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signals in the presence of uncertainties in frequency offsets,

noise variance, and unknown data-bits is studied. It is shown

that the conventional PDI techniques are generally not robust

to uncertainty in the data-bits and/or the noise variance. Two

new modified PDI techniques are proposed, and they are shown

to be robust to these uncertainties. The receiver operating

characteristics (ROC) and sample complexity performance of

the PDI techniques in the presence of model uncertainties are

analytically derived. It is shown that the proposed methods

significantly outperform existing methods, and hence they could

become increasingly important as the GNSS receivers attempt to

push the envelope on the minimum signal-to-noise ratio (SNR) for

reliable detection.
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I. INTRODUCTION

In a typical direct sequence code division multiple

access (DS/CDMA) signal acquisition system, the

synchronization between the incoming signal and the

local pseudonoise sequence is achieved in two steps.

In the first step, known as coarse synchronization or

signal detection (which is the focus of this work),

an initial estimate of code timing and frequency

offset is obtained [1]. These coarse estimates are

fine tuned to obtain the user position in the second

stage of code tracking, typically using the time and

frequency offset measurements [2]. During the coarse

synchronization stage, the code delay and frequency

uncertainty region is discretized into a finite number

of cells, and the signal detection is carried out either

sequentially or in parallel (or a combination of the

two) [3, 4].

In general, the detection problem at an individual

time-frequency block can be formulated as a

composite hypothesis testing problem, where the

signal-present hypothesis H1 is parameterized

by the timing and frequency offsets within the

time-frequency block under test and the additive

noise variance [5]. The noise-only hypothesis H0
is parameterized by the noise variance. When the

parameters are known, the likelihood ratio test

(LRT) results in a coherent integration-based test

statistic, also known as matched-filter detection.

However, coherent integration for an arbitrarily long

time duration is not possible in practice due to the

presence of unknown data-bits and/or frequency

uncertainty. The data-bits can be treated as known,

for example, in assisted Global Navigation Satellite

System (A-GNSS), wherein a reference receiver

decodes the data-bits and sends them to the GNSS

receiver over a communication network. However,

in several practical scenarios, the receiver may have

to operate in an unassisted mode [6, 7]. In this

case it is difficult for the GNSS receiver itself to

decode and collect the data-bits from all the visible

satellites in challenging environments like high

mobility scenarios, dense foliage, and urban canyons.

Moreover, due to the sinusoidal modulation-type

effect of frequency offset, the presence of frequency

uncertainty also limits the coherent integration

duration [1]. Other reasons for limiting the coherent

integration duration include the presence of fading

and user motion [8], and oscillator stability issues

[9]. Hence, in this work, the coherent integration

duration is restricted to be at most equal to the

data-bit duration.

The output samples of the (partial) coherent

integration stage are typically nonlinearly accumulated

to enhance the sensitivity of detection under weak

signal conditions, leading to a class of methods known

as postdetection integration (PDI) or postcoherent

integration techniques [10]. The two most widely
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used PDI techniques are the noncoherent PDI

(NC-PDI) [11] and the differential PDI (D-PDI)

technique [12]. Although these techniques are now

well known, a detailed analysis of their performance

in the presence of timing, frequency, noise, data-bit,

and other model uncertainties has not been fully

characterized. In addition, it is of practical importance

to devise algorithms for signal detection that are

robust to the commonly encountered uncertainties

and that can work reliably at low signal-to-noise

ratios (SNRs) (for example, in GNSS signal

acquisition). Thus, the goals of this work are twofold:

to rigorously analyze the performance of the existing

PDI techniques for weak signal detection in the

presence of model uncertainties and to develop

novel PDI techniques that are robust to model

uncertainties. The model uncertainties considered in

this work are timing, frequency, noise, and data-bit

uncertainties, with the primary emphasis on the latter

two uncertainties.

The problem of noise variance and SNR estimation

has been studied by several authors (e.g., [15]—[17]).

In DS/CDMA systems, uncertainty in the noise

variance naturally arises as they are often used

in multi-application systems, and the aggregate

interference from a host of other systems causes

variations in the noise level. It could also arise

due to unintentional jamming from wireless local

area network (WLAN) or long-term evolution

(LTE) transceivers that may be implemented on the

same chip or due to interference from other higher

power satellite signals since the pseudorandom chip

sequences are not perfectly orthogonal. Noise variance

uncertainty can lead to fundamental limits on the

minimum SNR for reliable signal detection [13, 14].

Since reliable detection of unknown data-bits is

not possible at low SNR, the maximum coherent

integration duration is typically limited to the data

bit period. In [18], a cyclostationarity-based test

statistic was proposed and was shown to be robust in

the presence of data-bits. In this work, we therefore

primarily focus on the effect of noise and data-bit

uncertainties on the performance of PDI-based signal

detection.

