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Block-Sparse Signal Recovery Problem

mx 1 mxn ~ N(0,0°T)

Ixllo <m <n

nxl1

» Goal: Recover block-sparse vectorx from y

» Unknown block-sparsity structure



Sparse Bayesian Learning

» Impose a fictitious sparsity ' * .
inducing prior on x g -
mx1 mxn
X ~ _/\/'(0, r) lxllo < m < n
r = diag{’Yla’Yb---”Yn} nx1
E-step: QTT)) = B, 1) logply, x:T)
[terate

M Step: T = arg max Q(T|T(")

ML estimate of T'

x = E(x]y;T)

~ N(0,0°T)



Pattern-Coupled Hierarchical Model

» Sparsity patterns of neighboring coefficients are statistically
dependent

» Parameters:
» «a: hyperparameters associated with co-efficients
> As a; — o0, then x; — 0

» [(: pattern relevance between neighboring coefficients

n
p(x|a) ~ H p(xilai, i1, @i-1)
i=1

p(xiloi, cig1, 1) = N(x;\o,(a;+ﬂa;+1 +ﬂ04i—1)_1)

> Assume ag = apy1 =0



Pattern-Coupled Hierarchical Model

» Sparsity patterns of neighboring coefficients are statistically
dependent

n

p(xja) ~ HP(Xi’ahai—&-laai—l)
i=1

p(xilai, ajy1,aic1) = N (Xi\O, (i + Baiss +ﬁai—1)_1)

» Gamma distribution over hyperparameters

pla) = H Gamma(a;|a, b)

i=1



Some Insights

» Model:
p(xiloi, aig1,ai-1) =N <Xi!0, (ai + Bair + ,6’041'—1)_1>

» As o — oo, then x; — 0

» Sporadic errors are reduced and consecutive errors are much
unlikely

» Nonzero to zero misidentification drives the associated
hyperparameter to oo

» Zero to nonzero misidentification is reduced as either one of its
neighboring hyperparameters goes to co

» Flexible to accommodate conventional sparse signals

» If x; # 0 is an isolated nonzero coefficient, {«;, j+1} have
finite values and {a;12} becomes oo

» Associating multiple neighbor parameters could lead to
excessive coupling



Proposed Bayesian Approach

Assume noise variances? is known
Posterior distribution p (x|a, y) = N (i, @)

v

v

p o= o ’pAly
-1
D = diag{aj+ fajy1 + Bai—1}

v

MAP estimate of sparse vector: Xyap = i

v

Problem: Estimate the set of n hyperparameters

» Use EM formulation with x as hidden variable



EM Algorithm

» E-step

3

1
Q(a\a(t)) = (a log aj — bayj + 5 log (cvj + Bajp1 + Baj—1)

1
1 ~
—5 (aj + Bajy1 + Pai-1) (ﬁ? + Cf)i,i))

» 1 and ¢ are mean and covariance of x computed using a(?)

» M-step: No closed form expression for o
» Gradient descent methods are computationally intense

» At the optimal point o} € [ﬁ, %}

> G = (ﬂ,z + (Z)i,i) + B (/’l,?+1 + (211'+1,i+1) +p (ﬂ,?,l + 627;71,171)
» Choose sub-optimal solution

B a
o 0.5¢;+ b

» Update rule gives negative feedback when «; is large

G;



Algorithm

v

Input: {y,A,o?}
Parameters: {a, b, 3,7, €}
At iteration t

v

v

» Update hyperparamters: a(t) = {056,-(')+b

» Compute (") and qf) using a®

» MAP estimate of sparse vector:x(") =

» Continue until H)?(t) - )?(t_l)Hz <e

Output: %)

v



Choice of Parameters

Choice of a is not critical: Stable recovery in a reasonable
region a € [0.5,2]

As in conventional SBL, b is chosen as small value ~ 10~*
Chocosing 5 € (0, 1] performs better than 8 =0

» Safe choice is value closer to 0 imposing mild coupling effect

v

v

v

v

Stable recovery over a range of values for
7 €[0.5 x 10%,5 x 10%]



Complexity and Convergence

» Number of floating point operations per iterations O(m?)
» Same as conventional SBL
» No convergence guarantees

» Works in practice



Summary

» A new SBL algorithm for handling block sparsity
» Outperforms other existing methods
> Interesting directions to explore:

1. An algorithm with convergence guarantees
2. Automatically learn whether or not signal has block structure
3. Other models for capturing block sparsity



