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Block Sparse Signal Recovery Problem
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» Goal: To recover the block sparse signal x from y

» Block boundaries and sizes are unknown



Current Approaches

» Sparse Bayesian Learning
» Imposing a sparsity inducing prior on the vector x
x ~ N(0,I")
» Hyperparameters y estimated using evidence maximization or
type-1l ML [1], [2]
» Posterior density of the weights [2] is given by

p(x]y; 7, 0%) = N, ) (1)
where
Sy = (07207 + T1)!
p=0c2%0%y

» SBL Objective function: To maximize p(y;~y,o?)
L =log|e| +y' 27 ly (2)

where ¥y = (021 + @I'®T)



Current Approaches

> lterative Reweighted ¢; Minimization [4]

04D = arg min[ly — @x) + 2 Y w0kl (3)
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» xgpp, satisfies the below equation [3]
xspr, = arg miny ||y — ®x|* + A\gspr(x) (4)

where gspr(x) = min,>ox I'"'x + log|al + ®T®T|
» gspL(x) is a non-decreasing, concave function of |x| and can
be optimized using a reweighted /1 algorithm

gspL(x) = Hlinmzz()XTPilX +2%y — h*(z) (5)

where h*(z) is the concave conjugate of
h(y) = log|al + ®T'®T| given by

h*(z) = min, >0z v — log|al + ®T®T| (6)



Proposed Approaches

» Solution 1: Tikhonov Regularizer term along with the SBL
regularizer

gspL(x) = min, ,>ox T 'x + 27y — h*(z) + |[Lv]3  (7)

where
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» Numerical Method approach since there is no analytical
solution for the problem. Newton's Method of solving
simultaneous linear equations

» Solution 2: ¢; regularizer instead of /5 regularizer to impose
block sparsity constraint on the vector Ly (Solution was
computationally complex and difficult to solve)



Proposed Approaches

» Conventional Expectation Maximization (EM) based
Approach (for SBL)

» Objective Function:

Ex\y,’y(k),UQ [log(p(Y? X7, 02)] = Ex|y,’y(k),a'2 [log(p(x; 7))] (8)

» E Step: Treat x as hidden variables

EX‘Y)"/(k),o'z [Xlz] = (Zx)i,i + 'LL12 (9)
» M Step

= argmaxy, >0By |y 00, ,2[XF] (10)
where
Y= (0'72CI>T(I) + ].—‘71)71
/’[’ = O'_QEX@Ty

» Prior Model:
Y= [61561+625-"5261]T (11)
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Constraint: >, & >0



EM based Approach

» Solution of the prior model shown above is same as that of
the SBL

> (1 Regularizer

N i

b;
argminez - -I-lOg(Zﬁj) + All€ell1 (12)
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where b; = (Xx)i i

» Constrained optimization approach being derived to solve this
problem. Solving N simultaneous equations with the
constraint that Zj‘:l >0foralli=1,2,..,N
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