an upper bound for Pr(A) [43, Section 5.6]. Substituting
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into (2.26) and averaging out XS1ωc , since the upper bound expression for Pr(A) does

not depend upon XS1ωc , we get

Pej ≤
∑

y

∑

XS1cω

∑

XS2d

∑

XS1d

P (y,XS1cω
,XS2d

|XS1d
)Q(XS1d

)Pr(A) (2.32)

≤ Cρ
2

∑

y

∑

XS1cω

∑

XS2d







∑

XSα

Q(XSα)P (y,XS1cω
,XS2d

|XSα)
1

1+ρLj







1+ρLj

(2.33)

≤ exp

[

−M
(

E0(ρ, 1, Lj)−
ρ logC2

M

)]

. (2.34)

The second inequality above is obtained by first using s = 1
1+ρLj

, then further simpli-

fying using independence across different observations and writing the bound in the

exponential form, as in the K = 1 case. Using the above bound on Pej in (2.24), we get

the upper bound on Pe given in (2.10).

To obtain (2.11), we note that, for any fixed K, the overall Pe can be driven to zero by

driving each Pej to zero. As in K = 1 case, using the mean value theorem, it follows

that limN→∞ Pej → 0 whenever M > logC2

E′

0(ρ,1,Lj)|ρ=0
. The result now follows by noting that

E
′

0(ρ, 1, Lj)|ρ=0 = LjI
(1). �

One remark related to the above proof is as follows. We have used the setASz in (2.27)

for upper bounding Pe. Note that ASz can be chosen in different ways, and will lead

to different bounds on the sufficient number of observations. For example, consider

another intuitive definition of ASz , with the usual definitions above: ASz = {XSz :

P (y|XS1cω
,XSα) ≥ P (y|XS1cω

,XS1ω) ∀ Sα ⊂ Sz and |Sα| = j}. Following the steps in the

above proof, we can show that this choice of ASz leads to the following bound on the
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number of observations:

M > max
1≤j≤K

log
[

(

N−K
Lj

)(

KNstg−j
K−j

)(

K
j

)

]

⌊Lj/j⌋ I(j)
. (2.35)

The above bound depends upon the variation of I(j) with j. For the applications con-

sidered in this paper, the bound in (2.35) turns out to be weaker than the one in (2.11).

2.5.3 Proof of Theorem 3: Necessary Number of Observations

For the purpose of this proof, recall that Pe was defined in (2.12). We need to prove that

limN→∞ Pe = 0 implies the bound on the number of observations as given by (2.13).

Towards that end, we first find, by lower bounding Pe, the conditions on M that will

lead to error probability being bounded away from zero. We consider a genie-aided

lower bound, where we assume that the active set is partially known. Let us define

a partition for Sω as Sω = S(j) ∪ S(K−j), where |S(j)| = j and |S(K−j)| = K − j and

S(j) ∩ S(K−j) = {∅}. We assume that S(K−j) (and hence, for a given code, the matrix

XS(K−j)) is known to us. Now consider H(ω,E|y, S(K−j)):

H(ω,E|y,XS(K−j)) = H(E|y,XS(K−j)) +H(ω|E,y,XS(K−j)) (2.36)

(a)

≤ Hb(Pe) + (1− Pe)H(ω|E = 0,y,XS(K−j)) + PeH(ω|E = 1,y,XS(K−j))

(2.37)

(b)

≤ Hb(Pe) + (1− Pe) log
(

N −K + j − L
j

)

+ PeH(ω|XS(K−j)) (2.38)

(c)

≤ Hb(Pe) + (1− Pe) log
(

N −K + j − L
j

)

+ Pe log

(

N −K + j

j

)

. (2.39)

In the above, (a) follows since E is a binary RV and H(E|y,XS(K−j)) ≤ H(E) =

Hb(Pe) ≤ 1. Since the entropy of any RV is bounded by the logarithm of the alphabet
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size, (b) follows by considering the cardinality of the remaining number of outcomes

conditioned on the outcome of E. For example, whenE = 0, i.e., when there is no error,

the number of ways of choosing the set S(j) is given by
(

N−K+j−L
j

)

. (c) follows by using

a trivial bound on H(ω|XS(K−j)). Also, note that

H(ω,E|y,XS(K−j)) = H(ω|y,XS(K−j)) +H(E|ω,y,XS(K−j)) = H(ω|y,XS(K−j)). (2.40)

For a given X, the mapping from ω to XSω is one-one and onto. Thus, H(ω|XS(K−j)) =

H(XSω |XS(K−j)) and similarly H(ω|y,XS(K−j)) = H(XSω |y,XS(K−j)). Using the above

and the fact that H(ω|XS(K−j)) = log
(

N−K+j
j

)

in (2.39) and (2.40), we get

log

(

N −K + j

j

)

= H(XSω |y,XS(K−j)) + I(XSω ;y|XS(K−j)) (2.41)

≤ Hb(Pe) + log

(

N −K + j − L
j

)

+ PeΓl(L,N,K, j) + I(XSω ;y|XS(K−j)). (2.42)

Note that I(XSω ;y|XS(K−j)) = I(XS(j);y|XS(K−j)) and using basic properties of entropy,

mutual information and the i.i.d. assumption across observations [30], it can be shown

that:

I(XS(j);y|XS(K−j)) ≤MI(XS(j) ; Y |XS(K−j)) =MI(j). (2.43)

Thus, we get a genie aided lower bound on the probability of error as

Pe ≥ 1− Hb(Pe) +MI(j)

Γl(L,N,K, j)
, ∀ j = 1, 2, . . . , K. (2.44)
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This further implies

M ≥ (1− Pe)Γl(L,N,K, j)−Hb(Pe)

I(j)
, ∀ j = 1, 2, . . . , K. (2.45)

The above equation holds for all j = 1, 2, . . . , K and thus, the lower bound on the

number of observations follow easily by noting that Hb(Pe) → 0 as Pe → 0. Hence the

proof.

2.6 Conclusions

In this chapter, we considered the problem of identifying L non-defective items out of

a large population of N items containing K defective items in a general sparse signal

modeling setup. We contrasted two approaches: identifying the defective items using

the observations followed by picking L items from the complement set, and directly

identifying non-defective items from the observations. We derived upper and lower

bounds on the number of observations required for identifying the L non-defective

items. We showed that an impressive gain in the number of observations is obtain-

able by directly identifying the non-defective items. We also applied the results in a

nonadaptive group testing setup. We characterized the number of tests that are suffi-

cient to identify a subset of non-defective items in a large population under both dilu-

tion and additive noise models. We showed the order-wise tightness of the upper and

lower bounds. Our results were information theoretic in nature, without considering

the practicability of the decoding algorithms. In the next chapter, we present several

computationally efficient algorithms for directly identifying a subset of inactive vari-

ables.



Chapter 3

Finding a Subset of Non-defective

Items: Computationally Efficient

Algorithms

In this chapter, we develop computationally efficient algorithms for non-defective sub-

set identification in the noisy, non-adaptive group testing with random pooling (NNGT-

R) framework. Recall that, in Chapter 2, using information theoretic arguments, we

showed that compared to the conventional approaches of identifying the non-defective

subset by first identifying the defective set or by testing individual items one-by-one,

directly searching for an L-sized non-defective subset offers a significant reduction in

the number of tests, especially when L is small compared to N − K. The achievabil-

ity results in the previous chapter were obtained by analyzing the performance of the

exhaustive search based algorithms, which are not practically implementable due to

their high computational complexity. This motivates the need for computationally ef-

ficient algorithms that offer performance comparable to the exhaustive search based

algorithms.

53
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We also recall, that the problem of non-defective subset identification is a generaliza-

tion of the defective set identification problem, in the sense that, when L = N − K,

the non-defective subset identification problem is identical to that of identifying the K

defective items. Hence, by setting L = N − K, the algorithms presented in this chap-

ter can be related to algorithms for finding the defective set; see [4] for an excellent

collection of existing results and references. In general, for the NNGT-R framework,

three broad approaches have been adopted for defective set recovery [20]. First, the

row based approach, also frequently referred to as the “naive” decoding algorithm,

finds the defective set by finding all the non-defective items. For example, the survey

in [49], lists many variants of this algorithm for finding defective items. More recently,

the CoCo algorithm was studied in [20], where an interesting connection of the naive

decoding algorithm with the classical coupon-collector problem was established for the

noiseless case. The second popular decoding approach is based on the idea of finding

defective items iteratively (or greedily) by “appropriately” matching the column of the

test matrix corresponding to a given item with the test outcome vector [4,15,20,50]. For

example, in [15], column matching consists of taking set differences between the set of

pools where the item is tested and the set of pools with positive outcomes. Another

variant of matching is considered in [20], where, for a given column, the ratio of num-

ber of times an item is tested in pools with positive and negative outcomes is computed

and compared to a threshold. A recent work, [41], investigates the problem of finding

zeros in a sparse vector in the compressive sensing framework, and also proposes a
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greedy algorithm based on correlating the sensing matrix column (i.e., column match-

ing) with the output vector.1 The connection between defective set identification in

group testing and the sparse recovery in compressive sensing was further highlighted

in [20,51], where linear programming relaxation based algorithms have been proposed

for defective set identification in group testing. A class of linear programs to solve the

defective set identification problem was proposed by letting the boolean variables take

real values (between 0 and 1) and setting up inequality or equality constraints to model

the outcome of each pool.

In this chapter, we propose novel algorithms for identifying a non-defective subset in

an NNGT-R framework. We present a probability of error analysis for each algorithm

and derive non-asymptotic upper bounds on the average error rate. The derivation

leads to a theoretical guarantee on the sample complexity, i.e., the number of tests re-

quired to identify a subset of non-defective items with arbitrarily small probability of

error. We summarize our main contributions as follows:

• We propose a bouquet of computationally simple and analytically tractable algo-

rithms for identifying a non-defective subset of given size in a NNGT-R frame-

work: RoAl (row based), CoAl (column based) and RoLpAl, RoLpAl++, CoLpAl

(Linear Program (LP) relaxation based) algorithms.

• We derive bounds on the number of tests that guarantee successful non-defective

subset recovery for each algorithm. The derived bounds are a function of the sys-

tem parameters, namely, the number of defective items, the size of non-defective

1Note that directly computing correlations between column vector for an item and the test outcome
vector will not work in case of group testing as both the vectors are boolean. Furthermore, positive and
negative pools have asymmetric roles in the group testing problem.
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subset, the population size and the noise parameters. Further,

– The presented bounds on the number of tests for different algorithms are

within O(logK) factor, where K is the number of defective items, of the in-

formation theoretic lower bounds which were derived in Chapter 2.

– We analytically determine the parameters of the algorithms that offer the best

performance in terms of optimizing the error upper bounds.

– For our suite of LP based algorithms, we present a novel analysis technique

based on characterizing the recovery conditions via the dual variables asso-

ciated with the LP, which may be of interest in its own right.

• Finally, we present numerical simulations to compare the relative performance of

the algorithms. The results also illustrate the significant benefit in finding non de-

fective items directly, compared to using the existing defective set recovery meth-

ods or testing items one-by-one, in terms of the number of group tests required.

The rest of the chapter is organized as follows. Section 3.1 describes the NNGT-R

framework and the problem setup. The proposed algorithms and the main analytical

results are presented in Section 3.2. The proofs of the main results are provided in

Section 3.3. Section 3.4 discusses the numerical simulation results, and the conclusions

are presented in Section 3.5.

3.1 Signal Model

In our setup, we have a population of N items, out of which K are defective. Let

G ⊂ [N ] denote the defective set, such that |G| = K. We consider a non-adaptive group
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testing framework with random pooling designs [4,20,27,30], where all the group tests

are decided a priori and the items to be pooled in a given test are chosen randomly.

The group tests are defined by a boolean matrix, X ∈ {0, 1}M×N , that assigns different

items to the M group tests (pools). The jth pool tests the items corresponding to the

columns with 1 in the jth row of X. We consider an i.i.d. random Bernoulli measurement

matrix [30], where each Xij ∼ B(p) for some 0 < p < 1. Thus, M randomly generated

pools are specified. In the above, p is a design parameter that controls the average group

size, i.e., the average number of items being tested in a single group test. In particular,

we choose p =
α

K
, and a specific value of α is chosen based on the analysis of different

algorithms.2

If the tests are completely reliable, then the output of the M tests is given by the

boolean OR of the columns of X corresponding to the defective set G. In group test-

ing, two different noise models are considered [15, 20, 30]: (a) An additive noise model,

where there is a probability, q ∈ (0, 0.5], that the outcome of a group test containing

only non-defective items turns out to be positive (Fig. 3.1); (b) A dilution model, where

there is a probability, u ∈ (0, 0.5], that a given item does not participate in a given group

test (Fig. 3.1). Let di ∈ {0, 1}M . Let di(j) ∼ B(1 − u) be chosen independently for all

j = 1, 2, . . . ,M and for all i = 1, 2, . . . , N . Let Di , diag(di). Let “
∨

” denote the boolean

2The above parametrized form of p has been motivated by our results from Chapter 2, where one of
the conclusions, based on information theoretic arguments, was that the optimal value of p that mini-
mizes the number of tests required for “finding a non-defective subset” and “finding the defective set”
are the same. The form α/K approximates this optimal value very well and has been widely used in
literature [15, 20, 36] when probabilistic constructions are employed for designing the test matrices.
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OR operation. The output vector y ∈ {0, 1}M can be represented as

y =
N
∨

i=1

DixiI{i∈G}
∨

w, (3.1)

where xi ∈ {0, 1}M is the ith column of X, w ∈ {0, 1}M is the additive noise with the ith

component w(i) ∼ B(q). Note that, for the noiseless case, u = 0, q = 0. The signal model

considered in (3.1) is an abstraction of the testing setup used in many practical non-

adaptive group testing applications. For example, consider the classical application of

the screening of blood samples from a large number of individuals for the presence

or absence of a certain antigen. The blood samples from a randomly chosen subset of

individuals are pooled together in a test, and the test outcome is well described by the

logical-OR operation specified in (3.1). That is, the test outcome is positive if any of the

pooled samples contains the antigen, and is negative only if none of the pooled samples

contain the antigen. Given the test output vector, y, our goals are as follows:

(a) To find computationally tractable algorithms to identify L non-defective items, i.e.,

an L-sized subset belonging to [N ]\G.

(b) To analyze the performance of the proposed algorithms with the objective of (i)

finding the number of tests and (ii) choosing the appropriate design parameters

that leads to non-defective subset recovery with high probability of success.

In the literature on defective set recovery in group testing or on sparse vector recovery

in compressed sensing, there exist two type of recovery results: (a) Non-uniform/Per-

Instance recovery results: These state that a randomly chosen test matrix leads to non-

defective subset recovery with high probability of success for a given fixed defective
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Figure 3.1: Impact of different types of noise on the group testing signal model.

set and, (b) Uniform/Universal recovery results: These state that a random draw of the

test matrix leads to a successful non-defective subset recovery with high probability

for all possible defective sets. Since it is possible to easily extend non-uniform results

to the uniform case using union bounds, we mainly focus on non-uniform recovery

results, and demonstrate the extension to the uniform case for one of the proposed

algorithms (see Corollary 2). Note that the non-uniform scenario is equivalent to the

uniform recovery scenario when the defective set is chosen uniformly at random from

a set of
(

N
K

)

possible choices. For the latter scenario, information theoretic lower bounds

on the number of tests, based on Fano’s inequality, for the non-defective subset recovery

problem were derived in Chapter 2. We use these bounds in assessing the performance

of the proposed algorithms (see Section 3.2.4). For the ease of reference, we summarize

these results in Table 3.1.

For later use, we summarize some key facts pertaining to the above signal model in

the lemma below. For any l ∈ [M ] and k ∈ [N ], letXlk denote the (l, k)th entry of the test

matrix X and let Yl , y(l) denote the lth test output. With u, q and p as defined above,

let Γ , (1− q) (1− (1− u)p)K and γ0 , u
(1−(1−u)p) . Then it follows that,
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Lemma 2. (a) P(Yl = 0) = Γ.

(b) For any j /∈ Sd, P(Yl|Xlj) = P(Yl).

(c) For any i ∈ Sd, P(Yl = 0|Xli = 1) = γ0Γ and P(Yl = 0|Xli = 0) = Γ
1−(1−u)p .

(d) Given Yl, Xli is independent of Xlj for any i ∈ Sd and j /∈ Sd.

The proof is provided in Appendix B.1. We further note that, using Bayes rule, it is

easy to compute the posterior probabilities of P(Xli|Yl). For example, for any i ∈ Sd, it

follows that P(Xli = 1|Yl = 0) = pγ0.

3.2 Algorithms and Main Results

We now present several algorithms for non-defective/healthy subset recovery. Each

algorithm takes the observed noisy output vector y ∈ {0, 1}M and the test matrix X ∈

{0, 1}M×N as inputs, and outputs a set of L items, ŜL, that have been declared non-

defective. The recovery is successful if the declared set does not contain any defective

item, i.e., ŜL∩Sd = {∅}. For each algorithm, we derive expressions for the upper bounds

on the average probability of error, which are further used in deriving the number of

tests required for successful non-defective subset recovery.

