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Block-Sparse Signal Recovery Problem

=

y A x

+

w

m× 1 m× n

n× 1

∼ N (0, σ2I)

‖x‖0 < m < n

I Goal: Recover block-sparse vectorx from y

I Unknown block-sparsity structure



Sparse Bayesian Learning

I Impose a �ctitious sparsity

inducing prior on x

x ∼ N (0,Γ)

Γ = diag{γ1, γ2, . . . , γn}

=

y A x

+

w

m× 1 m× n

n× 1

∼ N (0, σ2I)

‖x‖0 < m < n

E-step: Q(Γ|Γ(r)) = E
x|y;Γ(r) log p(y,x;Γ)

M Step: Γ(r+1) = argmaxQ(Γ|Γ(r))

Iterate

x̂ = E(x|y;Γ)

ML estimate of Γ



Pattern-Coupled Hierarchical Model

I Sparsity patterns of neighboring coe�cients are statistically

dependent

I Parameters:

I α: hyperparameters associated with co-e�cients

I As αi → ∞, then xi → 0

I β: pattern relevance between neighboring coe�cients

p(x |α) ∼
n∏

i=1

p(xi |αi , αi+1, αi−1)

p(xi |αi , αi+1, αi−1) = N
(
xi |0, (αi + βαi+1 + βαi−1)

−1

)
I Assume α0 = αn+1 = 0



Pattern-Coupled Hierarchical Model

I Sparsity patterns of neighboring coe�cients are statistically

dependent

p(x |α) ∼
n∏

i=1

p(xi |αi , αi+1, αi−1)

p(xi |αi , αi+1, αi−1) = N
(
xi |0, (αi + βαi+1 + βαi−1)

−1
)

I Gamma distribution over hyperparameters

p(α) =
n∏

i=1

Gamma(αi |a, b)



Some Insights

I Model:

p(xi |αi , αi+1, αi−1) = N
(
xi |0, (αi + βαi+1 + βαi−1)

−1
)

I As αi →∞, then xi → 0

I Sporadic errors are reduced and consecutive errors are much

unlikely

I Nonzero to zero misidenti�cation drives the associated

hyperparameter to ∞
I Zero to nonzero misidenti�cation is reduced as either one of its

neighboring hyperparameters goes to ∞
I Flexible to accommodate conventional sparse signals

I If xi 6= 0 is an isolated nonzero coe�cient, {αi , αi±1} have
�nite values and {αi±2} becomes ∞

I Associating multiple neighbor parameters could lead to

excessive coupling



Proposed Bayesian Approach

I Assume noise varianceσ2 is known

I Posterior distribution p (x |α, y) = N (µ,φ)

µ = σ−2φATy

φ =
(
ATA+ σ2D

)−1
D = diag {αi + βαi+1 + βαi−1}ni=1

I MAP estimate of sparse vector: x̂MAP = µ

I Problem: Estimate the set of n hyperparameters α

I Use EM formulation with x as hidden variable



EM Algorithm

I E-step

Q(α|α(t)) =
n∑

i=1

(
a logαi − bαi +

1

2
log (αi + βαi+1 + βαi−1)

−1
2
(αi + βαi+1 + βαi−1)

(
µ̂2i + φ̂i ,i

))
I µ and φ are mean and covariance of x computed using α(t)

I M-step: No closed form expression for α
I Gradient descent methods are computationally intense

I At the optimal point α∗
i
∈
[

a

0.5ci+b
, a+1.5
0.5ci+b

]
I ci =

(
µ̂2

i + φ̂i,i

)
+ β

(
µ̂2

i+1 + φ̂i+1,i+1

)
+ β

(
µ̂2

i−1 + φ̂i−1,i−1

)
I Choose sub-optimal solution

α̂i =
a

0.5ci + b

I Update rule gives negative feedback when αi is large



Algorithm

I Input:
{
y ,A, σ2

}
I Parameters: {a, b, β, τ, ε}
I At iteration t

I Update hyperparamters:α̂
(t)
i

=

{
a

0.5c
(t)
i

+b
ifα̂

(t)
i
< τ

108 ifα̂
(t)
i
≥ τ

I Compute µ̂(t) and φ̂
(t)

using α(t)

I MAP estimate of sparse vector:x̂ (t) = µ̂(t)

I Continue until ‖x̂ (t) − x̂
(t−1)‖2 ≤ ε

I Output: x̂ (t)



Choice of Parameters

I Choice of a is not critical: Stable recovery in a reasonable

region a ∈ [0.5, 2]

I As in conventional SBL, b is chosen as small value ∼ 10−4

I Chocosing β ∈ (0, 1] performs better than β = 0

I Safe choice is value closer to 0 imposing mild coupling e�ect

I Stable recovery over a range of values for

τ ∈ [0.5× 103, 5× 103]



Complexity and Convergence

I Number of �oating point operations per iterations O(m3)

I Same as conventional SBL

I No convergence guarantees

I Works in practice



Summary

I A new SBL algorithm for handling block sparsity

I Outperforms other existing methods

I Interesting directions to explore:

1. An algorithm with convergence guarantees

2. Automatically learn whether or not signal has block structure

3. Other models for capturing block sparsity