The effect of timing and frequency uncertainty

on signal detection has been studied in the past

(see, e.g., [1], [19], [20]). Extending the duration

of coherent integration under frequency uncertainty

leads to degradation in the signal energy, which can

be mitigated by searching over a larger number of

frequency bins to improve the frequency resolution,

at the cost of a longer total dwell time for a given

detection performance [21]. Timing uncertainty arises

because a finite subset of possible fractional code chip

spacings are searched in a parallel/sequential manner

[22]. While the timing uncertainty also leads to a loss

of signal energy, it does not impose a fundamental

limit on signal detection.

In the context of the above, the main contributions

of this paper are as follows:

1) For quadratic and nonquadratic forms of the

NC-PDI technique, by analyzing the false alarm and

detection performance, it is shown in Section III that

noise uncertainty leads to a lower limit on the SNR

for reliable detection. The NC-PDI techniques are

inherently insensitive to the presence of unknown

data-bits due to the magnitude computation in the test

statistic.

2) In contrast the D-PDI technique is shown to be

robust to noise uncertainty in Section IV. However,

when uncertainty in the data-bits is considered, it is

shown that unlike the NC-PDI, the D-PDI is not a

robust detection technique.

3) In Section V, a different and better performing

modified PDI technique is proposed, where the

coherent integration duration can extend up to the

data-bit duration. Two forms of the modified PDI are

proposed, for data and pilot channels.

4) The false alarm and miss detection probability

performance of the three conventional and the two

proposed detectors are analyzed in the presence of

model uncertainties.

5) Approximate expressions for the sample

complexity, which has a direct effect on the detection

delay, are derived in the presence of noise uncertainty,

using Gaussian approximations.

Although the analysis presented here is applicable

to any DS/CDMA system, in this paper, we focus our

discussion on GNSS signal detection as an example

application. We validate our theoretical results through

Monte Carlo simulations and present the results in

Section VI. In particular, we illustrate that for current

GNSS signal acquisition systems, the state-of-the-art

performance is within 3 dB of the SNR limit imposed

by noise uncertainty due to a 0.3 dB uncertainty in

the interference level. Our proposed modified PDI

techniques, which are insensitive to uncertainty in the

noise variance and data-bits, are therefore likely to

become important as the system designers attempt to

push the envelope on the minimum SNR for reliable

detection. We offer some concluding remarks in

Section VII.

II. SIGNAL MODEL

The received signal sampled at nTs can be

represented in the complex baseband form as [5]

r[n] =

KX
k=1

p
Pkck[nTs¡ ¿k]bk[nTs¡ ¿k]

£ exp(j(2¼fdknTs+ μk)) +w[n] (1)
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where Pk is the received signal power, ck[nTs¡ ¿k] is
the pseudorandom code sequence, bk[nTs¡ ¿k] is the
unknown data-bit that spans multiple Ts durations,

¿k is the code delay, fdk is the frequency offset due

to both the clock mismatch between the transmitter

and the receiver as well as the Doppler effect, μk
is the carrier phase of the signal received from

the kth transmitter (kth satellite in GNSS), K is

the number of transmitters, and w[n] is the noise

sequence, modeled as samples from an independent

and identically distributed (i.i.d.) white Gaussian

noise process. In the coherent integration stage,

the frequency offset is partially compensated for

using the complex exponential exp(¡j2¼f̂dknTs), and
the resulting signal is correlated with a replica of

the pseudorandom sequence of the kth transmitter

ck(nTs¡ ¿̂k), where f̂dk and ¿̂k are hypotheses on the
frequency and code timing offset, respectively. These

signal samples are coherently integrated for Ncoh
samples to get [23]

x[m] =Ncoh
p
Psinc(¢fTcoh)b[m]

£ exp(j(2¼m¢fTcoh + μ))R(¢¿) +wcoh[m]

(2)

where x[m] is the output of the coherent integration

stage at time mNcohTs, Ncoh
¢
=fsTcoh is the sample

complexity of the coherent integration stage, fs
¢
=1=Ts

is the sampling frequency, and Tcoh is the coherent

integration duration. Also, the effective noise wcoh[m]

includes the components from both the so-called

self-noise (see [12]) and the additive white Gaussian

noise (AWGN). In (2), the index k of the code

sequence of interest (for example, the kth satellite

in GNSS signal detection) has been dropped for

simplicity, and ¢f
¢
=fd¡ f̂d is the residual frequency

offset. The sinc(¢fTcoh) term captures the degradation

in signal energy due to the residual frequency offset

[10]. Also, R(¢¿ )
¢
=(1¡ j¢¿ j=Tc), for j¢¿ j · Tc and 0

otherwise, is the triangular auto-correlation function

with pseudorandom code offset ¢¿ = ¿ ¡ ¿̂ , and Tc
is the code chip duration. The unknown data-bit

b[m] 2 f+1,¡1g, and as mentioned earlier, b[m]
spans a duration Tb which is typically an integer

multiple of Tcoh. Further, in the sequel, it is assumed

that the bit transition boundaries are known (for

example, from a previous successful acquisition by the

receiver, which is typical in GNSS signal detection),

due to which, there is no bit transition within the

coherent integration duration. The uncertainty in

the data bit transition boundary would result in a

corresponding reduction in the coherent integration

duration. Acquisition of the bit transition boundaries

in an unassisted GPS scenario is discussed in

[24], [25].