3.2.1 Row Based Algorithm

Our first algorithm to find non-defective items is also the simplest and the most intu-

itive one. We make use of the basic fact of group testing that, in the noiseless case, if the

test outcome is negative, then all the items being tested are non-defective.
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RoAl (Row based algorithm):

• Compute z =
∑

j∈supp(yc) x
(r)
j , where x

(r)
j is the jth row of the test matrix.

• Order entries of z in descending order.

• Declare the items indexed by the top L entries as the non-defective subset.

That is, declare the L items that have been tested most number of times in pools with

negative outcomes as non-defective items. The above decoding algorithm proceeds by

only considering the tests with negative outcomes. Note that, since the test outcomes

are noisy, there is a non-zero probability of declaring a defective item as non-defective.

In particular, the dilution noise can lead to a test containing defective items in the pool

being declared negative, leading to a possible mis-classification of the defective items.

On the other hand, since the algorithm only considers tests with negative outcomes,

additive noise does not lead to mis-classification of defective items as non-defective.

However, the additive noise does lead to an increased number of tests as the algorithm

has to possibly discard many of the pools that contain only non-defective items.

We note that existing row based algorithms for finding defective set [4, 20] can be

obtained as a special case of the above algorithm by setting L = N −K, i.e., by looking

for all non-defective items. However, the analysis in the past work does not quantify the

impact of the parameter L and that is our main goal here. We characterize the number

of tests, M , that are required to find L non-defective items with high probability of

success using RoAl in the following theorem:

Theorem 4. (Non-Uniform recovery with RoAl) Let N , L, M , p, u and q be as defined above.
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Define γ0 , u
(1−(1−u)p) . Let p be chosen as α

K
with α = 1

3(1−u) . There exists an absolute constant

C0 > 0 such that, if the number of tests is chosen as

M ≥ C0K(1− u)
(1− q)(1− γ0)2

(

log
[

K
(

N−K
L−1

)]

(N −K)− (L− 1)

)

, (3.2)

then for a given defective set there exist positive constants c0, c1, such that RoAl finds L non-

defective items with probability exceeding 1− exp(−Mc0)− exp(−Mc1).

The following corollary extends Theorem 4 to uniform recovery of a non-defective

subset using RoAl.

Corollary 2. (Uniform recovery with RoAl) Define γ0 , u
(1−(1−u)p) . Let p be chosen as α

K
with

α = 1
3(1−u) . There exist absolute constants C0 > 0 and C1 > 0 such that, if the number of tests

is chosen as

M = max

{

C0K(1− u)
(1− q)(1− γ0)2

(

log
[

N
(

N−K
L−1

)]

(N −K)− (L− 1)

)

,
C1 log

(

N
K

)

(1− q)

}

, (3.3)

then for any defective set there exist positive constants c0, c1 > 0 such that the algorithm (RoAl)

finds L non-defective items with probability exceeding 1− exp(−Mc0)− exp(−Mc1).

The proofs of the above theorem and corollary are presented in Section 3.3.1.

3.2.2 Column Based Algorithm

The column based algorithm is based on matching the columns of the test matrix with

the test outcome vector. A non-defective item does not impact the output and hence

the corresponding column in the test matrix should be “uncorrelated” with the output.

On the other hand, “most” of the pools that test a defective item should test positive.
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This forms the basis of distinguishing a defective item from a non-defective one. The

specific algorithm is as follows:

CoAl (Column based algorithm): Let ψcb > 0 be some constant.

• For each i = 1, . . . , N , compute

T (i) = xTi y
c − ψcb(xTi y), (3.4)

where xi is the ith column of X.

• Sort T (i) in descending order.

• Declare the items indexed by the top L entries as the non-defective subset.

We note that, in contrast to the row based algorithm, CoAl works with pools of both

the negative and positive test outcomes. Similar to the row based algorithm, by ana-

lyzing the probability of error, we can derive the sufficient number of tests required to

achieve arbitrarily small error rates. In the above algorithm, the factor ψcb has been in-

troduced for mathematical convenience; it helps in optimizing (minimizing) the upper

bounds. We summarize the main result in the following theorem:

Theorem 5. (Non-Uniform recovery with CoAl) Let N , L, M , p, u and q be as defined above.

Let Γ , (1 − q) (1− (1− u)p)K and γ0 , u
(1−(1−u)p) . Let p be chosen as 1

3(1−u)K . Let ψ0 ,

Γ(1+γ0)
2(1−p) and choose ψcb = ψ0. There exists an absolute constant C2 > 0 such that, if the number
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of tests is chosen as

M ≥ C2K(1− u)
(1− γ0)2(1 + ψ0)(1− q)

(

log
[

K
(

N−K
L−1

)]

(N −K)− (L− 1)

)

, (3.5)

then for a given defective set CoAl finds L non-defective items with probability exceeding 1 −

exp(−Mc0), for some c0 > 0.

The proof of the above theorem is presented in Section 3.3.2. It is tempting to com-

pare the performance of RoAl and CoAl by comparing the required number of tests

in (3.2) and (3.5), respectively. However, such comparisons must be done keeping in

mind that the required number of observations in (3.2) and (3.5) are based on an upper

bound on the average probability of error. The main objective of these results is to pro-

vide a guarantee on the number of tests required for non-defective subset recovery and

highlight the order-wise dependence of the number of tests on the system parameters.

For the comparison of the relative performance of the algorithms, we refer the reader

to Section 3.4, where we present numerical results obtained from simulations. From

the simulations, we observe that CoAl performs better than RoAl for most scenarios of

interest.

3.2.3 Linear program relaxation based algorithms

In this section, we consider linear program (LP) relaxations to the non-defective subset

recovery problem and identify the conditions under which such LP relaxations lead to

recovery of a non-defective subset with high probability of success. These algorithms

are inspired by analogous algorithms studied in the context of defective set recovery in

the literature [20, 51]. However, past analysis on the number of tests for the defective
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set recovery do not carry over to the non-defective subset recovery because the goals of

the algorithms are very different. Let Yz , {y = 0}, i.e., Yz is the set of all the pools with

negative outcomes and Mz , |Yz|. Similarly, let Yp , {y = 1} and Mp , |Yp|. Define the

following linear program, with optimization variables z ∈ R
N and η ∈ R

Mz :

minimize
z,η

1TMz
η (3.6)

(LP0) subject to X(Yz, :)(1N − z)− η = 0Mz
, (3.7)

0N 4 z 4 1N , η < 0Mz
,

1TNz ≤ L.

Consider the following algorithm3:

RoLpAl (LP relaxation with negative outcome pools only)

• Setup and solve LP0. Let ẑ be the solution of LP0.

• Sort ẑ in descending order.

• Declare the items indexed by the top L entries as the non-defective subset.

The above program relaxes the combinatorial problem of choosing L out of N items

by allowing the boolean variables to acquire “real” values between 0 and 1 as long as

the constraints imposed by negative pools, specified in (3.7), are met. Intuitively, the

variable z (or the variable [1N − z]) can be thought of as the confidence with which an

item is being declared as non-defective (or defective). The constraint 1TNz ≤ L forces the

3In general other algorithms presented in this sub-section, namely RoLpAl++ and CoLpAl, will have
the same structure and will differ only in the linear program being solved.
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program to assign high values (close to 1) for “approximately” the top L entries only,

which are then declared as non-defective.

For the purpose of analysis, we first derive sufficient conditions for the non-defective

subset recovery with RoLpAl in terms of the dual variables of LP0. We then derive the

number of tests required to satisfy these sufficiency conditions with high probability.

The following theorem summarizes the performance of the above algorithm:

Theorem 6. (Non-Uniform recovery with RoLpAl) Let N , L, M , p, u and q be as defined

above. Let p be chosen as 1
3(1−u)K . If the number of tests is chosen as (3.2), then for a given

defective set there exist positive constants c0, c1, such that RoLpAl finds L non-defective items

with probability exceeding 1− exp(−Mc0)− exp(−Mc1).

Note that LP0 operates only on the set of pools with negative outcomes and is, thus,

sensitive to the dilution noise which can lead to a misclassification of a defective item

as non-defective. To combat this, we can leverage the information available from the

pools with positive outcomes also, by incorporating constraints for variables involved

in these tests. Consider the following linear program with optimization variables z ∈

R
N and η

z
∈ R

Mz :

minimize
z,η

z

1TMz
η
z

(3.8)

(LP1) subject to X(Yz, :)(1N − z)− ηz = 0Mz

X(Yp, :)(1N − z) < (1− ǫ0)1Mp
(3.9)

0N 4 z 4 1N , ηz < 0Mz

1TNz ≤ L.
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In the above, 0 < ǫ0 ≪ 1 is a small positive constant. Note that (3.9) attempts to model,

in terms of real variables, a boolean statement that at least one of the items tested in

tests with positive outcomes is a defective item. We refer to the algorithm based on

LP1 as RoLpAl++. We expect RoLpAl++ to outperform RoLpAl, as the constraint (3.9)

can provide further differentiation between items that are indistinguishable just on the

basis of negative pools. Note that, due to the constraint 1TNz ≤ L, the entries of ẑ

in [N ]\ŜL are generally assigned small values. Hence, when L is small, for many of

the positive pools, the constraint (3.9) may not be active. Thus, we expect RoLpAl++

to perform better than RoLpAl as the value of L increases; this will be confirmed via

simulation results in Section 3.4. Due to the difficulty in obtaining estimates for the

dual variables associated with the constraints (3.9), it is difficult to derive theoretical

guarantees for RoLpAl++. However, we expect the guarantees for RoLpAl++ to be

similar to RoLpAl, and we refer the reader to Appendix B.4 for a discussion regarding

the same.

Motivated by the connection between RoAl and RoLpAl, as revealed in the proof of

Theorem 6 (see Section 3.3.3), we now propose another LP based non-defective subset

recovery algorithm that incorporates both positive and negative pools. By incorporat-

ing (3.9) in an unconstrained form and by using the same weights for all the associated

Lagrangian multipliers in the optimization function, we get:

minimize
z

1TMz
X(Yz, :)(1N − z)− ψlp

[

1TMp
X(Yp, :)(1N − z)

]

(3.10)

(LP2) subject to 0N 4 z 4 1N ,

1TNz ≤ L,
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where ψlp > 0 is a positive constant that provides appropriate weights to the two differ-

ent type of cumulative errors. Note that, compared to LP1, we have also eliminated the

equality constraints in the above program. The basic intuition is that by using (3.9) in

an unconstrained form, i.e., by maximizing
∑

j∈Yz X(j, :)(1N−z), the program will tend

to assign higher values to (1− ẑ(i)) (and hence lower values to ẑ(i)) for i ∈ Sd since for

random test matrices with i.i.d. entries, the defective items are likely to be tested more

number of times in the pools with positive outcomes. Also, in contrast to LP1 where

different weightage is given to each positive pool via the value of the associated dual

variable, LP2 gives the same weightage to each positive pool, but it adjusts the overall

weightage of positive pools using the constant ψlp. We refer to the algorithm based on

LP2 as CoLpAl. The theoretical analysis for CoLpAl follows on similar lines as RoLpAl

and we summarize the main result in the following theorem:

Theorem 7. (Non-Uniform recovery with CoLpAl) Let N , L, M , α, u and q be as defined

above. Let p be chosen as 1
3(1−u)K . Let Γ , (1 − q) (1− (1− u)p)K and γ0 , u

(1−(1−u)p) . Let

ψ′
0 , min

(

Γ(1+γ0)
2

, Γ
2(1−Γ)

)

and choose ψlp = ψ′
0. There exists an absolute constant C4 > 0

such that, if the number of tests is chosen as

M ≥ C4K(1− u)
(1− γ0)2(1− q)

(

log
[

K
(

N−K
L−1

)]

(N −K)− (L− 1)

)

, (3.11)

then for a given defective set CoLpAl finds L non-defective items with probability exceeding

1− exp(−Mc0)− exp(−Mc1), with c0, c1 > 0.
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3.2.4 Discussion on the theoretical guarantees

We now present some interesting insights by analyzing the number of tests required

for correct non-defective subset identification by the proposed recovery algorithms in

the asymptotic regime, as N gets large. We note that the expressions in (3.2), (3.5) and

(3.11) are similar, and differ only on account of the constants involved. This allows us

to present a unified analysis for all the algorithms. Also, recall, γ0 =
u

(1−(1−u) α
K
)
, and for

large K, γ0 ≈ u. Therefore, for this discussion, we will assume that K is large. We make

the following remarks:

(a) Asymptotic analysis of M as N → ∞: For the asymptotic analysis as N → ∞, we

consider two parameter regimes:

• Fixed K, L
N

= α0, 0 < α0 < 1: We will refer to this regime as “fixed-K” regime.

Using Stirling’s formula, it can be easily shown that, for this regime

limN→∞
log (N−K

L−1 )
(N−K)−(L−1)

≤ Hb(α0)
1−α0

(see e.g., Lemma 3, Appendix A), where Hb(.) is

the binary entropy function. Noting that γ0 ≈ u and (1+ψ0) > 1, the sufficient

number of tests M for the proposed algorithms, as in (3.2), (3.5) and (3.11) can

be commonly represented as MFK , O
(

K
(1−u)(1−q)

Hb(α0)
1−α0

)

. Note that, in this

regime, as N →∞ (and hence L→∞), the number of tests required to find L

non-defective items stay constant.

• K
N

= β0, L
N

= α0, 0 < β0 < α0 < 1: Note that α + β < 1. We will refer to this

regime as “increasing-K” regime. Define, φ0 =
α0

1−β0 . The sufficient number of

tests for this scaling regime can be shown equal to MV K , O
(

K
(1−u)(1−q)

Hb(φ0)
1−φ0

)

.

In this regime, both K and L grow linearly with N and the number of tests
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increase linearly with K, since Hb(φ0)
1−φ0 is constant.

(b) Variation of M with L: Let ζ , L
N−K , the fraction of non-defective items that need

to be found. Let g(ζ) , Hb(ζ)
1−ζ . We note that the parameter L impacts both MFK

and MV K only via the function g(ζ), and this function characterizes the dependence

of the sufficient number of tests on L.4 For small values (or even moderately high

values) of ζ , it can be easily shown that g(ζ) is approximately linear in ζ ; this is also

confirmed via simulation results in Section 3.4.

(c) Comparison with the “indirect” approach: Note that one way to findL non-defective

items, referred to as the “indirect” approach (see Chapter 2), is to first identify the

defective set (using any defective set recovery algorithm), and subsequently choose

the non-defective items randomly from the complement set. One such “indirect”

decoding scheme, based on an exhaustive search over all possible defective sets,

was investigated in Chapter 2. It can be easily shown that, for the fixed-K scaling

regime, the sufficient number of tests for such a scheme scales as Ω(K log(KL)), i.e.,

the number of tests increase as N →∞. In contrast, the number of tests with the di-

rect approach MFK stays constant as N →∞, since it only depends upon L
N

, which

is a constant. Thus, the proposed algorithms perform significantly better than the

“indirect” approach; this is also supported by numerical simulations in Section 3.4.

(d) Order-wise comparison with the information theoretic lower bounds: We consider

the fixed-K regime and compare MFK with the lower bounds on the number of

tests for non-defective subset recovery, as tabulated in Table 3.1. First, consider

4For a detailed characterization of the function Hb(ζ)
1−ζ

, the reader is referred to Lemma 3, Appendix A

(appendix for Chapter 2).
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the noiseless case, i.e., u = 0, q = 0. For the ease of comparison we consider two

parameter ranges for α0. When α0 is small, e.g., close to zero, we note that Hb(α0)
1−α0

is dominated by the term α0

1−α0
log(1/α0). Thus, the gap between upper and lower

bounds scales as O
(

α0

1−α0

logα
log(1−α0)

logK
)

. When α0 is close to 1, Hb(α0)
1−α0

is dominated

by the term log 1
1−α0

. Thus, MFK is within a O(logK) factor of the lower bound. For

the additive noise-only case, the algorithms incur a factor of 1/(1−q) increase inM .

This is expected, since additive noise causes a fraction q of the tests with negative

outcomes to be discarded. Also, in terms of the variation with q, we note that the

factor 1
log(1/q)

in the lower bound behaves similar to 1
(1−q) . For the dilution noise case,

the algorithms exhibit an optimal dependence on u and incur a factor 1
(1−u) increase

in M , which is the same as in the lower bound. Thus, the proposed algorithms

for the non-defective subset recovery are nearly optimal, as the number of tests

required for a guaranteed correct recovery fall within O(logK) of the information

theoretic lower bounds. We have also compared the number of tests obtained via

simulations with an exact computation of the lower bounds; we refer the reader to

Figure 3.4, Section 3.4. Similar observations apply in the increasing-K regime also.