Now, due to the pseudorandom nature of the

chip sequence and the Gaussian nature of the noise,

the signal x[m] is modeled as a complex Gaussian

distributed sequence of independent random variables

under both the hypotheses

x[m]»
½CN (0,Ncoh¾2) under H0

CN (¹x[m]ejμ,Ncoh¾2) under H1
(3)

where CN (m,s2) represents the complex Gaussian
distribution with mean m and variance s2, ¹x[m] =

Ncoh
p
Psinc(¢fTcoh)b[m]e

j2¼m¢fTcohR(¢¿ ), and ¾2

is the effective noise variance at the input of the

coherent integration stage.

A. Noise Uncertainty

In a practical receiver, the noise variance ¾2 is

typically estimated using the observations under

H0, the noise-only hypothesis. The estimated noise

variance may not be exact due to the limited number

of samples used in the estimation process, changes

in the ambient temperature and/or interference level,

unintentional jamming from other systems such

as WLAN, LTE, etc. This uncertainty in the noise

variance can make the detector nonrobust and can

impose a fundamental limitation on the minimum

SNR for reliable signal detection (referred to as the

SNR wall), which cannot be alleviated by increasing

the sample complexity [13, 14]. The noise uncertainty

model that is typically used is as follows. The nominal

noise probability density function (pdf) is represented

as w[n]» CN (0,¾2n), and the actual noise variance is
assumed to lie in [(1=¯)¾2n ,¯¾

2
n], where ¯ > 1 is a

parameter that quantifies the amount of uncertainty

present in the noise. In general reliable detection is

not possible if and only if [13]

min
¾22[(1=¯)¾2n ,¯¾2n ]

EfT jH1g · max
¾22[(1=¯)¾2n ,¯¾2n ]

EfT jH0g

(4)

for all M, where Ef¢g is the expectation operator
and T is the test statistic computed from M

coherent integration output samples. The noise floor

fluctuations modeled as in [13] are used to analyze

the different PDI techniques used in GNSS signal

detection. The analysis of the performance of the

NC-PDI technique in this paper is similar to that

in [13], as the focus of the latter was on energy

detection. However, the analysis of the robustness

of the other PDI techniques to noise variance and

data-bit uncertainties, as well as the proposed new
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detectors that are robust to these uncertainties, are

novel in this work.

III. NONCOHERENT PDI

NC-PDI is similar to energy detection and is the

most widely used PDI technique. In this section it is

shown that a fundamental sensitivity limit exists in

the two forms of the NC-PDI technique, namely, the

quadratic NC-PDI and the nonquadratic NC-PDI, in

the presence of noise uncertainty.

A. Quadratic NC-PDI

In this subsection, we first present the false alarm

and detection probability performance of the NC-PDI,

and then show that noise uncertainty results in a

fundamental SNR wall on reliable detection. We also

obtain an approximate expression for the sample

complexity M required to attain a given Pfa and Pd.

The test statistic is the square of the envelope of the

coherent integration output samples, i.e.,

TB1
¢
=

MX
k=1

jx[k]j2 (5)

where x[k] is as defined in (2). Under the statistical

model in (3), the distribution of TB1 is central

Â2 with 2M degrees of freedom under H0 and

noncentral Â2 with 2M degrees of freedom under

H1. The expressions for the false alarm and detection

probabilities are [11]

Pfa = exp

μ
¡ °

2Ncoh¾
2

¶M¡1X
k=0

1

k!

μ
°

2Ncoh¾
2

¶k

Pd =QM

Ãs
¸

Ncoh¾
2
,

r
°

Ncoh¾
2

! (6)

where ° is the detection threshold on TB1, ¸=

MN2cohPD(¢f,¢¿) is the noncentrality parameter

that also represents the signal energy in the coherent

integration output samples, and QM(a,b) is the

generalized Marcum-Q function [26]. Here, the term

D(¢f,¢¿)· 1 captures the loss in signal power due
to timing and frequency uncertainty and is given by

D(¢f,¢¿)
¢
=[sinc(¢fTcoh)R(¢¿ )]

2, with R(¢¿ ) as

defined in the previous section [1]. The accuracy of

the Pfa and Pd expressions above is illustrated through

Monte Carlo simulations in Section VI.

Now, to analyze the effect of noise uncertainty on

the NC-PDI technique, the mean and variance of TB1
given by (5) under the null and alternate hypothesis

can be expressed as

EfTB1 jH0g= 2M(Ncoh¾2)
VarfTB1 jH0g= 4M(Ncoh¾2)2

(7)
EfTB1 jH1g=MN2

cohPD(¢f,¢¿ ) +2MNcoh¾
2

VarfTB1 jH1g= 4M((N2
cohP)D(¢f,¢¿ )(Ncoh¾

2) + (Ncoh¾
2)2):

Fig. 1. Empirical cdf to validate Gaussian approximation to cdf

of NC-PDI (quadratic), M = 50, ½coh =¡3 dB.