(e) Defective set recovery via non-defective subset recovery: It is interesting to note

that by substituting L = N−K in (3.2) and (3.5), we get M = O
(

K log(N−K)
(1−u)(1−q)

)

, which

is order-wise similar to the number of tests required for defective set identification

derived in the existing literature [15, 20, 36].

(f) Robustness under uncertainty in the knowledge of K: The theoretical guarantees

presented in the above theorems hold provided the design parameter p is chosen as
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O( 1
(1−u)K ). This requires the knowledge of u, and, in particular, the number of defec-

tive items K.5 If we do not have perfect knowledge of u and K, similar guarantees

can be easily derived, albeit with a penalty on the number of tests, as expected.

For example, choosing p as O(1/K), i.e., independent of u, results in a 1
1−u times

increase in the number of tests. Similarly, the impact of using an imperfect value

of K can also be quantified. Let K̂ be the value used and let ∆k > 0 be such that

K̂ = ∆kK. That is, ∆k parametrizes the estimation error in K. Using the fact that

for large n, (1 − α/n)n ≈ exp(−α), it follows that with p = O( 1
∆kK

), the number of

tests increases approximately by a factor of fM(∆k) , ∆k exp
(

−(1− u)( 1
∆k
− 1)

)

compared to the case with perfect knowledge of K, i.e., with p = O(1/K). It is easy

to see that the proposed algorithms are robust to the uncertainty in the knowledge

of K. For example, with u = 0, fM(1.5) = 1.09, i.e., a 50% error in the estimation

of K leads to 9% increase in number of tests. Furthermore, the asymmetric nature

of fM(∆k) (e.g., fM(1.5) = 1.09 and fM(0.5) = 1.3) suggests that the algorithms are

more robust when ∆k > 1 as compared to the case when ∆k < 1. We corroborate

this behavior via numerical simulations also (see Table 3.2).

(g) Operational complexity: It is easy to see that the execution of RoAl and CoAl re-

quires O(MN) operations, where M is the number of tests. The complexity of LP

based algorithms RoLpAl, RoLpAl++ and CoLpAl is implementation dependent,

but is, in general, much higher than RoAl and CoAl. For example, an interior-

point method based implementation will require O(N2(M +N)3/2) operations [52].

5Note that the implementation of the recovery algorithms do not require us to know the values of K
or u. These system model parameters are only required to choose the value of p for constructing the test
matrix.
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Table 3.1: Finding a subset ofL non-defective items: Order results for necessary number
of group tests which hold asymptotically asN →∞ (see Theorem 3, Chapter 2). “Fixed-
K” regime: L

N
= α0, 0 < α0 < 1 and fixed K. “Increasing-K” regime: K

N
= β0,

L
N

= α0,

α0 + β0 < 1, 0 < β0 < α0 < 1 and φ0 , α0

1−β0 .

Fixed-K regime Increasing-K regime

No Noise Ω

(

K

logK
log

1

(1− α0)

)

Ω

(

K

logK
log

1

(1− φ0)

)

(u = 0, q = 0)

Dilution Noise Ω

(

K

(1− u) logK log
1

(1− α0)

)

Ω

(

K

(1− u) logK log
1

(1− φ0)

)

(u > 0, q = 0)

Additive Noise Ω

(

K

log 1
q

log
1

(1− α0)

)

Ω

(

K

log 1
q

log
1

(1− φ0)

)

(u = 0, q > 0)

Although, this is higher compared to RoAl and CoAl, it is still attractive in com-

parison to the brute force search methods, due to its polynomial-time complexity.

3.3 Proofs of the Main Results

3.3.1 Proof of Theorem 4 and Corollary 2

The proof involves upper bounding the probability of non-defective subset recovery

error of the decoding algorithm, RoAl, and deriving the parameter choices, i.e., M , p,

that drive this probability arbitrarily close to 0. Let Sd ⊂ [N ] be the defective set and let

ŜL ⊂ [N ] denote the set of L non-defective items output by the decoding algorithm. Let

Tn(i, l) denote the number of times an item i is tested in l tests with negative outcomes.

Let Mn(l) represent the number of negative outcomes in a group testing setup with l

tests. For a given defective set Sd, let E ,
{

ŜL ∩ Sd 6= {∅}
}

denote the error event, i.e.,

the event that the above algorithm outputs an incorrect non-defective subset.

Clearly, RoAl succeeds when there exists a set of at least L non-defective items that
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have been tested more number of times than any of the defective items, in the tests

with negative outcomes. Let Sz ⊂ [N ]\Sd be any set of non-defective items such that

|Sz| = N0 , (N −K)− (L− 1). Further, let Sz denote all such possible sets. Thus,

E ⊆ {∃ i ∈ Sd and ∃ Sz, such that Tn(i,Mn(M)) ≥ Tn(j,Mn(M)) ∀j ∈ Sz} (3.12)

⊆ ∪
i∈Sd

∪
Sz∈Sz

{Tn(i,Mn(M)) ≥ Tn(j,Mn(M)), ∀j ∈ Sz} (3.13)

⊆
[

∪
i∈Sd

∪
Sz∈Sz

{Tn(i,Mn(M)) ≥ Tn(j,Mn(M)), ∀j ∈ Sz} ∩M0

]

∪M0, (3.14)

whereM0 , {Mn(M) < M0} for some 0 < M0 < M , and, will be chosen appropriately

later. Define E0(m) , {Tn(i,m) ≥ Tn(j,m), i ∈ Sd, j ∈ Sz}. Using the union bound and

the independence assumptions on the test matrix X, we get, from (3.14),

P(E) ≤
[

K

(

N −K
L− 1

)

∑

m≥M0

P(Mn(M) = m) {P(E0(m))}N0

]

+ P(M0). (3.15)

We now analyze P(E0(m)). Let Zij , Tn(j,m)−Tn(i,m) for any i ∈ Sd and j ∈ Sz. Thus,

P(E0(m)) = P (Zij ≤ 0). We note that Zij can be represented as a sum ofm i.i.d. Bernoulli

random variables. In particular, Zij =
∑m

l=1(Bl − Al), where Bl, Al are i.i.d. and, using

results from Lemma 2, Al ∼ B(pγ0) and Bl ∼ B(p). Thus, E(Zij) , µij = mp(1 − γ0).

Further, Var[Zij] , σ2
ij = mp (1 + γ0 − p(1 + γ20)). Note that σ2

ij < mp(1 + γ0). As shown

later, we will choose p such that γ0 < 1 (in fact, for large values of K, γ0 ≈ u) and

thus µij > 0. Intuitively, since Zij is a sum of i.i.d. RVs, it concentrates around µij , and

hence the probability that it is negative is small. We make this argument rigorous by

using Bernstein’s inequality [53].6 With ǫ ∈ (0, 1) small, e.g., ǫ = 0.01, let δ = (1 − ǫ)µij .

We note that |Bl − Al| ≤ 1. Further, since P(E0(m)) ≤ P(Zij < ǫµij), using Bernstein’s

6For ease of reference, we have stated it in Appendix B.5.
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inequality, we get:

P(E0(m)) ≤ exp

(

− (1− ǫ)2µ2
ij

2σ2
ij +

2
3
(1− ǫ)µij

)

(3.16)

≤ exp

(

−mp(1 − γ0)2
(1− ǫ)2

4

)

, f̄(m). (3.17)

Using the fact that f̄(m) is monotonically decreasing in m and substituting the above

into (3.15) we get

P(E) ≤
[

K

(

N −K
L− 1

)

f̄(M0)
N0

]

+ P(M0). (3.18)

To analyze P(M0), let us define Zl , I{y(l)=0} for all l = 1, 2, . . . ,M , and note that

Mn(M) =
∑M

l=1 Zl. Since the entries of the test matrix are i.i.d., Zl are also i.i.d. with

E(Zl) , Γ = (1− q) [1− (1− u)p]K (see Lemma 2). Thus, by choosing M0 = (1 − η)MΓ

for some 0 < η < 1 and using the multiplicative form of Chernoff bound [53, 54] (also

see Appendix B.5), we get

P(M0) ≤ exp

(

−Mη2
Γ

2

)

. (3.19)

Choosing p = α
K

with α = 1
3(1−u) , we note that γ0 < 1 for any u ≤ 0.5 and for all

K ≥ 1. Further, using the fact that for 0 < b < 1, (1 − b) ≤ e−b ≤ 1 − b
2
, we note

that,
[

1− (1−u)α
K

]K

≥ exp (−2α(1− u)) ≥ e−2/3. Thus, Γ ≥ e−2/3(1− q). Substituting the

chosen value of M0 and p in (3.17), we get

f̄(M0) ≤ exp

(

−MpΓ(1 − γ0)2
(1− η)(1− ǫ)2

4

)

(3.20)

≤ exp

(

−M
K

(1− q)(1− γ0)2
(1− u)

1

C0

)

, (3.21)
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where C0 , 12e2/3

(1−η)(1−ǫ)2 .7 Finally, from (3.18), we get

P(E) ≤ exp

[

−M
(

(1− γ0)2(1− q)N0

C0K(1− u) −
log
(

K
(

N−K
L−1

))

M

)]

+ exp

(

−M(1 − q) η2

2e2/3

)

.

(3.22)

Thus, if M is chosen as specified in (3.2), with the constants C0 and C1 chosen as above,

then there exist positive constants c0, c1 > 0 such that the error probability remains

smaller than exp(−Mc0) + exp(−Mc1), i.e., the decoding algorithm succeeds with high

probability.

For the uniform case, we use the union bound over all possible choices of the defective

set. Recall that P(M0) in (3.19) was derived for a fixed defective set. With the same

definitions as above, the probability that, for a given instance of test matrix, we get less

than M0

(

= (1− η)M(1− q) [1− (1− u)p]K
)

negative outcomes for any defective set is

upper bounded as

P(M0) ≤ exp

[

−M
(

(1− q) η2

2e2/3
− log

(

N
K

)

M

)]

. (3.23)

For the first term in (3.18), we note that the multiplicative factor of K, arising due to the

union bound over the individual defective items of a given defective set gets replaced

by a factor of N to take into account all possible index values for a defective item.

Using the same choices as the above for α, C0, and with C1 = 2e2/3

η2
, it is easy to show

that when M satisfies the bound in (3.3), we can obtain the required forms for each of

the probability terms involved.

7In this proof, we have made a conservative choice for α. The factor 3 in the denominator is chosen
to ensure that γ0 is less than 1 for any K ≥ 1 and for any value of u ≤ 0.5. Using similar arguments as
above, it is easy to see that for all K ≥ 3, α can be chosen as 1

(1−u) and all the conclusions above hold

with slightly different choice of the constant C0, e.g., with C0 =
4e2

(1−η)(1−ǫ)2 .
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3.3.2 Proof of Theorem 5

Recall, T (i) = xTi y
c − (ψcb)x

T
i y. Let Sd denote the defective set, such that |Sd| = K.

Intuitively, we expect that for all i ∈ Sd, T (i) to be lower than any item not belonging

to the defective set. Our strategy will be to bound the probability that T (i) for an item

belonging to a defective set is higher than that of an item from the non-defective set,

and then use the union bound to obtain an upper bound on the total error probability.

Define Sz ⊂ [N ]\Sd such that |Sz| = (N −K)− (L− 1). Define N0 , (N −K)− (L− 1).

Let Sz denote all such possible sets. Thus, |Sz| =
(

N−K
L−1

)

. Let ŜL denote the set of L items

declared non-defective by CoAl and let E denote the event that the algorithm makes an

error. For a given defective set Sd, we have

E ⊂ ∪
i∈Sd

{i ∈ ŜL} ⊂ ∪
i∈Sd

∪
Sz∈Sz

{T (j) ≤ T (i), ∀j ∈ Sz}. (3.24)

Thus, using the union bound and the independence assumptions on the test matrix X,

we get,

P(E) ≤ K

(

N −K
L− 1

)

[

P ({T (j) ≤ T (i), i ∈ Sd, j ∈ Sz})
](N−K)−(L−1)

. (3.25)

Let Pe , P ({T (j) ≤ T (i), i ∈ Sd, j ∈ Sz}). For any i ∈ Sd and j ∈ Sz, define Z ,

T (j) − T (i). We note that Pe = P(Z ≤ 0). Further, define Z0 =
∑M

l=1Al, where Al ,

[xj(l) − xi(l)]I{y(l)=0} are i.i.d. random variables. Similarly, define Z1 =
∑M

l=1Bl, where

Bl , [xi(l) − xj(l)]I{y(l)=1}, and Bl are i.i.d. random variables. We note that Z = Z0 +

ψcbZ1 =
∑M

l=1(Al + ψcbBl). Using results from Lemma 2 to compute statistics of Al and

Bl it follows that E(Z0) = E(Z1) = MpΓ(1 − γ0), where Γ , (1 − q) (1− (1− u)p)K and



Chapter 3. 78

γ0 , u
(1−(1−u)p) , as before. Further,

E(Z2
0) =MpΓ [(1 + γ0)− 2pγ0] and E(Z2

1 ) =Mp [(1− p)(2− γ0Γ)− Γ(1− pγ0)] .
(3.26)

Using the above, E(Z) , µZ and Var(Z) , σ2
Z can be easily computed. As mentioned

in the proof of Theorem 4, we will choose a value of p to ensure that γ0 < 1 and thus

E(Z0) > 0 and E(Z1) > 0. Also, we note that an upper bound on σ2
Z is sufficient for the

purpose of upper bounding the error probabilities. In particular, we have

µZ =MpΓ(1 − γ0)(1 + ψcb) and (3.27)

σ2
Z = Var(Z0) + ψ2

cbVar(Z1) ≤Mp
[

Γ(1 + γ0) + 2ψ2
cb(1− p)

]

. (3.28)

Let δ = (1− ǫ)µZ for any small ǫ ∈ (0, 1). We note that Pe = P(Z ≤ 0) ≤ P(Z < µZ − δ).

Further, |Al + ψcbBl| ≤ max{1, ψcb}. Now, we proceed by assuming that ψcb < 1, and

we will later see that our choice of ψcb will indeed turn out to be less than 1. Thus,

using Bernstein’s inequality, and sequentially upper bounding the probability of error

expression, we get,

Pe ≤ exp

(

− (1 − ǫ)2µ2
Z

2σ2
Z + 2

3
µZ

)

(3.29)

≤ exp

(

−MpΓ2(1− γ0)2
(1− ǫ)2

2
g(ψcb)

)

, where (3.30)

g(ψcb) ,
(1 + ψcb)

2

Γ(1 + γ0) + 2(1− p)ψ2
cb + (1 + ψcb)(1− γ0)Γ

. (3.31)

Define, ψ0 , Γ(1+γ0)
2(1−p) . Note that, g(ψcb)|ψcb=ψ0 = (1+ψ0)

2Γ
. As in the proof of previous

theorem, we choose p = α
K

with α = 1
3(1−u) . Using the above values of p and ψcb, and
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noting that Γ ≥ e−2/3(1− q), we get

Pe ≤ exp

(

− M

K(1− u)(1− q)(1− γ0)
2(1 + ψ0)

1

C2

)

. (3.32)

where C2 , 12e2/3

(1−ǫ)2 . Thus, from (3.25),

P(E) ≤ exp

(

−M
(

(1− q)(1 + ψ0)(1− γ0)2N0

K(1− u)C2
−

log
[

K
(

N−K
L−1

)]

M

))

. (3.33)

Thus, by choosing M as in (3.5), ∃ c0 > 0 such that P(E) ≤ exp(−Mc0). Hence the proof.

3.3.3 Proof of Theorem 6

Let X ∈ {0, 1}M×N denotes the random test matrix, y the group test output vector, Yz ,

{y = 0} with Mz = |Yz|, and Yp , {y = 1} with Mp = |Yp|. Let X0 , X(Yz, :) and X1 ,

X(Yp, :). Note that X0 ∈ {0, 1}Mz×N and X1 ∈ {0, 1}Mp×N . For the ease of performance

analysis for the LP described in (3.6), we work with the following equivalent program:

minimize
z

1TMz
X0 z (3.34)

(LP0a) subject to 0N 4 z 4 1N ,

1TNz ≥ (N − L).

The above formulation has been arrived at by eliminating the equality constraints and

replacing the optimization variable z by (1N − z). Hence, the non-defective subset out-

put by (3.34) is indexed by the smallest L entries in the solution for (LP0a) (as opposed

to largest L entries in the solution for (LP0)). We know that strong duality holds for a

linear program and that any pair of primal and dual optimal points satisfy the Karush-

Kuhn-Tucker (KKT) conditions [55]. Hence, a characterization of the primal solution
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can be obtained in terms of dual optimal points via the KKT conditions. Let λ1, λ2 ∈ R
N

and ν ∈ R denote the dual variables associated with the inequality constraints in (LP0a).