Using (4), it is easy to show that the SNR wall is
given by

SNRL =
2

NcohD(¢f,¢¿ )

μ
¯¡ 1

¯

¶
(8)

where SNRL
¢
=P=¾2n is the SNR of the samples at

the input of the coherent integration stage and ¾2n
is the nominal noise variance. As mentioned earlier,
increasing Ncoh is not an option for decreasing SNRL
due to the presence of unknown data-bits and/or
frequency uncertainty. The coherent integration
duration can at most be the data-bit period since the
navigation data-bits are a priori unknown, and their
estimation is not possible at low SNR conditions.
Also, due to the sinusoidal modulation-type effect
of the frequency offset, the presence of residual
frequency uncertainty also limits Ncoh.
Another parameter of interest is the sample

complexity M to achieve a desired Pfa and Pd in
the presence of noise uncertainty, as the sample
complexity has a direct impact on the time-to-detect of
the receiver. However, the expressions of Pd and Pfa in
(6) are analytically intractable for directly deriving the
sample complexity. Hence, we use the fact that jx[k]j2
are i.i.d. with finite variance and apply the central
limit theorem (CLT) (as in [27]) to get approximations
for Pfa and Pd as

Pfa(¾
2)¼Q

Ã
°¡ 2MNcoh¾2p
4M(Ncoh¾

2)

!

Pd(¾
2)¼Q

0@ °¡M(N2cohP+2(Ncoh¾2))q
4M((Ncoh¾

2)2 +N3cohP¾
2)

1A (9)

where Q(x) = (1=
p
2¼)

R1
x
expf¡y2=2gdy is the

Gaussian Q-function. To simplify the analysis of

the sample complexity in the presence of noise

uncertainty, the effect of frequency and timing

uncertainty is neglected. The accuracy of the Gaussian

approximation is illustrated in Fig. 1 by plotting
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empirical and the approximate Gaussian cumulative

distribution functions (cdfs) for M = 50 and at an

SNR at the output of the coherent integration stage

of ¡3 dB. The value of M ¸ 50 is typical in GNSS
applications for detection of weak signals [28—30].

Now, under the noise uncertainty model, it is required

that the target Pfa and Pd be satisfied over the entire

range of noise uncertainty values. In this case, the

number of noncoherent accumulations required to

achieve the desired Pfa and Pd can be evaluated as

Pfa,nu
¢
= max
¾22[(1=¯)¾2n ,¯¾2n ]

Pfa(¾
2) =Q

Ã
°¡ 2M(Ncoh¯¾2n)p
4M(Ncoh¯¾

2
n)

!

Pd,nu
¢
= min
¾22[(1=¯)¾2n ,¯¾2n ]

Pd(¾
2) (10)

=Q

0BBBBBB@
°¡M

μ
N2cohP+2

μ
Ncoh

1

¯
¾2n

¶¶
vuut4MÃμNcoh 1¯ ¾2n

¶2
+

μ
N3cohP

1

¯
¾2n

¶!
1CCCCCCA :

Solving for ° to achieve the required Pfa,nu,

substituting it in the expression for Pd,nu, and

solving for the sample complexity of noncoherent

accumulations, we get

M =

4

μ
Q¡1(Pfa,nu)¯¡Q¡1(Pd,nu)

r
1

¯
½coh +

1

¯2

¶2
μ
½coh¡ 2

μ
¯¡ 1

¯

¶¶2
(11)

where ½coh
¢
=NcohP=¾

2
n is the SNR at the coherent

integration output. From the above expression it is

clear that as ½coh! 2(¯¡ 1=¯), M!1. Thus, the
NC-PDI has an SNR limit due to noise uncertainty.

B. Nonquadratic NC-PDI

In this subsection, the performance of a

nonquadratic form of the NC-PDI is analyzed in

the presence of noise uncertainty. We first analyze

the first- and second-order moments of the test

statistic to show that noise uncertainty imposes a

fundamental SNR wall on reliable detection. Then,

we obtain an expression for the sample complexity

required to attain a given Pfa and Pd using Gaussian

approximations. The test statistic is given by

TB2
¢
=

MX
k=1

jx[k]j: (12)

The main advantage of TB2 is its ease of

implementation, as good approximations exist for

computing the envelope jx[k]j. From (3), jx[k]j is
Rayleigh distributed under H0 and Ricean distributed

under H1. The mean and variance of TB2 under both

the hypotheses are expressed as [31]

EfTB2 jH0g=M
r
¼Ncoh¾

2

2
(13)

VarfTB2 jH0g=M
μ
4¡¼
2

¶
Ncoh¾

2

EfTB2 jH1g=M
r
¼Ncoh¾

2

2

£ e¡½s=4
h³
1+

½s
2

´
I0

³½s
4

´
+
½s
2
I1

³½s
4

´i
(14)

VarfTB2 jH1g=M
³
2Ncoh¾

2
³
1+

½s
2

´
¡ (EfTB2 jH1g)2

´
(15)

where ½s
¢
=NcohP=¾

2. From (4), an SNR limit exists if

and only ifvuut¼Ncoh
1

¯
¾2n

2
e¡¯½coh=4

·μ
1+

¯½coh
2

¶
I0

μ
¯½coh
4

¶
+
¯½coh
2

I1

μ
¯½coh
4

¶¸

·
r
¼Ncoh¯¾

2
n

2
(16)

where ½coh
¢
=NcohP=¾

2
n , as before. Subtractingp

¼Ncoh(1=¯)¾
2
n=2 on both the sides above,

1p
¯

μ
e¡¯½coh=4

·μ
1+

¯½coh
2

¶
I0

μ
¯½coh
4

¶
+
¯½coh
2

I1

μ
¯½coh
4

¶¸
¡ 1
¶

·
μp

¯¡ 1p
¯

¶
: (17)

The above expression involves the Bessel functions
of the zeroth and first orders and is analytically
intractable. To evaluate the SNR wall, we resort to a
polynomial approximation at low SNR [31] to get

1p
¯

μ
¯½coh
4

¡ (¯½coh)
2

96
+
(¯½coh)

3

768

¶
·
μp

¯¡ 1p
¯

¶
:

(18)

For detection of weak signals, the postcoherent
SNR ½coh¿ 1. Neglecting higher order terms in the
above expression, if ½coh · 4(1¡ 1=¯), the sample
complexity of nonquadratic NC-PDI becomes
unbounded. However, the approximation does
not hold for higher values of ¯½coh, and this is
illustrated in Fig. 2. In the figure, the curve marked
Approx. (1)–Theory refers to the SNR wall obtained
by numerically solving for the equality condition in
(18), and the curve marked Approx. (2)–Theory
refers to ½coh = 4(1¡ 1=¯). However, finding a
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Fig. 2. SNR wall: exact expression versus approximation for

nonquadratic NC-PDI technique, and comparison of theoretical

and simulation-based values for quadratic NC-PDI.

closed-form expression for the sample complexity

required to achieve a desired performance is difficult

as no closed-form solution exists for the distribution

of the sum of i.i.d. Rayleigh and Ricean random

variables. Hence, we follow a similar procedure

as the previous subsection and employ Gaussian

approximations on the cdf of the test statistic since

the terms in the summation jx[k]j are i.i.d. and have
finite variance. The accuracy of the Gaussian cdf is

illustrated in Fig. 3, for M = 50 and a coherent SNR

of ¡3 dB, and it can be seen that the error in the
approximation is negligible. Hence, the expressions

for Pfa and Pd in the presence of noise uncertainty can

be obtained as in the previous subsection as

Pfa,nu ¼Q

0BBBB@
°¡M

r
¼Ncoh¯¾

2
n

2s
M

μ
4¡¼
2

¶
Ncoh¯¾

2
n

1CCCCA (19)

Pd,nu ¼Q

0BBBBBBB@
°¡M

vuut¼Ncoh
1

¯
¾2n

2
e(¡¯½coh=4)

·μ
1+

¯½coh
2

¶
I0

μ
¯½coh
4

¶
+
¯½coh
2

I1

μ
¯½coh
4

¶¸
vuutMÃNcoh¾2nμ½coh + 2¯

¶
¡
μ
E

½μ
TB2,

1

¯

¶
jH1

¾¶2!
1CCCCCCCA

(20)

Fig. 3. Empirical cdf to validate Gaussian approximation to cdf

of NC-PDI (nonquadratic), M = 50, ½coh =¡3 dB.

where Ef(TB2,1=¯) jH1g is the mean of the test
statistic TB2, given by (14), but with ¾

2
n=¯ instead of

¾2 as the noise variance. From the above expressions,

sample complexity M is given by

M ¼

0@Q¡1(Pfa,nu)
sμ

4¡¼
2

¶
¯¡Q¡1(Pd,nu)

vuutÃμ½coh + 2¯
¶
¡ 1

Ncoh¾
2
n

μ
E

½μ
TB2,

1

¯

¶
jH1

¾¶2!1A2

¼

2

μ
1p
¯
e(¡¯½coh=4)

·μ
1+

¯½coh
2

¶
I0

μ
¯½coh
4

¶
+
¯½coh
2

I1

μ
¯½coh
4

¶¸
¡p¯

¶2 : (21)

It is illustrated in Section VI that the sample

complexity expression derived above closely matches

the simulation-based results.