The KKT conditions for any pair of primal and dual optimal points corresponding to

(LP0a) can be written as follows:

1TMz
X0 − λ1 + λ2 − ν1N = 0N (3.35)

λ1 ◦ z = 0N ; λ2 ◦ (z − 1N) = 0N ; ν(1
T
Nz − (N − L)) = 0; (3.36)

0N 4 z 4 1N ; 1
T
Nz ≥ (N − L); λ1 < 0N ; λ2 < 0N ; ν ≥ 0; (3.37)

Let (z, λ1, λ2, ν) be primal, dual optimal points, i.e., a point satisfying the set of equa-

tions (3.35)-(3.37). Let Sd denote the set of defective items. Further, let ŜL denote the

index set corresponding to the smallest L entries, and hence the declared set of non-

defective items, in the primal solution z. We first derive a sufficient condition for suc-

cessful non-defective subset recovery with RoLpAl.

Proposition 2. If λ2(i) > 0 ∀ i ∈ Sd, then ŜL ∩ Sd = {∅}.

Proof: See Appendix B.2

Define E , {ŜL ∩ Sd 6= {∅}}. Also, let Pe , P(E). Let Sz ⊂ [N ]\Sd be any set of non-

defective items such that |Sz| = (N −K)− (L− 1). Let Sz denote all such possible sets.

The above sufficiency condition for successful non-defective subset recovery, in turn,

leads to the following:

Proposition 3. The error event associated with RoLpAl satisfies:

E ⊆ ∪
i∈Sd

∪
Sz∈Sz

{

1TMz
X0(:, i) ≥ 1TMz

X0(:, j), ∀j ∈ Sz
}

. (3.38)
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Proof. Define E0(i) , {λ2(i) = 0}. We first note, from (3.35), that for any i ∈ [N ]

λ2(i) = 0 =⇒ 1TMz
X0(:, i) = λ1(i) + ν ≥ ν. (3.39)

Define θ0 , max{i:λ1(i)=0} 1
T
Mz

X0(:, i) and θ1 , min{i:λ1(i)>0} 1
T
Mz

X0(:, i). We relate θ0, θ1

and ν as follows:

Proposition 4. The dual optimal variable ν satisfies θ0 ≤ ν < θ1.

Proof: See Appendix B.3.

From the above proposition and (3.39) it follows that

E0(i) ⊆
{

1TMz
X0(:, i) ≥ θ0

}

. (3.40)

We note that there exists at most L items for which λ1(i) > 0; otherwise the solution

would violate the primal feasibility constraint: 1TNz(i) ≥ (N − L). Thus, it is easy to see

that there exist at least (N −K)− (L− 1) non-defective items in the set {i : λ1(i) = 0}.

Thus, from (3.40) we get

E0(i) ⊆ ∪
Sz∈Sz

{

1TMz
X0(:, i) ≥ 1TMz

X0(:, j), ∀j ∈ Sz
}

, (3.41)

and (3.38) now follows since using Proposition 2 we have, E ⊆ ∪i∈Sd
E0(i).

Note that, for a given i, the quantity 1TMz
X0(:, i) is the same as the quantity Tn(i,Mn(M))

defined in the proof of Theorem 4 and (3.38) is the same as (3.12) (see Section 3.3.1).

Thus, following the same analysis as in Section 3.3.1, it follows that, if M satisfies

(3.2), the LP relaxation based algorithm RoLpAl succeeds in recovering L non-defective

items with probability exceeding 1− exp(−Mc0)− exp(−Mc1).
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3.3.4 Proof Sketch for Theorem 7

We use the same notation as in Theorem 6 and analyze an equivalent program that

is obtained by substituting (1 − z) by z. We note that LP2 differs from LP0 only in

terms of the objective function, and the constraint set remains the same. And thus,

the complimentary slackness and the primal dual feasibility conditions are the same as

given in (3.36) and (3.37), respectively. The zero gradient condition for LP2 is given by:

1TMz
X0 − ψlp1TMp

X1 − λ1 + λ2 − ν1N = 0N . (3.42)

Let the error event associated with CoLpAl be denoted by E . Let i ∈ Sd, and define

Ei , {i ∈ ŜL}. Note that E ⊆ ∪i∈Sd
Ei. Further, it follows that Ei ⊆ Ai ∪ Bi, where

Ai , {λ2(i) = 0} and Bi , {Ei ∩ {λ2(i) > 0}}. Let us first analyze Bi. Using similar

arguments as in Proposition 2 and 4, it is easy to see that,

Bi ⊆ {ν = 0} ⊆ ∪
Sz∈Sz

{

1TMz
X0(:, j)− ψlp1TMp

X1(:, j) ≤ 0, ∀j ∈ Sz
}

, (3.43)

where Sz ⊂ [N ]\Sd is any set of non-defective items such that |Sz| = (N −K)− (L− 1)

and Sz denotes all such possible sets. Further, using similar arguments as in the proof

of Theorem 6, it can be shown that

Ai ⊆ ∪
Sz∈Sz

{

1TMz
X0(:, i)− ψlp1TMp

X1(:, i) ≥ 1TMz
X0(:, j)− ψlp1TMp

X1(:, j), ∀j ∈ Sz
}

,

(3.44)

where Sz and Sz are as defined above.

The subsequent analysis follows by using the Bernstein inequality to upper bound

the probability of events Ai and Bi in a manner similar to previous proofs; we omit
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the details for the sake of brevity. As before, let N0 , (N − K) − (L − 1). Define

ψ′
0 , min

(

Γ(1+γ0)
2

, Γ
2(1−Γ)

)

. Note that, with ψlp = ψ′
0, E([1TMz

X0(:, j) − ψlp1TMp
X1(:, j)]) ≥

MpΓ/2 > 0 for any j ∈ Sz. Further, it can be shown that there exists absolute constant

C4b such that

P( ∪
i∈Sd

Bi) ≤ exp

(

−M
[

pΓN0

C4b
−

log
[

K
(

N−K
L−1

)]

M

])

. (3.45)

Similarly, following the same steps as in the proof of Theorem 5, it can be shown that,

for the chosen value of ψlp, there exists absolute constant C4a such that

P( ∪
i∈Sd

Ai) ≤ exp

(

−M
[

pΓ(1− γ0)2N0

C4a
−

log
[

K
(

N−K
L−1

)]

M

])

. (3.46)

The final result now follows easily by substituting p = 1
3(1−u)K , since, by choosing M as

in (3.11), the error terms in (3.45), (3.46) can be written as exp(−Mǫ) for some ǫ > 0.

3.4 Simulations

In this section, we investigate the empirical performance of the algorithms proposed

in this chapter for non-defective subset recovery. In contrast to the previous section,

where theoretical guarantees on the number of tests were derived based on the anal-

ysis of the upper bounds on probability of error of these algorithms, here we find the

exact number of tests required to achieve a given performance level, thus highlight-

ing the practical ability of the proposed algorithms to recover non-defective subset.
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This, apart from validating the general theoretical trends, also facilitates a direct com-

parison of the presented algorithms. Our setup is as follows. For a given set of op-

erating parameters, i.e., N , K, u, q and M , we choose a defective set Sd ⊂ [N ] ran-

domly such that |Sd| = K and generate the test output vector y according to (3.1).

We then recover a subset of L non-defective items using different recovery algorithms,

i.e., RoAl, CoAl, RoLpAl, RoLpAl++ and CoLpAl, and compare it with the defec-

tive set. The empirical probability of error is set equal to the fraction of the trials for

which the recovery was not successful, i.e., the output non-defective subset contained

at least one defective item. This experiment is repeated for different values of M and

L. For each trial, the test matrix X is generated with random Bernoulli i.i.d. entries, i.e.,

Xij ∼ B(p), where p is a design parameter. As suggested by the theoretical analysis

presented in the previous section we choose p = 1
K

. Also, for CoAl and CoLpAl, we

set ψcb =
Γ(1+γ0)
2(1−p) and ψlp = min

(

Γ(1+γ0)
2(1−p) ,

Γ
2(1−Γ)

)

respectively, where Γ , [1 − (1 − u)p]K

and γ0 = u/[1− (1− u)p]. Unless otherwise stated, we set N = 256, K = 16, u = 0.05,

q = 0.1 and we vary L and M .

Figure 3.2 shows the variation of the empirical probability of error with the number

of tests, for L = 64 and L = 128. These curves demonstrate the theoretically expected

exponential behavior of the average error rates, the similarity of the error rate perfor-

mance of algorithms RoAl and RoLpAl, and the performance improvement offered by

RoLpAl++ at higher values of L. We also note that, as expected, the algorithms that use

tests with both positive and negative outcomes perform better than the algorithms that

use only tests with negative outcomes.

Figure 3.3 presents the number of tests M required to achieve a target error rate of



Chapter 3. 85

10% as a function of the size of non-defective subset, L. We note that for small values

of L almost all algorithms perform similarly, but, in general, CoAl and CoLpAl are

the best performing algorithms across all values of L. We also note that, as argued in

Section 3.2.3, RoLpAl++ performs similar to RoLpAl for small values of L and for large

values of L the performance of the former is significantly better, and is the same as that

of CoLpAl. Also, as mentioned in Section 3.2.4, we note the linear increase in M with

L, especially for small values of L. We also compare the algorithms proposed in this

work with an algorithm that identifies the non-defective items by first identifying the

defective items, i.e., we compare the “direct” and “indirect” approach (see Chapter 2) of

identifying a non-defective subset. We first employ a defective set recovery algorithm

for identifying a defective set and then choose L items uniformly at random from the

complement set. This algorithm is referred to as “InDirAl” algorithm in Figure 3.3. In

particular, we have used “No-LiPo-” algorithm [20] for defective set identification. It

can be easily seen that the “direct” approach significantly outperforms the “indirect”

approach. We also compare against a non-adaptive scheme that tests items one-by-one.

The item to be tested in each test is chosen uniformly at random from the population.

We choose the top L items tested in all the tests with negative outcomes as the non-

defective subset. This algorithm is referred to at “NA1by1” (Non-Adaptive 1-by-1) in

Figure 3.3. Again, it is easy to see that the group testing based algorithms significantly

outperform the NA1by1 strategy.

Figure 3.4 compares the number of tests required to achieve a target error rate of 10%

for CoLpAl with the information theoretic lower bound for two different values of K.8

8We refer the reader to Theorem 3 in Chapter 2 for a detailed discussion on the information theoretic
lower bound. Also, see equations (A.6) and (A.7) in Appendix A for the exact derivation of the mutual
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It is easy to see that, as discussed in Section 3.2.4, the empirical performance of CoLpAl

(and other algorithms) is within O(logK) of the lower bound.

As discussed in Section 3.2.4, the parameter settings require the knowledge of K.

Here, we investigate the sensitivity of the algorithms on the test matrix designed as-

suming a nominal value of K to mismatches in its value. Let the true number of defec-

tive items be Kt. Let M(K̂,Kt) denote the number of tests required to achieve a given

error rate when the test is designed with K = K̂. Let ∆M(K̂,Kt) , M(K̂,Kt)
M(Kt,Kt)

. Thus,

∆M (K̂,Kt) represents the penalty paid compared to the case when the test is designed

knowing the number of defective items. Table 3.2 shows the empirically computed ∆M

for different values of uncertainty factor ∆K , K̂
Kt

for different algorithms. We see that

the algorithms exhibit robustness to the uncertainty in the knowledge of K. For ex-

ample, even when K̂ = 2Kt, i.e., ∆k = 200%, we only pay a penalty of approximately

17% for most of the algorithms. Also, as suggested by the analysis of upper bounds

in Section 3.2.4, the algorithms exhibit asymmetric behavior in terms of robustness and

are more robust for ∆k > 1 compared to when ∆k < 1.

Figure 3.5 shows the performance of different algorithms with the variations in the

system noise parameters. Again, in agreement with the analysis of the probability of

error, the algorithms perform similarly with respect to variations in both the additive

and dilution noise.

information term that is required for computing the lower bound for the group testing signal model.
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Figure 3.2: Average probability of error (APER) vs. number of tests M . The APER
decays exponentially with M .

Table 3.2: Robustness of the non-defective subset identification algorithms in the pres-

ence of uncertainty in the knowledge of K.The numbers in the table are M(K̂,Kt), the
relative increase in the number of tests due to the uncertainty in the knowledge of K.

Kt = 16, N = 256, L = 128, q = 0.1, u = 0.05
∆K = 75% ∆K = 150% ∆K = 200%

RoAl 1.13 1.06 1.20
CoAl 1.13 1.02 1.13
RoLpAl 1.09 1.04 1.17
RoLpAl++ 1.04 1.00 1.17
CoLpAl 1.13 1.00 1.18
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Figure 3.3: Number of tests vs. size of non-defective subset. Algorithm CoLpAl
performs the best among the ones considered. The direct approach for finding non-
defective items significantly outperforms both the indirect approach (“InDirAl”), where
defective items are identified first and the non-defective items are subsequently chosen
from the complement set (see Chapter 2), as well as the item-by-item testing approach
(“NA1By1”).
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Figure 3.4: Comparison of CoLpAl with the scaled information theoretic lower bounds.
A factor of log(K) is used for scaling the lower bounds. The algorithm performance is
within log(K) factor of the lower bounds.
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Figure 3.5: Average probability of error variation with noise. Panel (a) Variation with
the additive noise (q); Panel (b) Variation with dilution noise (u). The algorithms exhibit
similar performance with variations in additive and dilution noise.
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3.5 Conclusions

In this chapter, we proposed analytically tractable and computationally efficient algo-

rithms for identifying a non-defective subset of a given size in a noisy non-adaptive

group testing setup. We derived upper bounds on the number of tests for guaranteed

correct identification and showed that the algorithms are nearly optimal, as the up-

per bounds and information theoretic lower bounds are order-wise tight up to a log

factor. We showed that the algorithms are robust to the uncertainty in the knowledge

of system parameters. Also, it was found that the algorithms that use both positive

and negative outcomes, namely CoAl and the LP relaxation based CoLpAl, gave the

best performance for a wide range of values of L, the size of non-defective subset to

be identified. In this work, we considered the randomized pooling strategy. It will be

interesting to study deterministic constructions for the purpose of non-defective subset

identification; this could be considered in a future extension of this work.



Chapter 4

Group Testing Based Spectrum Hole

Search for Cognitive Radios

Group testing is a natural framework for efficiently identifying the defective items in a

large population containing a small fraction of defective items [6]. It is applicable in sce-

narios where multiple items can be tested together in a single test; the group test returns

positive if at least one item in the group is defective, and returns negative otherwise.

Group tests are particularly useful when individually testing each item is prohibitively

time-consuming, since testing multiple items in a single test leads to time savings when

test outcomes are negative. One area where group tests could potentially offer signifi-

cant benefits is that of spectrum hole search for Cognitive Radio (CR) [56–58]. The CR

paradigm is based on the fact that, at any given time, the spectral occupancy by the pri-

mary users is sparse over a wideband of interest [21, 22]. For efficient functioning, CR

networks need accurate and up-to-date information about the availability of spectrum

holes, i.e., frequency bands where the primary users are inactive.

In this chapter, we focus on the application of adaptive group testing to the task of

92
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finding a spectrum hole of a pre-specified bandwidth within a given wideband of in-

terest for use by the CR network. This problem is relevant in many CR scenarios. For

example, in the IEEE 802.22 standard for cognitive radio, the primary users occupy a

bandwidth of 6 MHz each. A secondary network that requires 40 MHz of bandwidth

for its operation will need to find a spectrum hole consisting of 7 contiguous unoccu-

pied bands. In practice, it is desirable to have the CR network operate in a contiguous

frequency band, as this simplifies transceiver hardware design and helps improve the

energy efficiency of the CR network compared to using non-contiguous frequency bins.

Other considerations for preferring contiguous frequency bin allocation are the phys-

ical layer access mechanism (e.g., code division multiple access), network quality of

service requirements, spectral mask constraints, etc.

We consider a setup where a CR wishes to identify a given number, say Ne, contigu-

ous unoccupied sub-bands over a given wide bandwidth. A straightforward approach

to this problem would be to test each sub-band sequentially, one at a time, till the re-

quired Ne contiguous bins are found. On the other hand, group testing can be used to

reduce the search time in such a problem, if a set of adjacent sub-bands can be tested

at one shot. One way to accomplish this without increasing the sampling rate and pro-

cessing requirements at the CR node is to acquire the analog signal corresponding to

M(≥ 1) sub-bands using a wide front-end anti-aliasing filter, followed by sampling at

a rate corresponding to the Nyquist rate for a single sub-band. Although sampling at

the Nyquist rate of a single sub-band results in aliasing, it provides the receiver with a

signal that is the sum of the signals in all the acquired sub-bands. Based on the energy of

the aliased signal, in this work, we develop an energy-based detector, referred to as an
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M-bin group test, to provide a joint occupancy decision on the group of M adjacent sub-

bands over which the signal is acquired. We consider the popular energy-based detec-

tion (see [59–61] for an excellent survey of spectrum sensing), as it is easy to implement

and is optimal when the CR has no prior information about the primary signal [62].