IV. DIFFERENTIAL PDI

In this section, the performance of the D-PDI

technique is analyzed in the presence of noise

uncertainty. The real part of the 1-span D-PDI

(defined below) is known to be robust to frequency

offsets of relatively small magnitude, i.e., ¢fTcoh <
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0:125. For larger frequency offsets the absolute value

of the 1-span D-PDI is used as test statistic [20]. This

is extended to using the sum of D-PDI terms with

multiple spans as test statistic [32]. However, here we

consider the real part of the 1-span D-PDI as the test

statistic [20]:

TC
¢
=Re

(
MX
k=2

x[k]x¤[k¡ 1]
)
: (22)

In the above, x[k] represents the output of coherent

integration for half the data-bit duration. The

performance of the 1-span D-PDI was analyzed in

[19], and it was found that in the presence of time

and small frequency offsets, the performance is

similar to that of the NC-PDI. Hence, we analyze its

performance in the presence of noise uncertainty in

the sequel.

A. Analytical Characterization

Here, we derive a closed-form expression for Pfa
for the 1-span D-PDI. We also present a method to

evaluate the Pd numerically, using the characteristic

function. The D-PDI test statistic TC can be expressed

as a linear combination of independent Â2 random

variables y[k] (see Appendix, Subsection A),

TC =

MX
k=1

¸kjy[k]j2 (23)

where y[k] = vHk X, vk (given by (56) in the

Appendix) is the eigenvector of a tridiagonal

matrix corresponding to its eigenvalue ¸k and

X
¢
=[x[1],x[2], : : : ,x[M]]T. Under H0, it can be shown

that y[k] are i.i.d. Gaussian distributed, and hence the

characteristic function of TC is given by [33]

ÁTC ,H0 (!) =

MY
k=1

1

(1¡ j2¸kNcoh¾2!)

=

MX
k=1

Ck
1¡ j2¸kNcoh¾2!

(24)

where

Ck =

MY
m=1,m 6=k

cos

μ
¼k

M +1

¶
cos

μ
¼k

M +1

¶
¡ cos

³ ¼m

M +1

´ :
The pdf is obtained by evaluating the inverse Fourier

transform at ¡y. Subsequently, Pfa can be derived as
follows

Pfa =

Z 1

°

MX
k=1

1

2¼

Z 1

¡1

Ck
(1¡ j2¸kNcoh¾2!)

£ exp(¡j!y)d!dy (25)

where ° is the detection threshold. Since there

are both negative and positive eigenvalues, the Pfa
expression is modified as

Pfa =

Z 1

°

MX
k=1

Ck
2¸kNcoh¾

2
exp

μ¡sgn(¸k)y
2¸kNcoh¾

2

¶
u(sgn(¸k)y)dy

(26)

where sgn(x)
¢
=1 if x¸ 0 and ¡1 otherwise; and

u(y)
¢
=1 if y ¸ 0 and 0 otherwise. Evaluating the

integral we get the expression for the probability of

false alarm for the 1-span D-PDI as

Pfa =

8>>>>><>>>>>:

MX
k=1,¸k>0

Ck exp

μ
¡ °

2¸kNcoh¾
2

¶
, ° > 0

1¡
MX

k=1,¸k<0

Ck

μ
exp

μ
¡ °

2¸kNcoh¾
2

¶¶
, ° < 0:

(27)

Thus, the probability of false alarm of the 1-span

D-PDI can be evaluated. To evaluate the probability of

detection, under H1, a closed-form expression cannot

be found for the distribution of the weighted linear

combination of noncentral Â2 random variables except

when M = 2. Note that TC can be expressed in an

alternate form (see Appendix, Subsection A) as

TC =

M̃X
k=1

¸k(jyp[k]j2¡ jyn[k]j2) (28)

where M̃
¢
=M=2, yp[k]

¢
=y[k]1¸k>0, yn[k]

¢
=y[k]1¸k<0,

and 1A is an indicator function, taking the value 1

when A is true and 0 otherwise. When M = 2

(or M̃ = 1), it is easy to show that jyn[1]j2 =
(x[2]¡ x[1])2=4 is central Â2 distributed and jyp[1]j2 =
(x[2]+ x[1])2=4 is noncentral Â2 distributed [26].

From this, an expression for Pd can be obtained.

For M̃ > 1, the characteristic function of TC has

to be numerically inverted, as explained below. The

characteristic function is given by [34]

ÁTC ,H1 (!) = exp

Ã
¡1
2

MX
k=1

¹2yk +
1

2

MX
k=1

¹2yk
1¡ j2¸kNcoh¾2!

!

£
MY
k=1

1

(1¡ j2¸kNcoh¾2!)
(29)

where ¹2yk is the noncentrality parameter of jy[k]j2,
which is computed from the data signal. The

expression for Pd can now be obtained numerically as

Pd =
1

2
+
1

¼

Z 1

0

sin(μ(u))

uc(u)
du (30)
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where μ(u) and c(u) are derived from the characteristic

function in (29) as

μ(u) =

MX
k=1

·
tan¡1(2¸kNcoh¾

2u) +
¹2yk¸kNcoh¾

2u

(1+4¸2kN
2
coh¾

4u2)

¸
¡ °u

c(u) =

MY
k=1

[(1+4¸2kN
2
coh¾

4u2)1=2] (31)

£ exp
Ã
1

2

MX
k=1

(¹yk2¸kNcoh¾
2u)2

(1+4¸2kN
2
coh¾

4u2)

!
:

The computation of the sample complexity from

the above expressions is possible through numerical

methods. To gain further insight into the sample

complexity, a Gaussian approximation is used, which

is described in the next subsection.

REMARK The above analytical characterization can,

in principle, be extended to n-span D-PDI (n > 1),

and for the linear combination of D-PDIs computed

at multiple spans. However, a closed form expression

for the eigenvalues of the resulting banded Toeplitz

matrix is not available [35].

B. Sample Complexity of the 1-Span D-PDI

In this subsection, we first characterize the

second-order statistics of the test statistic TC given

by (22) and then use the CLT arguments as before

to obtain approximate expressions for the sample

complexity. The test statistic TC can be expressed as

a combination of two test statistics by separating the

even and odd terms, i.e., TC = TC1 +TC2, where

TC1
¢
=Re

8<:
M=2X
k=1

x[2k]x¤[2k¡ 1]
9=;

TC2
¢
=Re

8<:
(M=2)¡1X
k=1

x[2k+1]x¤[2k]

9=; :
(32)

In the analysis that follows, it is assumed that M is

even (the analysis easily extends to the case where M

is odd). Let x[k] = xI[k]+ jxQ[k], with xI[k] and xQ[k]

being the in-phase (real) and quadrature (imaginary)

components of the coherent integration output at time

k, respectively. The test statistics TC1 and TC2 can be

rewritten as

TC1 =

M=2X
k=1

xI[2k]xI[2k¡ 1]+ xQ[2k]xQ[2k¡ 1]

TC2 =

(M=2)¡1X
k=1

xI[2k+1]xI[2k] + xQ[2k+1]xQ[2k]:

(33)

It was shown by the authors in [14] that

EfTC1 jH0g= 0
VarfTC1 jH0g=MN2coh¾4

EfTC1 jH1g=
M

2
N2cohP

VarfTC1 jH1g=MN2coh¾4 +MN3cohP¾2:

(34)

The mean and the variance of TC2 is similar to TC1
except that M is replaced by M ¡ 2. Now, to complete
the second-order statistical description of TC , we

need the cross-covariance between TC1 and TC2
(denoted as CovfTC1,TC2g), under either hypothesis.
The cross-covariance can be found by evaluating

EfTC1TC2g, and the details are shown in the Appendix,
Subsection B. Using this, it can be shown that the

mean and variance of the 1-span D-PDI test statistic

TC under both the hypotheses are given by

EfTC jH0g= 0
VarfTC jH0g= 2(M ¡ 1)N2coh¾4

(35)
EfTC jH1g= (M ¡ 1)N2cohP

VarfTC jH1g= 2(M ¡ 1)N2coh¾4 +2(2M ¡ 3)N3cohP¾2:
As in Section III, we approximate the distribution of

TC by a Gaussian distribution under both hypotheses.

Note that the terms within TC1 are i.i.d. with finite

variance, and the same holds for the terms in TC2,

but TC1 is not independent of TC2. By the CLT, TC1
and TC2 can be approximated as Gaussian distributed,

and hence their sum can also be approximated as

Gaussian distributed. Figure 4 compares the Gaussian

approximation with the empirical cdf, and it can be

seen that at M = 50 and a coherent SNR of ¡3 dB,
the approximation error is negligible. Hence, the

sample complexity M in the presence of noise

uncertainty can be approximated as

M ¼ 1+
2

μ
Q¡1(Pfa,nu)¯¡Q¡1(Pd,nu)

r
2½coh
¯

+
1

¯2

¶2
½2coh

:

(36)

To get the above expression, the approximation

(2M ¡ 3)=(M ¡ 1)¼ 2 is used, assuming MÀ 1.

Thus, unlike the noncoherent integration, the D-PDI

technique does not suffer from the SNR wall

limitation due to noise uncertainty. This is because

the use of cross-terms in the D-PDI technique results

in a zero mean under H0 and mean independent

of the noise variance under H1, which enables the

D-PDI method to asymptotically detect very weak

signals even in the presence of uncertainty in the noise

variance.
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Finally, it is straightforward to see that the

D-PDI technique is not a robust method in the

presence of unknown data-bits. For example, the

performance degrades rapidly when the coherent

integration duration is half the data-bit period since

every other term in (22) spans different data-bits.

This performance degradation is illustrated through

simulation results in Section VI. In the next section

we propose a modified PDI method that is robust to

both noise uncertainty as well as unknown data-bits.