In the literature, the idea of sampling the signal over multiple sub-bands and make

joint occupancy decisions has been explored, but with sampling at the higher Nyquist

rate corresponding to the multiple sub-bands. For example, FFT-based architectures

that collect samples at a Nyquist rate corresponding to CN narrowbands and can pro-

vide simultaneous decisions for all the CN bins have been considered [63–65]. A two-

stage sensing architecture that reduces search times by extending the narrowband en-

ergy detector to wider bands has been proposed in [66]. Another way to reduce the

search time is by employing parallel data chains, e.g., using multiple antenna receivers [67,

68]. However, the effective sampling rate requirements of these architectures are higher

than the narrowband detector, since data is acquired over multiple narrowbands at

Nyquist rates. Increasing the sampling rate entails higher power consumption and

processing requirements, which is undesirable in tasks such as spectrum sensing, which

are frequently performed at the CR nodes. A wideband sensing framework is proposed

in [69,70], where a bank of multiple narrowband energy detectors operating at Nyquist

sampling rate are jointly optimized by choosing different thresholds, to maximize the

total opportunistic CR throughput, while constraining the interference to the primary

users. The above framework requires the knowledge of primary-to-secondary channel

coefficients and secondary throughput values for each narrowband, and is therefore

limited to scenarios where such information is available. In practice, it may be hard for
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the CR to obtain or estimate these parameters.

Group testing based signal acquisition leads to noise enhancement (folding), due to

the aliasing introduced by the sub-Nyquist sampling. This phenomenon is also seen in

other wideband acquisition systems operating at sub-Nyquist rates, such as compres-

sive sensing based methods [71]. This raises important questions about the efficacy of

group testing in the face of noise folding, and the dependence of the optimal test pa-

rameters on the operating SNR and the sparsity in the frequency occupancy of primary

users. In this context, our contributions in this chapter are as follows:

1. We introduce a signal acquisition scheme that enables the use of group testing

based spectrum hole search by acquiring wideband signals at a fixed sampling

rate. The acquisition scheme entails only a minimal hardware change, compared

to the narrowband energy detector, in the form of a programmable anti-aliasing

filter (See Sec. 4.1).

2. We present a search algorithm that minimizes the time to detect a spectrum hole

of a specified bandwidth while satisfying an upper bound on the probability of

incorrectly identifying the hole (See Sec. 4.2).

3. We theoretically analyze the detection delay behavior of the algorithm, and use

it to optimize the parameters (group size, samples per test, and detection thresh-

olds) of the search algorithm. We also identify the regimes of the sparsity and de-

tection SNR where group tests offer performance benefits over the conventional

bin-by-bin search scheme. In particular, our analytical characterization of the de-

tection delay of the bin-by-bin detector is also new (See Sec. 4.3).
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4. We present a multi-stage detection algorithm that combines multiple group sizes

to identify a large fraction of the available spectrum holes as fast as possible (See

Sec. 4.4).

Extensive simulation results corroborate our theoretical analysis and illustrate the per-

formance benefits obtainable from the group testing approach under favorable condi-

tions on sparsity and SNR (See Sec. 4.5). The use of group tests with the optimal group

size leads to a faster acquisition of the desired spectrum hole. This, in turn, leads to

a better utilization of the available spectrum, since a shorter sensing duration leaves

more time for data transmission. Reducing the sensing duration is also power efficient,

since spectrum sensing is a frequently-running task on CR devices. Moreover, group

test based schemes significantly reduce the total number of tests that need to be set up

while searching over a given wideband, thereby reducing the test setup overheads [66].

Finally, we note that the spectrum hole search algorithm always selects the optimal

group size M . In particular, in scenarios where M = 1 is optimal, the group testing

scheme defaults to, and hence performs at least as well as, the conventional bin-by-bin

search scheme.

4.1 Signal Acquisition Scheme

We model the wideband as a set of consecutive non-overlapping frequency narrow-

bands. Let fb denote the bandwidth of a narrowband channel, also referred to as a

bin or a sub-band. Let the wideband being searched consist of N contiguous sub-

bands. Let Sl(Ω) and sl(t) represent the frequency domain and time domain sig-

nal components in the lth bin, respectively, down converted to the baseband (denoted
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sl(t)
F←→ Sl(Ω)). Let Ω , 2πf . By our assumption on the bandwidth of each bin, we

have Sl(Ω) = 0, |Ω| > 2πfb/2. The frequency domain signal for the wideband channel,

down converted to the baseband, can be represented as

X(Ω) =

(N−1)/2
∑

l=−(N−1)/2

Sl (Ω− Ωl) (4.1)

where Ωl , 2πlfb represents the center frequency of the lth bin. In the above, N is

assumed to be odd, but the extension to even N is straightforward.

We now describe a signal acquisition scheme that enables group testing of multiple

adjacent bins without increasing the sampling rate requirements at the CR node. Let

M denote the number of adjacent bins over which the signal is acquired. The incoming

down-converted signal is first passed through an anti-aliasing filter of bandwidth Mfb

to eliminate the out-of-band signals and noise. The frequency domain signal at the

output of the anti-aliasing filter can be represented as

Xa(Ω) =

(M−1)/2
∑

l=−(M−1)/2

Sl (Ω− Ωl) . (4.2)

The signal xa(t)
F←→ Xa(Ω) is sampled at a rate fs = fb. Since the anti-aliasing filter

band-limits the signal to [−Mfb/2, Mfb/2], sampling at a rate fb introduces aliasing. Let

Tb =
1
fb

. Let xd[n] = xa(nTb) represent the sampled signal and xd[n]
F←→ Xd(e

ω), where

ω = 2π f
fb

[72]. With the above notation, for odd M , Xd(e
ω) = 1

Tb

∑(M−1)/2
l=−(M−1)/2 Sl

(

ω
Tb

)

.

Again, the extension to even M is straightforward. The received signal, xd[n], is thus

the sum of the signal components in the individual bins. Now, the received signal yg[n]
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can be described by

yg[n] = xd[n] + vg[n] (4.3)

where vg[n] is the white noise component after aliasing.

Now, due to possibly independent fading across the bins and mismatches between

transmit and receive pulse shaping filters, timing and frequency offsets, etc between

the primary transmitter and the CR receivers, the signals from different bins are ef-

fectively the result of passing a random signal through orthogonal filters, since the

different frequency bins are non-overlapping. Hence, it is reasonable to model the

signal contributions from different bins as being mutually independent. Since we as-

sume no knowledge about the primary signal characteristics at the secondary node, we

model the signal contributions from lth bin as Gaussian distributed with zero mean and

variance Pl, as in [65, 73, 74]. We assume that the baseband signal is real-valued for

simplicity of exposition; the extension to complex signals is immediate. We note that,

vg[n] ∼ N (0,Mσ2), where σ2 = Nofb, and No is the white noise power spectral density.

The factor M in the noise variance is due to the aliasing introduced by sampling at rate

fb. We accumulate the energy from K samples at the output of the filter, and compute

the following test statistic:

T (y) =

√

√

√

√

K
∑

n=1

|yg[n]|2. (4.4)

Note that, the conventional narrowband signal acquisition is a special case of the above

signal model with M = 1. Figure 4.1 shows the block diagram for the proposed wide-

band signal acquisition scheme. Let the bandwidth of the spectrum holes that need to

be found be denoted by Wh, such that Wh = Nefb. With this setting, the task of the
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Figure 4.1: Block diagram of the wideband signal acquisition system.

sensing algorithm is to find a set of Ne(≪ N) consecutive unoccupied bins in the given

wideband. We discuss this in the next section.

4.2 The M -Bin Group Test Design

Using the above data acquisition scheme, we first describe an algorithm to find a con-

tiguous spectrum hole of the specified bandwidth of Ne bins. Let the parameters N and

M be as defined in the previous section. Let Ne be an integer multiple of M and define1

b = Ne

M
. To find Ne contiguous unoccupied bins, the proposed algorithm makes an oc-

cupancy decision on a group of M ≤ Ne contiguous bins in a single test. Such group

tests, referred to asM-bin tests, are conducted sequentially on multiple adjacent groups

until b consecutive M-bin tests declare the set of bins being tested as unoccupied. Also,

for simplicity, we assume that the required Ne empty bins can be found using one pass

of the algorithm over the given wideband consisting of N bins. This holds true when

the occupancy of the primary is sparse in the frequency domain and Ne ≪ N , which is

typically the case in scenarios relevant for CR deployment.

An M-bin group test forms the basic building block of the above algorithm to find Ne

1We consider such a combination of Ne and M for the simplicity of exposition. The algorithm can be
easily adapted to non-integer multiples also.
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unoccupied bins. Let Hl denote the hypothesis that l out of M bins are occupied in the

group under test and let {Hl}Ml=1 denote the composite alternate hypothesis, i.e., Hl is

true for some l = 1, 2, . . . ,M . AnM-bin group test distinguishes between the following

hypotheses:

H0 : No primary signal on any of the M-bins

{Hl}Ml=1 : Primary signal present on at least one bin (4.5)

To find Ne empty bins, the algorithm can use different values of M (and hence b) andK.

We first describe the algorithm with a fixed value of M and K, and later present a way

of choosing the best M and K. The following optimization problem arises naturally in

the context of the M-bin test:

minimize N t subject to Pe ≤ P0, (4.6)

where Pe denotes the probability that the overall search algorithm makes an error, and

N t denotes the average number of tests required to find Ne consecutive bins. The min-

imization in (4.6) is over the parameters M , b, K and the detection thresholds used in

the M-bin tests. Since the algorithm terminates once it has declared a set, say A, of Ne

consecutive bins as unoccupied, we say that an error has occurred if the primary signal

is present in one or more of the bins in A. Mathematically,

Pe , Pr (Primary present in a set A of Ne bins | b (4.7)

consecutive M-bin tests succeed for the first time) .
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Note that, Pe is related to the miss detection probability, i.e., the probability that the

group A is declared as empty given that at least one bin in A is actually occupied,

through Bayes’ rule. Also, a false alarm event, i.e., the event thatA is declared occupied

given that it is actually empty, leads to an increased detection delay; its effect is captured

in N t. See Propositions 5 and 5 and Appendix C.2.

Let occupancy across the bins be i.i.d. and distributed as binary Bernoulli random

variables (denoted ∼ B(ρ)), where ρ is the fraction of bins occupied on average, over

the long term. In the current work, we focus on the i.i.d. occupancy model [69], that,

apart from being analytically tractable, might also be of independent interest in the area

of adaptive group testing where the items being defective is independent of each other.

We further assume that the occupancy pattern stays fixed over the search duration.

Let H0d denote the event that H0 was declared by a single group test and define p ,

Pr{H0d}. Let Π0 and Π1 represent the prior probabilities for the null and alternate

hypotheses for the M-bin group test. With our assumptions, Π0 = (1− ρ)M and Π1 =

1 − Π0. Define Pme , Pr{{Hl}Ml=1|H0d} as the probability that the single group test

makes an incorrect decision, given that the group test has declared H0. The following

proposition connects Pe and N t to Pme and p, the parameters of the M-bin group test.

Proposition 5. Let N t, M , b, Pe, Pme, and p be as defined above. Then the following hold:

Pe = 1− (1− Pme)b and N t =
b
∑

i=1

(p)−i. (4.8)

Proof: See Appendix C.1.

From Proposition 5, N t depends solely on p and b, and is monotonically decreasing
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with p. Thus, the design goal for the single M-bin test can be stated as

maximize p subject to Pme ≤ P ′
0, (4.9)

where P ′
0 = 1 − (1 − P0)

1
b . The maximization above is over all possible decision rules,

denoted by δ(T ). Our next proposition establishes that a likelihood ratio test (LRT) [75]

is optimal for the design criterion specified in (4.9). Let δL(T ) be a decision rule based

on the LRT with threshold ηgt > 0, defined as δL(T ) = 1, P r{T |{Hl}Ml=1} ≥ ηgtPr{T |H0},

and = 0 otherwise, where T is given by (4.4). We state:

Proposition 6. Let δL(T ) be the LRT decision rule defined above, with ηgt chosen such that

Pme(δL) = P ′
0. Let δ′(T ) be any other decision rule such that Pme(δ

′) ≤ P ′
0. If ηgt >

Π0

Π1

P ′

0

1−P ′

0
,

thenN t(δL) ≤ N t(δ
′), whereN t(δL) (orN t(δ

′)) represents the average number of tests required

to find a consecutive set of Ne vacant bins using the test δL (or δ′).

Proof: See Appendix C.2.

To compute likelihood ratios, we need the probability distributions of the test statistic

defined in (4.4) under the two hypotheses. To this end, we need to know the variances

under the primary signal present hypothesis {Pl}Ml=1, but these are unknown and in

general hard to estimate. To get around the problem of unknown {Pl}, we define a bin

as being occupied if the received primary signal power in the bin is at least Ps. Further,

we design the test conservatively by assuming that the received primary signal power in

any occupied bin equals Ps. This is in line with the approach recommended in emerging

CR standards such as the IEEE 802.22, where the CR is required to reliably sense the

primary signal whenever the received signal power exceeds −116dBm [76]. With these
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assumptions, it can be shown that

H0 : T ∼ N
(

m0, σ
2
0

)

{Hl}Ml=1 : T ∼

M
∑

l=1

θlN
(

ml, σ
2
l

)

, (4.10)

where σ2
l , (Mσ2 + lPs) /2, ml ,

√

(2K − 1)σ2
l and θl ,

[

(

M
l

)

ρl(1− ρ)M−l
]

/Π1, such

that
∑M

l=1 θl = 1. In deriving the above distributions, we have used the approximation

that if X ∼ χ2 (K), then
√
2X ∼ N

(√
2K − 1, 1

)

([77], Ch. 26).

The log-likelihood function corresponding to the test in (4.10) is analytically intractable,

making it hard to obtain the detection threshold in closed form. However, it can be eas-

ily shown that it is approximately quadratic in T (when M = 1, it is exactly quadratic

in T . For M > 1, when one of the terms in the mixture density dominates the other

terms for T close to the threshold, the error in the approximation is small.) Due to

this, the critical region is of the form
{

{T ≤ η′gt0} ∪ {T ≥ η′gt1}
}

, where η′gt0 and η′gt1 are

lower and upper thresholds. For most scenarios of interest, the contribution to Pme

from {T ≤ η′gt0} is small, since it represents the unlikely event that, due to its larger

variance, the instantiation of the received signal power estimate under {Hl}Ml=1 is un-

usually small. This allows us to replace the LRT test by a simple, albeit sub-optimal,

one-sided threshold test on T :

T
H1

T
H0

η′gt1. (4.11)

The threshold η′gt1 is chosen to satisfy the constraint on Pme in (4.9). For notational

simplicity, let η be the threshold used in the test. Define the false alarm and miss de-

tection rate of a single M-bin test as α (η) , Pr{{Hl}Ml=1 declared|H0} = Pr{T ≥ η|H0}

and β (η) , Pr{H0 declared|{Hl}Ml=1} = Pr{T < η|{Hl}Ml=1}, respectively. Also, define
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βl , Pr{H0 declared|Hl}, i.e., the miss detection rate when exactly l bins are occupied.

These can be computed as

α (η) = 1−Q
(

m0 − η
σ0

)

,

β (η) =
M
∑

l=1

θlβl where βl = Q

(

ml − η
σl

)

, (4.12)

where ml and θl are as defined in (4.10). The constraint on Pme in (4.9) leads to the

following nonlinear equation, the solution to which yields η′gt1:

β (η) Π1

p(η)
= P ′

0, (4.13)

where p(η) can be computed as

p (η) = Π0 (1− α (η)) + Π1β(η). (4.14)

Numerical techniques such as the bisection method have to be used to solve (4.13) to

obtain η′gt1.

This completes the design for an M-bin group test using given values of the number

of samples, K, and the group size, M . In the next section, we show how to find an

optimal value for K and M .
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4.3 Optimal Parameters for the M -Bin Test

We start by describing a procedure for finding the optimal K. Note that, (4.13) can be

written as

Γ(η,K) = C1, (4.15)

where C1 = Π0

Π1

P ′

0

1−P ′

0
> 0, and Γ(η,K) ,

∑M
l=1 θlQ(zl)

Q(z0)
, with zl, for l = 0, 1, . . . ,M , defined

as

zl ,
(ml − η)

σl
=
√
2K − 1− η

σl
. (4.16)

Since σl increases with l, as seen from (4.10), zl also increases with l for a fixed K, i.e.,

z0 < z1 < · · · < zM . We first study the variation of Γ with η and K. Although K is

an integer valued variable, for the purpose of analysis, we treat K as a positive real

number. Due to the continuity of the Q-function, Γ(η,K) is continuous with respect to

η and K, and since zl > z0, 0 < Γ(η,K) < 1. Further, we have:

Proposition 7. (a) For fixedK, Γ(η,K) is a quasi-convex function of η and attains a minimum

value, Γmin(K) = Γ(η0, K), where η0 satisfies ∂Γ(η,K)
∂η

∣

∣

∣

η=η0
= 0, i.e.,

M
∑

l=1

θl

[

Q(z0)e
−z2l /2

σl
− Q(zl)e

−z20/2

σ0

]

= 0, (4.17)

where zl, l = 0, 1, . . . ,M are evaluated at η0.

(b) For fixed η, Γ(η,K) is a decreasing function of K.

Proof: See Appendix C.3.

Figure 4.2 depicts the behavior of Γ(η,K) as implied by the above proposition. We

make the following remarks: (a) For a given probability of incorrect detection, P ′
0, there is a
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certain minimum number of samples, Kmin(≥ 1), that are required to set up the M-bin group

test to satisfy the performance requirement P ′
0. In fact, if K0(≥ 1) is such that Γmin(K0) > C1

(e.g., with K = 20 in Figure 4.2), a test cannot be designed with K0 samples. However,

since Γmin(K) is a decreasing function of K, we can find the smallest integer, denoted

Kmin, such that Γmin(Kmin) ≤ C1. For anyK ≥ Kmin, anM-bin test can be designed and

each will result in a different average number of tests required to find Ne unoccupied

bins. (b) For each K ≥ Kmin, due to the quasi-convex nature of Γ(η,K), there exist

exactly two solutions of (4.15), and since the M-bin test is a threshold test, we pick the

larger of the two as the threshold to be used. Define ηs(K), the computed threshold for

a given value of K, as

ηs(K) = max {η : Γ(η,K) = C1} . (4.18)

Note that, due to the way ηs is chosen, ∂Γ(η,K)
∂η

∣

∣

∣

η=ηs
> 0. Also, since Γ(η,K) decreases

with K, it is easy to see that ηs(K) is an increasing function of K.

For each K ≥ Kmin, a test that satisfies the constraint on the probability of incorrect

decision can be designed; and our next task is to decide whichK to use. Note that, since

M ≤ Ne, multiple M-bin tests are required to find Ne consecutive unoccupied bins. To

run the test on a different set ofM bins, we need to move to a different center frequency.

Due to the time required by various RF-components such as the PLL, oscillators, etc, to

reach a steady state after the change in center frequency, there is a setup delay (also

referred to as settling time) of NS samples associated with each M-bin test [66]. Thus,
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Figure 4.2: Family of Γ(η,K) functions: increasing K helps in meeting the minimum
performance target.

we define the following objective function:

Davg(K) = N t(K) (K +NS) . (4.19)

Davg(K) can be viewed as the average search duration for finding Ne unoccupied bins

with an M-bin test designed with K samples. The value of NS is known, as it depends

on the front-end RF chain at the CR, and is part of its technical specifications. From

(4.19), NS plays significant role in the time taken to find Ne bins when it is comparable

to K or when N t(K) is high. We state the following:

Proposition 8. For K ≥ Kmin, Davg(K) is a convex function of K.

Proof: See Appendix C.4.
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Thus, for a given M , the optimum K can be computed as the solution to:

Kopt = minimize
K≥Kmin

Davg(K). (4.20)

With regards to minimization, Davg(K) is a well-behaved function and simple convex

optimization techniques, e.g., the Newton method [55], can be used to find the optimum

K. Note that the computational complexity of evaluating Kopt (and η′gt in (4.13)) is

not of major concern here, as these will be computed offline and remain unchanged

as long as the primary usage statistics remain the same. In the above analysis, we

have assumed K to be a real number. In practice, we compute Davg(K) at the two

integers nearest to the optimum real value and pick Kopt to be the one with smaller

Davg(K). Figure 4.3 illustrates the convex behavior of Davg(K) with K for a particular

set of operating parameters.

The last step in the design of the detector is to find the optimum combination (M, b)

that minimizes the average detection delay. To this end, for a given M , let Kopt(M)

be the number of samples that minimize the average search duration to find Ne = Mb

consecutive unoccupied bins. We use Davg(Kopt(M)) as the metric to compare the per-

formance with different values of M . Let M =
{

(M, b) : b =
⌈

Ne

M

⌉}

be the set of all

combinations of (M, b) that can be used to find Ne consecutive empty bins. To find the

optimal value of M for a given test scenario, we minimize Davg(Kopt) overM:

(Mopt, bopt) = minimize
(M,b)∈M

Davg (Kopt (M)) . (4.21)

We solve the above optimization problem by simply searching over the set M, since

there are only a finite number of combinations, and computing Davg (Kopt (M)) is not
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computationally demanding. Thus, given the operating parameters: (σ2, ρ, Ps), we

have fully specified an M-bin test, and a method to choose the (M,K) that minimizes

the average delay in searching for a spectrum hole consisting of Ne unoccupied bins.

4.4 Multi-Stage Sensing Algorithm

In this section, we describe an M-bin test based multi-stage sensing algorithm, to find

the available spectrum holes in a given wideband of interest. The basic idea, as shown

in Figure 4.4, is to search for spectrum holes of different bandwidths by making multi-

ple passes of search on a given wideband. With each successive pass, the width of the

hole (specified by the value of M used in the M-bin test) being searched for is halved,
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and only the parts of the wideband that have been declared occupied in the previous

stages are considered in the search. A multi-stage algorithm can be used, for exam-

ple, in spectrum hole search with a frequency hopping primary. Here, the occupancy

pattern keeps changing periodically, and we refer to this time interval as hopping in-

terval, denoted by Nh.2 In terms of CR usage, each hopping interval is split into two

phases: sensing phase, to find the unoccupied spectrum and usage phase, to use the spec-

trum found. Let n represent the duration of sensing phase. Thus, the goal for sensing

algorithms in a frequency hopping scenario is to maximize NTB , Mh(n)(Nh − n),

where Mh(n) is the number of unoccupied bins found during the sensing phase. In

other words, we want as much usable spectrum for as much time as possible in a given

hopping interval.

Let M , ρ, Kopt, ηs and p be as defined earlier. Let M (l), ρ(l), K
(l)
o , η

(l)
s and p(l) de-

note the values of above parameters at the lth stage. Let L be the number of stages.

Since, at each stage, the value of M is halved, M (1) = 2L−1. Let Pems denote the bin-

level error probability in the sense of (4.7), i.e., the probability that an individual bin

is actually occupied given that it has been declared unoccupied by the algorithm. An

overall bin-level error probability constraint can be satisfied if the M-bin test at every

stage satisfies the same bin-level error probability constraint. For an M-bin test, de-

fine P
(i)
me , Pr (ith bin in AM is occupied | AM is declared unoccupied), where AM is the

set of M bins being tested. That is, P
(i)
me quantifies the bin-level error probability of an

M-bin test. It can be shown that P
(i)
me = P0, i.e., it meets the target error probability

constraint, if the threshold used in the M-bin test, η, is chosen as the solution to the

2For example, in a Bluetooth network, the hopping time is 1/1600 s. With a sampling rate of 2 MHz,
this implies Nh = 1250.
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following equation:
M
∑

k=1

(

M − 1

k − 1

)

ρk(1− ρ)M−kβk(η)

p(η)
= P0. (4.22)

Here, ρ denotes the occupancy rate, βk(η) and p(η) are as defined in (4.12) and (4.14),

respectively. Thus, depending upon P0, M and ρ, an M-bin test satisfying a specified

bin-level error probability constraint can be designed by choosing the detection thresh-

old according to the above equation. We also note that since each stage removes a part

of the unoccupied spectrum from the given band of operation, the occupancy rate, ρ(l),

for each stage needs to be updated accordingly.

We now describe the multi-stage algorithm. Let an estimate of the number of bins

found at the end of the lth stage be denoted by Tf (l).
3 Let ρ0 be the occupancy rate for

the wideband over which multi-stage algorithm is operating. Let P0 ∈ (0 1) denote the

target bin-level error probability.

1. Initialize: ρ(1) = ρ0; Tf (0) = 0; and set all the bins in the wideband as occupied.

2. for l = 1, 2, . . . , L

(a) Using M = M (l), ρ = ρ(l) and P0, find the detection threshold, η(l)s , using

(4.22).

(b) Find the optimum number of samples, K
(l)
o , using (4.20) with b = 1. That

is, find the number of samples required to minimize the detection delay in

finding a spectrum hole of size M . Also, find the corresponding p(l) using

(4.14).

3Note that, this can also be replaced by the number of bins that are declared as unoccupied in the
actual running of the algorithm. Here, we use an estimate of the number of bins declared as unoccupied
in order to facilitate an offline calculation of the thresholds to be used at each stage, and to analytically
compute the detection delay.
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(c) Make a pass over the full wideband, i.e., perform a series of M-bin tests for

the bins that are set as occupied, with M = M (l), K = K
(l)
o and η = η

(l)
s . If a

test declaresH0, then set the corresponding M (l) bins as unoccupied.

(d) Update Tf(l): Tf (l) = Tf (l − 1) + [N − Tf (l − 1)] p(l).

(e) Update the occupancy rate for the next stage: ρ(l+1) =
Nρ− Tf (l)P0

N − Tf (l)
.

(f) Update M (l+1) =M (l)/2.

Note that, the above algorithm ensures that the overall bin-level error probability con-

straint is met, since each stage is designed such that the bin-level error probability in

that stage is P0. Also, the above update for the occupancy rate works well when the pri-

mary powers in the different bins are approximately equal and known. In the unequal

or unknown transmit power case, the M-bin test ensures that the empirical values of

P
(i)
me remain below the specified target. We have observed, via simulations, that the al-

gorithm works well in terms of the detection delay, and also satisfies the specified target

error rates. When M (1) = 1, we get the conventional bin-by-bin detection scheme as a

special case, as before.

4.5 Simulations and Results

We now present simulation results to illustrate the performance of the proposed signal

acquisition scheme and spectrum hole search algorithms. We first present the results

for the contiguous hole search algorithm in the AWGN case. We consider a test setup

with N = 128, Ne = 8 and ρ ∈
{

1
6
, 1
8
, 1
10
, 1
12
, 1
16
, 1
20

}

. The signal samples used for comput-

ing the test statistic are generated according to (4.3). The signal powers for bins with
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Figure 4.4: A pictorial description for the multi-stage algorithm.

occupancy, Pl, are chosen uniformly at random from the set {Ps, Ps+2, Ps+4, Ps+6} dB,

with Ps = 0 dB. We refer to Ps

σ2
as the detection SNR, and vary it from 0 to 13 dB. The

test outputs a sequence of Ne bins that are declared unoccupied. An error occurs if

this declared set contains any occupied bin. The target error rate constraint is set as

P0 = 0.1. For different combinations of (M, b), the value of Kopt is numerically com-

puted, and the corresponding detection delay (Davg(Kopt), henceforth denoted Davg for

short) performance is evaluated. For calculating Davg , we used NS = 0.

Figures 4.5 and 4.6 show the variation of Davg with sparsity and SNR, respectively. As

expected, with increasing sparsity, the group tests with higher M perform better. At
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low SNR, M = 1 is optimal. As the SNR increases, M > 1 outperforms M = 1, and

interestingly, the relative reduction in Davg is higher for higher M . Note that, the bin-

by-bin (M = 1) test can be considered to be the result of using the framework in [70]

when the primary transmitter to secondary receiver channel gain information is absent

and the test is designed to minimize the average test duration. We have also empiri-

cally verified that the observed Pe is below the target P0 = 0.1. We also evaluate the

performance of the group tests with the optimal values of M , K and ηs computed as

described in Section 4.2. We see that the tests with optimal parameter values perform

the best in all the simulated scenarios. In Figure 4.7, we show the excellent match be-

tween the simulation and analytical results for Davg and Pe at different sparsity values,

when Pl = Ps.

Next, we consider the scenario where the primary signals undergo Rayleigh multi-

path fading and lognormal shadowing with variance 4 dB. Figure 4.8 shows the varia-

tion of Davg with detection SNR. We see the same behavior as in the AWGN case, albeit

at roughly 7dB higher SNR values. This is expected, as the M-bin detector is an energy

based detector and its performance degrades in the presence of fading.

Table 4.1 shows the reduction in Davg compared to tests with M = 1 at an SNR of 9 dB

for the AWGN case and 16 dB for the fading case, and with different sparsity values.

With NS = 0, the reduction in Davg of the proposed group test compared to the M = 1

case is 20 to 30%, depending on the sparsity level. For a conservative value4 of NS = 5,

the percentage reduction inDavg is significantly higher, and varies between 35 and 60%.

This is because tests with higher M result in a significantly lower average number of

4At a sampling rate of 1 MHz and with a low-power phase-locked loop (see [66], Table I), NS can be
as high as 120 samples.
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tests (see Table 4.2) and thus save on the test setup overheads, compared to the M = 1

case.

Figure 4.9 shows the variation of Davg(Mopt, Kopt) with primary SNR for different val-

ues of target P0 in the AWGN case. It is interesting to note that the curves are ap-

proximately linear, even though different values of M are optimal for different primary

SNRs. Also, larger sensing times are required to satisfy smaller values of the target

probability of error, as expected.

We now compare the performance of the M-bin detector with the energy-based Single

Slot Detector (SSD) proposed in [1]. We use the same setup as in [1], and study the

achievable opportunistic secondary throughput, R(τ ), defined as,R(τ) , C0(1− τ
TF

)(1−

Pf)(1−ρ)B bits/s, where τ is the sensing (search) duration, TF is the frame duration and

C0 is the secondary throughput when the primary is absent, ρ is the prior probability

of the primary being present and B is bandwidth of a single slot. We assume that the

secondary network does not obtain any throughput if it transmits data in the presence

of the primary (that is, C1, as defined in [1], is zero). Note that, Pf is the probability

of false alarm obtained by designing the detector to ensure that the probability of miss

stays below a specified target. The M-bin detector searches M consecutive adjacent

slots simultaneously in each test, and the corresponding secondary throughput is given

by: R(τ) ,MC0(1− τ
TF

)(1−PfM )(1−ρ)MB bits/s, where PfM is the probability of false

alarm for an M-bin detector with the given target probability of miss detection. We

assume BPSK signaling, a sampling rate of 6 MHz, C0 = 6.6582 (which corresponds

to a secondary-to-secondary SNR of 20 dB), and a target probability of miss of 0.1, as

in [1]. Figure 4.10 compares the normalized throughputs R(τ)/B for different values
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of τ for the scenario where ρ = 0.1, TF = 100 ms and a primary SNR value of −13 dB.

Also, Table 4.3 compares the achievable throughput for different operating scenarios.

As the SNR and sparsity increase, M-bin tests with largerM provide the best secondary

throughput, and the group test significantly outperforms the SSD.

We now present a few representative results that illustrate the key aspects of multi-

stage algorithm discussed in Section 4.4. Here, we consider the AWGN case and an i.i.d.

occupancy model with N = 256. We first investigate the application of the multi-stage

algorithm for finding non-contiguous spectrum holes in the case with equal power pri-

mary signals. Figure 4.11 shows the results of running the multi-stage algorithm with

different values of M (1), i.e., with different number of stages. It can be observed that,

depending upon the number of non-contiguous unoccupied bins we wish to find, dif-

ferent multi-stage instantiations lead to faster search times. For example, M (1) = 8 (i.e.,

L = 4) is optimal if we wish to find about 100 unoccupied bins, whereas M (1) = 4 (i.e.,

L = 3) is optimal if we wish to find about 200 unoccupied bins. Figure 4.12 shows

the results for the spectrum hole search in the presence of frequency hopping. For the

multi-stage algorithm with different initial group sizes and different search durations,

we need to pick the one that maximizes NTB , as defined in Section 4.4. It can be seen

that, under sparse spectrum occupancy by the primary, the group testing based sens-

ing schemes are more efficient in harvesting the available spectrum in a given hopping

interval. For example, at an SNR= 7dB, multi-stage instantiations with M (1) = 2, 4 and

8 all have higher maximum NTB compared to the bin-by-bin test.
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Table 4.1: Percentage Davg reduction compared to M = 1. The quantities in the paren-
thesis represent the percentage reduction compared to M = 1 and the value of M that
achieves it, respectively.

Sparsity 1/8 1/12 1/16
NS = 0 NS = 5 NS = 0 NS = 5 NS = 0 NS = 5

AWGN, 9dB (19%, 4) (43%, 4) (26%, 4) (52%, 8) (29%, 4) (61%, 8)
Fading, 16dB (21%, 4) (44%, 4) (26%, 4) (52%, 8) (30%, 4) (62%, 8)

Table 4.2: Average number of tests for varying sparsity at SNR = 9dB.
Sparsity 1/6 1/8 1/12 1/16

M = 8, b = 1 5.6 3.8 2.6 2.1
M = 4, b = 2 7.9 5.9 4.4 3.9
M = 2, b = 4 12.6 9.0 7.1 6.2
M = 1, b = 8 21.8 17.5 13.5 12.8

4.6 Conclusions

In this chapter, we investigated the use of adaptive group testing based techniques for

spectrum hole search in cognitive radios. To enable this, we proposed a signal acqui-

sition scheme that deliberately introduces aliasing by sampling a wideband signal at a

sub-Nyquist rate. We developed spectrum hole search algorithms based on the energy

of the aliased signal. The algorithms exploit the sparsity in the primary spectral oc-

cupancy by making a joint occupancy decision on the group of narrowband bins over

which the signal is acquired. We first designed the group testing based algorithm to

search contiguous spectrum holes while guaranteeing a given level of protection to the

primary network. We extended the group tests to a multi-stage sensing algorithm that

looks for contiguous holes of different widths at each stage. Based on the theoretical

analysis of the group tests, we provided a computational procedure to obtain the op-

timal group size, number of samples, and the detection thresholds, that minimize the
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Table 4.3: Achievable throughput, R/B bits/s: Comparison of the M-bin test with the
detector in [1].

SNR=−15 dB, ρ = 1/10 SNR=−12 dB, ρ = 1/10 SNR=−10 dB, ρ = 1/16
SSD 5.66 5.88 6.19
M-bin 9.09 (M = 2) 14.81 (M = 4) 25.13 (M = 8)
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Figure 4.5: Davg Vs. Sparsity in the AWGN case. At higher sparsity, group tests outper-
form the bin-by-bin test.

average search duration given a target error rate constraint. This enabled us to iden-

tify the operating parameter regimes where group testing based algorithms outperform

their narrowband counterparts. The performance gains are achieved at a minimal addi-

tional hardware cost, which makes the group testing based sensing schemes attractive

for practical implementation.
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sparsity values of 1/ρ = [8 10 12 16 20], respectively. The empirical Pe always remains
below the target value of 0.1.
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trends as compared to AWGN case, but at higher SNRs.
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Figure 4.10: Normalized throughput vs. the sensing time: M-bin detector significantly
improves secondary throughput. “SSD” refers to the energy-based single slot detection
scheme in [1].
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Chapter 5

Conclusions and Future Work

In this thesis, we studied the problem of identifying a given number of “non-defective”

items from a large population containing a small number of “defective” items, in a non-

adaptive group testing framework. The contributions of this thesis are summarized

below.

5.1 Summary of Contributions

In Chapter 2, we studied the information theoretic aspects of the problem of identify-

ing L non-defective items out of a large population of N items containing K defective

items. We studied the problem in a general sparse signal modeling framework where

we compared the following two approaches: identifying the defective items using the

observations followed by picking L items from the complement set, and directly identi-

fying non-defective items from the observations. We derived upper and lower bounds

on the number of observations required for identifying the L non-defective items. We

showed that an impressive gain in the number of observations is obtainable by directly

identifying the non-defective items. We applied the results to the noisy nonadaptive

123



Chapter 5. 124

group testing setup, where we accounted for the impact of both dilution and additive

noise in the tests. We characterized the number of tests that are sufficient to identify a

subset of non-defective items of a large population and also showed that the upper and

lower bounds are order-wise tight.

In Chapter 3, we proposed analytically tractable and computationally efficient algo-

rithms for identifying a non-defective subset of a given size in a noisy non-adaptive

group testing setup. We derived upper bounds on the number of tests for guaran-

teed correct non-defective subset identification and we showed that the algorithms are

nearly optimal, as the upper bounds and information theoretic lower bounds are order-

wise tight up to a logK factor, where K is the number of defective items. While the

algorithms did not require knowledge of system parameters such as K, the statistics of

the random test matrix did depend on K. We showed that the algorithms and results

were robust to uncertainty in the knowledge of the system parameters. Also, it was

found that the algorithms that use both positive and negative outcomes, namely CoAl

and the LP relaxation based CoLpAl, gave the best performance for a wide range of

values of L, the size of non-defective subset to be identified.

Finally, in Chapter 4 we investigated the use of adaptive group testing for spectrum

hole search in cognitive radios. To enable this, we proposed a signal acquisition scheme

that deliberately introduces aliasing by sampling a wideband signal at a sub-Nyquist

rate. The energy in the aliased signal is used as the basis for detection. We proposed

a group testing based algorithm to search for contiguous spectrum holes while guar-

anteeing a given level of protection to the primary network. We also extended the
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group tests to a multi-stage sensing algorithm that looks for contiguous holes of differ-

ent widths at each stage. We provided a computational procedure to obtain the optimal

algorithm parameters that minimize the average search duration given a target error

rate constraint. Further, our theoretical analysis enabled us to identify the operating pa-

rameter regimes where group testing based algorithms outperform their narrowband

counterparts.

5.2 Future Work

Future work could include the extension of the non-defective subset identification prob-

lem to more complex sparse signal models. In Chapters 2 and 3, we considered test/measurement

matrix ensembles that were generated in i.i.d. fashion. It will be interesting to extend

the results on non-defective subset identification to non-i.i.d. test matrices. For exam-

ple, Gaussian ensembles with independent rows and correlated columns have been

studied in the context of sparse recovery in [35, 78]. In Chapter 3, we considered a

randomized pooling strategy. An interesting extension could be to study deterministic

or structured random constructions, see e.g., [17, 18], for the purpose of non-defective

subset identification. Another possible direction is to study the non-defective subset

identification when structured pooling strategies are used. For example, it would be

interesting to derive bounds on the number of tests for non-defective subset recovery,

when the items to be pooled are constrained to be nodes that form a path obtained by

taking a random walk over a given graph [16].
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Appendix for Chapter 2

A.1 Asymptotic Properties of the Upper Bound for De-

coding Scheme 2

In this subsection, we analyze the behavior of Γu2, the key quantity used in deriv-

ing the upper bound on the number of observations under decoding schemes dis-

cussed in Sections 2.2.2 and 2.2.3. Let N,K and L be as defined before. Let Γu2 ,

max1≤j≤K
logC2(L,N,K,j)

Lj
, where C2 and Lj are as defined in Theorem 2. We have the fol-

lowing lemma regarding the asymptotic behavior of Γu2.

Lemma 3. Let α , L−1
N−K . DefineNb , N−K

K−1
. LetL be an integer multiple ofK. Let (N−K) >

4. Then for all L such that L ≥ K and 2 ≤ (L− 1) ≤ (N −K)− 2,

Γu2 ≤ Γmu ,
Hb(α)

1− α +
1

1− α

[

log(eαNb)

Nb
+

log(KeK)

N −K

]

, (A.1)

where Hb(.) represents the binary entropy function. In particular, for the scaling regime:

L,N → ∞, L
N

= α0 for a fixed 0 ≤ α0 < 1 and fixed K, we have limN→∞ Γu2 ≤ Hb(α0)
1−α0

.
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Furthermore, for the same scaling regime as above, and for any given α0 ≤ 1
2
, there exist con-

stants c0, c1 such that

lim
N→∞

Γu2 ≤ c0α0 + c1. (A.2)

Proof. We note the following: (a) Since L is an integer multiple of K, Lj = (N − K) −

(L− j) and L1 < Lj ∀j > 1. Also, L−1
L1

= α
1−α and N−K

L1
= 1

1−α . (b)
(

L−1
K−1

)

>
(

L−j
K−j
)

∀j > 1

and L ≥ K. (c)
(

K−1
j−1

)

≤ eK ; and finally (d)
log (N−K

Lj
)

Lj
is a decreasing function of j. Thus,

Γu2 ≤
log
(

N−K
L1

)

L1
+

log(KeK)

L1
+

(K − 1) log e(L−1)
K−1

L1

≤
log
(

N−K
L1

)

L1
+

log(KeK)
(N−K)

1− α +
1
Nb

log (eαNb)

1− α . (A.3)

Using Stirling’s formula, for any n ∈ Z+:
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, we get

log

(

N −K
L1

)

≤ L1 log(
N −K
L1

) + (L− 1) log(
N −K
L− 1

) +
1

2
log

N −K
L1(L− 1)

(A.4)

≤ L1 log(
N −K
L1

) + (L− 1) log(
N −K
L− 1

). (A.5)

The second inequality follows since under the assumptions on the range of L, N−K
L1(L−1)

<

1. Thus,
log (N−K

L1
)

L1
≤ Hb(α)

1−α , from which we arrive at (A.1). We note that, for the given

scaling regime limN→∞ α = α0, and, for a fixed α0, the second and third term in (A.3)

vanish as N →∞. Thus, limN→∞ Γu2 ≤ Hb(α0)
1−α0

. Figure A.1 shows the variation of upper

bound of Γu2 with N , with K = 8.
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Figure A.1: Behavior of Γu2(α) with N .

To establish (A.2), we note that

Hb(α)

1− α = − α

1 − α log(α)− log(1− α) = α

1− α
∞
∑

i=1

(1− α)i
i

+
∞
∑

i=1

αi

i

≤ α

(

1 +
(1− α)

2
+

(1− α)2
3

)

+
α(1− α)3

4

( ∞
∑

i=1

(1− α)i−1

)

+ α +
α2

2
+
α3

3
+
α4

4

( ∞
∑

i=1

αi−1

)

≤ 17

6
α+

1

4

[

(1− α)3 + α4

1− α

]

≤ c0α + c1,

where c1 is obtained by appropriately bounding the second term by a constant when

α ≤ 1
2
. Thus, (A.2) follows since α→ α0 ≤ 1

2
as N →∞.
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A.2 Order-Tight Results for Necessary and Sufficient Num-

ber of Tests with Group Testing

In this section, we present a brief sketch of the derivation of the order results for the

sufficient and necessary number of tests presented in Tables 2.1 and 2.2, respectively.

We first note that I(j) = H(Y |XS(K−j))−H(Y |XS(K−j) , XS(j)) [30], whereH(·|·) represents

the entropy function [44]. From (2.2), we have

H(Y |XS(K−j)) =

K−j
∑

l=0

[(

K − j
l

)

pl(1− p)K−j−lHb

(

(1− q)ul(1− p(1− u))j
)

]

(A.6)

H(Y |XS(K−j) , XS(j)) =
K
∑

i=0

[(

K

i

)

pi(1− p)K−iHb

(

(1− q)ui
)

]

. (A.7)

We use the results from [47] for bounding the mutual information term. We collect the

required results from [47] in the following lemma.

Lemma 4. Bounds on I(j) [47]: Let p = δ
K

. I(j) can be expressed as I
(j)
1 + I

(j)
2 , where

I
(j)
1 = δe−δ(1−u)(1− q) (u logu+ 1− u) j

K
+O

(

1

K2

)

. (A.8)

For the case with u = 0 and q > 0 we have:

I
(j)
2 = δe−δ

(

log(
1

q
)− (1− q)

)

j

K
+O

(

1

K2

)

, (A.9)

and for q = 0, u ≥ 0 we have:

δe−δ
(

(1− u)
[

log
K

jδ(1− u)

]

− u
)

j

K
+O

(

1

K2

)

≤ I
(j)
2

≤ δe−δ(1−u
2)

(

(1− u)
[

log
K

jδ(1− u)

]

− u+ u2
)

j

K
+O

(

1

K2

)

. (A.10)
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Thus, with δ = 1 and neglecting the O(1/K2) term compared to the first term, we get:

(a) For u = 0, q > 0 case, I(j) ≈ j
eK

log(1
q
). (b) For q = 0, 0 ≤ u ≤ 0.5 case, simplifying

further, we get

j

eK
(1− u) log K

j
/ I(j) / j

e1/2K
(1− u)

(

log
K

j
+ 1

)

. (A.11)

The order results now follow by using Lemma 3 to asymptotically upper bound the

combinatorial term, Γu2, for the upper bounds and by noting that, for the scaling regimes

under consideration, the combinatorial term for the lower bounds, Γl, can be asymptot-

ically bounded as limN→∞ Γl(L,N,K, j) ≥ j log 1
1−α0

.

A.3 Proof of Lemma 1

Let E0(ρ, j, n) be as defined in (2.3). In contrast to the fixed K case, where analysis of

E0(ρ, j, n) at ρ = 0 was sufficient, we need control over the behavior of E0(ρ, j, n) at

other values of ρ and thus we need to consider the exact expression for E0(ρ, j, n). For

the noiseless group testing case (see (2.2)), from the definition (see (2.3)), E0(ρ, 1, L1) can

be shown to be given by

E0(ρ, 1, L1) = − log
[

(1− p)(K−1)
(

(1− p)(1+ρL1) + p(1+ρL1)
)

+ 1− (1− p)(K−1)
]

. (A.12)

It is easy to verify that E0(ρ, 1, Lj) is an increasing function of j, where Lj = (N −K)−

(L− j). Hence, from (2.10), it follows that if

ME0(ρ, 1, L1)− ρ max
1≤j≤K

logC2(L,N,K, j)− logK > 0 (A.13)
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for some ρ < 1, then there exists some ǫ > 0 such that Pe ≤ exp(−Mǫ). To find a

sufficient condition onM , we first lower boundE0. Note that, E0(0, 1, n) = 0, is positive

and is concave in ρ [43]. Define ρ0 =
K
L1

. Note that ρ0 < 1. We first compute E0 at ρ0. Let

p = 1
K

. For large K, we can neglect the term involving powers of p. Thus E0(ρ0, 1, L1) ≥

− log
[

1−
(

(1− 1
K
)K−1 + exp(−2)

)]

≥ C3 for all K ≥ K0. Using the concavity of E0, we

get E0(ρ, 1, L1) ≥ ρC3L1

K
for 0 ≤ ρ ≤ ρ0. Using this bound in (A.13), for ρ = K

L1
, the

main result follows. We further note that, from Lemma 3, max1≤j≤K
logC2(L,N,K,j)

L1
≤ Γmu,

where Γmu is given by (A.1).
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Appendix for Chapter 3

B.1 Proof of Lemma 2

We note that a test outcome is 0 only if none of the K defective items participate in the

test and the output is not corrupted by the additive noise. (a) now follows easily by

noting that the probability that an item does not participate in the group test is given

by (1− p) + pu. (b) follows easily from (3.1). For (c) we note that, given that Xli = 1 for

any i ∈ Sd, the outcome is 0 only if the ith item does not participate in the test (despite

Xli = 1) and none of the remaining K − 1 defective items participate in the test and

the test outcome is not corrupted by the additive noise. That is, P(Yl = 0|Xli = 1) =

u(1− (1− p)u)K−1(1− q) = γ0Γ. The other part follows similarly. (d) follows by noting

that for any i ∈ Sd and j /∈ Sd, P(Yl|Xli, Xlj) = P(Yl|Xli). By Bayes rule and part (b) in

this lemma, we get: P(Xli, Xlj|Yl) = P(Yl|Xli,Xlj)

P(Yl)
P(Xli)P(Xlj) = P(Xli|Yl)P(Xlj|Yl). Hence

the proof.
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B.2 Proof of Proposition 2

We first prove that, for all i ∈ ŜL, λ2(i) = 0. The proof is based on contradiction.

Suppose ∃j ∈ ŜL such that λ2(j) > 0. This implies, from the complimentary slackness

conditions (3.36), z(j) = 1 and thus, λ1(j) = 0. Since jth item is amongst the smallest

L entries, this implies that 1TNz > (N − L). Hence, ν = 0. From the zero gradient

condition in (3.35), it follows that 1TMz
X0(:, j) = −λ2(j) < 0, which is not possible, as

all entries in X are nonnegative. It then follows that ∀ j ∈ ŜL λ2(j) = 0. Thus, if

λ2(i) > 0, ∀ i ∈ Sd, then these items cannot belong to the first L entries in the primal

solution z, i.e., Sd ∩ ŜL = {∅}.

B.3 Proof of Proposition 4

Suppose ν < θ0. Then ∃ i such that λ1(i) = 0 and ν < 1TMz
X0(:, i). Thus, from (3.35),

λ2(i) = ν − 1TMz
X0(:, i) < 0, which violates the dual feasibility conditions (3.37). Thus,

ν ≥ θ0. Similarly, let ν ≥ θ1. Then ∃ i such that λ1(i) = 1 and ν ≥ 1TMz
X0(:, i). Thus,

from (3.35), λ2(i) = λ1(i) + ν − 1TMz
X0(:, i) ≥ 1, which is a contradiction since λ1(i) > 0

implies λ2(i) = 0. Thus, ν ≥ θ1 is not possible.

B.4 Discussion on the theoretical guarantees for RoLpAl++

The discussion for RoLpAl++ proceeds on similar lines as RoLpAl. We use the same

notation as in Section 3.3.3, and, as above, we analyze an equivalent LP obtained by

eliminating the equality constraints and substituting (1 − z) by z. The corresponding
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KKT conditions for a pair of primal and dual optimal points are as follows:

1TMz
X0 − µTX1 − λ1 + λ2 − ν1N = 0N (B.1)

µ ◦ (X1z − (1− ǫ0)1Mp
) = 0Mp

; λ1 ◦ z = 0N ; λ2 ◦ (z − 1N) = 0N ; ν(1
T
Nz − (N − L)) = 0;

(B.2)

0N 4 z 4 1N ; 1
T
Nz ≥ (N − L); µ < 0Mp

; λ1 < 0N ; λ2 < 0N ; ν ≥ 0; (B.3)

Note that in the above µ ∈ R
Mp is the dual variable associated with constraint (3.9) of

LP1. Let (z, µ, λ1, λ2, ν) be a primal, dual optimal point satisfying the above equations.

We first prove the following:

Proposition 9. If λ2(i) > 0, then µTX1(:, i) = 0.

Proof. For any l ∈ [Mp], if X1(l, i) = 0 then µ(l)X1(l, i) = 0. If X1(l, i) = 1, then for the

lth test X1(l, :)z ≥ 1 > (1 − ǫ0), since λ2(i) > 0 implies z(i) = 1. This implies µ(l) = 0,

and thus µ(l)X1(l, i) = 0, for this case also.

Using the above, it is easy to see that Proposition 2 holds in this case also. Further-

more, using the same arguments as in Section 3.3.3, it can be shown that the error event

associated with RoLpAl++, E , satisfies E ⊆ ∪i∈Sd
∪Sz∈Sz {E0(i, j), ∀j ∈ Sz}, where

E0(i, j) = {1TMz
X0(:, i)− µTX1(:, i)− λ1(i) ≥ 1TMz

X0(:, j)− µTX1(:, j)}, (B.4)

and, Sz ⊂ [N ]\Sd is any set of non-defective items such that |Sz| = (N −K) − (L − 1)

and Sz denotes all such sets possible. In the following discussion, since i is fixed, for

notational simplicity we will use E0(j) , E0(i, j). Note that, for RoLpAl, the error event

is upper bounded by a similar expression as above but with E0(j) replaced by E1(j)
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where E1(j) , {1TMz
X0(:, i) ≥ 1TMz

X0(:, j)}. In order to analytically compare the perfor-

mances of RoLpAl and RoLpAl++, we try to relate the events E0(j) and E1(j). Note

that if E0(j) ⊆ E1(j), then P(E0(j)) ≤ P(E1(j)), and hence, RoLpAl++ would outperform

RoLpAl. Now, when µ = 0Mz
, E0(j) ⊆ E1(j), ∀j ∈ Sz. For µ 6= 0, we divide the items in

Sz into two disjoint groups:

(a) λ2(j) > 0: Since µTX1(:, j) = 0, µTX1(:, i) ≥ 0 and λ1(i) ≥ 0, it follows that E0 ⊆ E1.

(b) λ2(j) = 0: We note that E0(j) ⊆ E1(j) ∪ E ′1(j) where

E ′1(j) =
{

µT [X1(:, j)−X1(:, i)] ≥ κ+ λ1(i)
}

, where κ + λ1(i) > 0.

A technical problem, which does not allows us to state the categorical performance

result, arises now. It is difficult to obtain the estimates for the dual variables µ and

hence of P(E ′1(j)). Therefore, we offer two intuitive arguments that provide insight

into the relative performance of RoLpAl++ and RoLpAl. The first argument is that the

majority of the items in Sz will have λ2(j) > 0 and thus, for a majority items in Sz, it

follows that P(E0(j) ≤ P(E1(j). This is because the set {λ2(j) = 0} is given by,

{λ2(j) = 0} =
{

j :
(

1TMz
X0(:, j)− µTX1(:, j)

)

= max
{l:λ1(l)=0}

(

1TMz
X0(:, l)− µTX1(:, l)

)

}

,

(B.5)

and, as the number of tests increase and the number of non-zero components of µ in-

crease, the probability that above equality holds becomes smaller and smaller. Further-

more, for a small number of items j ∈ Sz with λ2(j) = 0, it is reasonable to expect that

P(E ′1(j)) will be small. This is because the probability that a defective item is tested in

a pool with positive outcome is higher that the probability that a non-defective item is

tested in a pool with positive outcome. Thus, the expected value of µT [X(:, j)−X(:, i)]
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will be negative for a non-negative µ and, thus using concentration of measure argu-

ments, we can expect P(E ′1(j)) to be small. Thus, we expect that RoLpAl++ to perform

similar (or even better) than RoLpAl.

B.5 Chernoff Bounds

Theorem 8. ( [54], Ch. 4) Let X1, X2, . . . , Xn be independent B(p) random variables. Let

X =
∑n

i=1Xi and let µ = E(X). Then, for any 0 < δ < 1, the following Chernoff bounds hold:

P (X ≥ (1 + δ)µ) ≤ exp

(

−δ
2µ

3

)

(B.6)

P (X ≤ (1− δ)µ) ≤ exp

(

−δ
2µ

2

)

(B.7)

Theorem 9. (Bernstein Inequality [53]) LetX1, X2, . . . , Xn be independent real valued random

variables, and assume that |Xi| < c with probability one. Let X =
∑n

i=1Xi, µ = E(X) and

σ = Var(X). Then, for any δ > 0, the following hold:

P (X > µ+ δ) ≤ exp

(

− δ2

2σ2 + 2
3
cδ

)

(B.8)

P (X < µ− δ) ≤ exp

(

− δ2

2σ2 + 2
3
cδ

)

(B.9)
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Appendix for Chapter 4

C.1 Proof of Proposition 5

From the definition of Pe in (4.7), it follows that the algorithm makes an error if any of

the last b M-bins tests, that have all declaredH0, make an error. Thus,

Pe = 1− Pr
(

None of the last b M-bin tests is in error | All

the last b tests have declaredH0

)

= 1−
(

1− Pr({Hl}Ml=1|H0d)
)b

= 1− (1− Pme)b (C.1)

Now, letN t and p be as defined before. N t can be found by setting up a recursive equa-

tion using the following arguments: (i) If we get alternate hypothesis declaration on the

kth attempt with k = 1, 2, . . . , b, then the search process restarts since each test is inde-

pendent. (ii) If we get b successive null hypothesis outputs then our search terminates.

Note that declaring the alternate hypothesis on the kth attempt leads to an increase in

the number of tests by k. The probability that we get the first alternate hypothesis on
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the kth attempt is given by p(k−1)(1− p). Thus,

N t = (1− p)
b
∑

k=1

pk−1(N t + k) + bpb = (1− pb)N t + (1− p)
b
∑

k=1

kpk−1 + bpb.

Using
∑b

k=1 kp
k−1 =

[

1−pb+1

(1−p)2 −
(b+1)pb

1−p

]

and simplifying, the result follows. �

C.2 Proof of Proposition 6

Let t be the random variable describing the test statistic defined in (4.4). Let G be the

observation set. Let f0(t) and f1(t) denote probability distributions of t under the null

and alternate hypothesis, respectively, and these are as defined in (4.10). Let α(δ) and

β(δ) represent the false alarm and miss detection rate, respectively, for a decision rule

δ. Thus, α(δ) =
∫

G(1 − δ(t))f0(t)dt and β(δ) =
∫

G(1 − δ(t))f1(t)dt. From Bayes’ rule,

Pme(δ) =
β(δ)Π1

p(δ)
. Since Pme(δ

′) ≤ P ′
0, (4.14) imply that

β(δ′) ≤ P ′
0

Π1
p(δ′) and 1− α(δ′) ≥ 1− P ′

0

Π0
p(δ′), (C.2)

where Π0 and Π1 represent the prior probabilities for the null and alternate hypothe-

ses for the M-bin group test. From the definition of δL(t), we have [(1 − δ(t)) − (1 −

δ(t)′)][f1(t) − ηgtf0(t)] ≤ 0 for any t ∈ G. Integrating over the entire observation space,

we get

β(δ)− β(δ′) ≤ ηgt [(1− α (δ)) (1− α (δ′))] .

Using (4.14) and (C.2), we can further simplify the above to
(

1−P ′

0

Π0
ηgt − P ′

0

Π1

)

[p(δ)− p(δ′)] ≥ 0. For ηgt >
Π0

Π1

P ′

0

1−P ′

0
, p(δ) ≥ p(δ′), and the assertion

follows by noting that N t is monotonic in p. �
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C.3 Proof of Proposition 7

Part (a)

For a fixed K, zl =
√
2K − 1 − η/σl, l = 0, 1, . . . ,M are functions of η. Hence, Γ(η,K)

is a real valued, continuously differentiable function of η, denoted Γ(η) for short, with

η > 0. Let Γ′(η) , dΓ(η)
dη

and Γ′′(η) , d2Γ(η)

dη2
. We use the second order conditions to

prove quasi-convexity ([55], Section 3.4.3): Γ(η) is quasi-convex in η, if, for all η0 such

that Γ′(η0) = 0, we have Γ′′(η0) > 0. Since d
dx
(Q(x)) = − 1√

2π
e−x

2/2, and d
dη
(zl) = − 1

σl
for

l = 0, 1, . . . ,M , we have

Γ′(η) =
1√

2πQ2(z0)

[

Q(z0)

[

M
∑

l=1

θl
σl
e−z

2
l /2

]

− e−z
2
0/2

σ0

[

M
∑

l=1

θlQ(zl)

]]

. (C.3)

Setting Γ′(η) = 0, (4.17) follows. We now evaluate Γ′′(η) at η = η0 such that η0 satisfies

(4.17). Differentiating (C.3) and substituting (4.17), we get

Γ′′(η0) =
1√

2πQ(z0)

[

M
∑

l=1

θl
σl
e−z

2
l /2

[

zl
σl
− z0
σ0

]

]

. (C.4)

Note that zl and z0 are evaluated at η0 in the above equation. Moreover, z0 < z1 < . . . <

zM . We consider following two scenarios:

(i) z0 > 0: This implies that zl > 0 for all l = 1, . . . ,M . It is easy to show that g(z) ,

zQ(z)ez
2/2 is an increasing function of z > 0. For any l = 1, . . . ,M , since z0 <

zl, we get g(z0) < g(zl), i.e., z0Q(z0)e
−z2l /2 < zlQ(zl)e

−z20/2. Also, z0
zl
Q(z0)e

−z2l /2 <

Q(zl)e
−z20/2, since zl > 0. It follows that

M
∑

l=1

θlQ(zl)e
−z20/2 > Q(z0)

M
∑

l=1

θl
z0
zl
e−z

2
l /2. (C.5)
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Using (4.17) and re-arranging, we get

M
∑

l=1

θle
−z2l /2

σl

1

(zl/σl)

[

zl
σl
− z0
σ0

]

> 0. (C.6)

We claim that,
∑M

l=1
θle

−z2l /2

σl

1
(z0/σ0)

[

zl
σl
− z0

σ0

]

>
∑M

l=1
θle

−z2l /2

σl

1
(zl/σl)

[

zl
σl
− z0

σ0

]

and thus

from the above equation and (C.4), it follows that Γ′′(η) > 0. To prove the above

claim, let us denote gl , θle
−z2l /2

σl

1
(zl/σl)

[

zl
σl
− z0

σ0

]

and hl , θle
−z2l /2

σl

1
(z0/σ0)

[

zl
σl
− z0

σ0

]

.

Consider the following two scenarios: (a) gl ≥ 0: In this case, (zl/σl) ≥ (z0/σ0) and

thus hl ≥ gl. Thus, replacing gl by hl makes (C.6) more positive. (b) gl < 0: In this

case, (zl/σl) < (z0/σ0) and thus hl becomes less negative compared to gl and thus

replacing gl by hl still makes (C.6) more positive.

(ii) z0 ≤ 0: For this case, we prove that zl
σl
− z0

σ0
> 0 for each l = 1, . . . ,M and thus from

(C.4) it follows that Γ′′(η) > 0. Let l0 (1 ≤ l0 ≤M) be such that zl < 0 for l ≤ l0 and

zl ≥ 0 for l > l0. For l > l0, it is straightforward to see that zl
σl
− z0

σ0
> 0. For l ≤ l0,

since z0 < zl < 0, it implies |zl| < |z0|. This implies |zl|
σl
< |z0|

σ0
since σl > σ0. Hence,

− |zl|
σl
> − |z0|

σ0
, thereby implying zl

σl
− z0

σ0
> 0, since z0 < zl < 0.

Part (b)

For a fixed η, {z0, z1,Γ} are functions of K. Let Γl(K) , Q(zl)
Q(z0)

and thus

Γ(K) =
∑M

l=1 θlΓl(K). We prove that each Γl is a decreasing function of K, and thereby

prove that Γ is a decreasing function of K. Let Γ′
l(K) , ∂Γl(K)

∂K
. Using the derivative of

Q-function and dz0
dK

= dzl
dK

= 1√
2K−1

, we have

Γ′
l(K) =

1√
2π

1√
2K − 1Q2(z0)

[

Q(zl)e
−z20/2 −Q(z0)e−z

2
l /2
]

. (C.7)
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Proving Γ′
l(K) < 0 is equivalent to proving Q(zl)e

−z20/2 < Q(z0)e
−z2l /2. We first consider

the case:

zl > 0 and z0 ≥ 0: We first prove that for z ≥ 0, g(z) , Q(z)ez
2/2 is a decreasing function

of z. Note that g′(z) , d
dz
g(z) = ez

2/2Q(z)z− 1√
2π

. We use the following upper bound for

Q-function [79], Q(y) < 1

(1−a)y+a
√
y2+b

e−y2/2
√
2π

for y > 0 and a = 0.344 and b = 5.334, in the

above expression, to get g′(z) < 1
(1−a)z+a

√
z2+b

1√
2π
[az − a

√
z2 + b] < 0, since, a > 0 and

b > 0. And since zl > z0, this implies Q(zl)e
−z20/2 < Q(z0)e

−z2l /2. The above can be easily

shown for the other cases, i.e., { zl ≤ 0 and z0 < 0 }, {zl > 0 and z0 < 0}, and { zl > 0

and z0 < 0 }, using similar arguments.

C.4 Proof of Proposition 8

Define Z0(K) , z0 (ηs (K) , K) =
√
2K − 1 − ηs(K)

σ0
and Z1(K) , z1 (ηs (K) , K) =

√
2K − 1 − ηs(K)

σ1
. From (4.8), we see that N t(K) depends only on p(ηs(K)) and us-

ing (4.14), we get p (ηs (K)) = C2Q (Z0 (K)), where C2 = Π0

1−P ′

0
. Note that Davg(K) is a

continuous function ofK (for realK). We first prove that for allK ≥ Kmin, K/Q(Z0(K))

is a convex function of K. Let Γ(η,K), C1 be as defined before. Let F (K) , K
Q(Z0(K))

,

where Z0(K) ,
√

(2K − 1)− η(K)
σ0

. Also let z0 ,
√

(2K − 1)− η
σ0

. For a given K, η(K)

is chosen as the threshold value that satisfies Γ(η,K) = C1, as given in (4.18). Using the

quasi-convexity properties of Γ(η,K) we can write η(K) as:

η(K) = inf
{η: Γ(η,K)≥C1}

η. (C.8)
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For a fixed K, Q(z0) is a monotonically increasing function of η. Combining this with

(C.8), we get

Q(Z0(K)) = inf
{η: Γ(η,K)≥C1}

Q(z0), and F (K) = sup
{η: Γ(η,K)≥C1}

K

Q(z0)
= sup

{η≥ηmin}
L(K, η),

(C.9)

where L(K, η) , K
Q(z0)

is a two dimensional function of K and η with

dom L = {(K, η) : K ≥ Kmin; η ≥ η(K)}. In the above equation, ηmin is the threshold

corresponding to K = Kmin. Thus, F (K) can be represented as point-wise supremum

of a family of functions and the convexity follows by proving that for each η ≥ ηmin,

L(K, η) is a convex function of K, K ∈ dom L [55]. Differentiating L(K, η) twice w.r.t.

K, we get

∂2L

∂K2
=

e−z
2
0/2

√
2πQ(z0)2

[ 3K − 2

(2K − 1)3/2
+

K

2K − 1

( 2e−z
2
0/2

√
2πQ(z0)

− z0
)]

. (C.10)

For practical values of K (≥ 1 ), the first term is always positive. The second term is

always positive for z0 < 0. For z0 ≥ 0, we use the upper bound forQ-function [79], with

a = 0.344, b = 5.334 and get,

2e−z
2
0/2

√
2πQ(z0)

− z0 ≥ 2
[

(1− a)z0 + a
√

z20 + b
]

− z0 ≥ (1− a)z0 ≥ 0. (C.11)

Thus, L(K, η) is convex in K and hence F (K) is convex in K.

We now prove the main proposition. From (4.14), we see that p(K) = C2Q(Z0(K)),

where C2 = Π0

1−P ′

0
. Using (4.8), Davg(K) can be written as Davg(K) =

∑M
n=1

1

Cn
2

(K+NS)
Qn(Z0)

.

Let Gn(K) , K
Qn(Z0)

and Hn(K) , 1
Qn(Z0)

, with n ≥ 1. The arguments that were used

to prove convexity of K
Q(Z0)

hold for Gn(K) and Hn(K) as well, and it can be easily
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verified that Gn(K) and Hn(K) are convex in K. The convexity of Davg(K) follows

from this, since it can be written as a non-negative weighted sum of convex functions

and is therefore convex [55]. �
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