V. MODIFIED PDI

We now propose a modified PDI technique that

combines the advantages of the NC-PDI and the

D-PDI techniques. The motivation for the modified

PDI technique comes from the expansion of the

ideal coherent integration-based statistic T = (x[1]+

x[2]+ ¢ ¢ ¢+ x[N])(x¤[1]+ x¤[2]+ ¢ ¢ ¢+ x¤[N]), where
x[k] represents the coherent integration output after

integration for a duration Tcoh, as before. Here, N is

chosen such that the total coherent integration duration

NTcoh is at most the data-bit duration Tb. The N
2 terms

in the expansion can be regrouped and compactly

expressed as [10]

T =

NX
l=1

jx[l]j2 +2Re
(

NX
l=2

x[l]x¤[l¡ 1]
)

+ ¢ ¢ ¢+2Re
(

NX
l=n+1

x[l]x¤[l¡ n]
)

+ ¢ ¢ ¢+2Refx[N]x¤[1]g: (37)

That is, T is the sum of an NC-PDI term and the

k-span D-PDI terms, for 1· k ·N ¡ 1.

A. Modified PDI for Data Channel

Consider the following modification of T in (37),

in which the NC-PDI term is excluded

TD1 =

MX
k=1

8<:
¯̄̄̄
¯
NX
n=1

xk[n]

¯̄̄̄
¯
2

¡
NX
n=1

jxk[n]j2
9=; (38)

where xk[n] is the coherent integration output in the

kth PDI block, with Tcoh typically a fraction of Tb, and

N is the number of coherent integration outputs within

a data-bit duration (i.e., TcohN · Tb).
For example, if the data-bit duration is Tb = 2Tcoh,

each xk[n] represents a coherent integration output

of duration Tcoh, at the nth (n 2 f1,2g) instant within
the span of the kth data-bit block. In this case, the

modified PDI test statistic given by (38) is identical

to the TC1 presented in Section IV and the test statistic

employed in [36]

T0D1 =
MX
k=1

xk[2]x
¤
k[1]: (39)

Fig. 4. Empirical cdf to validate Gaussian approximation to cdf

of D-PDI test statistic, with M = 50, ½coh =¡3 dB.

Note that, by construction, the test statistic TD1 is

robust to data-bit uncertainty since the test statistic

only accumulates the multi-span D-PDI terms

computed from samples within a data-bit duration.

The robustness to noise uncertainty is also naturally

incorporated since the NC-PDI terms are explicitly

subtracted out. The robustness of the modified PDI

method to uncertainty in the data-bits and noise

variance is further corroborated by the simulation

results presented in Section VI.

1) Analytical Characterization: The kth term in

(38) can be expressed in the following quadratic form:

TD1k = X
H
k AXk (40)

where Xk = [xk[1],xk[2], : : : ,xk[N]]
T and A is a

symmetric Toeplitz matrix with all elements except

the diagonal entries equal to 1, i.e.

A=¡IN +11T (41)

where IN is the identity matrix of order N and

1 = [1,1, : : : ,1]T. The eigenvalues of A are given by

fN ¡ 1,¡1, : : : ,¡1g. Therefore, the test statistic TD1k
can be expressed as a weighted sum of Â2 random

variables, as

TD1k = (N ¡ 1)jyk[1]j2¡
NX
n=2

jyk[n]j2 (42)

where yk[n] = v
H
n Xk and vn is the eigenvector

corresponding to nth eigenvalue of A, which is

obtained as in the Appendix, Subsection A. The final

test statistic in (38) can be written as

TD1 = (N ¡ 1)
MX
k=1

jyk[1]j2¡
MX
k=1

NX
n=2

jyk[n]j2: (43)

The Pfa expression for the difference of Â
2 random

variables each with even degrees of freedom is known
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Fig. 5. Empirical cdf and Gaussian-approximated cdf for

modified PDI (data channel), M = 50, N = 20, ½coh =¡3 dB.

[26]. However, as it involves factorials of the order

of MN, we resort to the numerical inversion of the

characteristic function, as in Section IV. The Pd and

Pfa can be evaluated as in (30). For Pfa, the parameters

in the integrand, i.e., μPfa (u) and cPfa (u) are given by

μPfa (u) =

2X
k=1

[MNk tan
¡1(2¸kNcoh¾

2u)]¡ °u

cPfa (u) =

2Y
k=1

(1+4¸2kN
2
coh¾

4u2)MNk=2:

(44)

Similarly, for evaluating Pd

μPd (u) =

2X
k=1

[MNk tan
¡1(2¸kNcoh¾

2u) +MNk¹
2
yk
¸kNcoh¾

2u(1+4¸2kN
2
coh¾

4u2)¡1]¡ °u

cPd (u) =

2Y
k=1

[(1+4¸2kN
2
coh¾

4u2)MNk=2]exp

Ã
1

2

2X
k=1

MNk(¹yk2¸kNcoh¾
2u)2

(1+4¸2kN
2
coh¾

4u2)

! (45)

where ° is the detection threshold and Nk is the

algebraic multiplicity of the eigenvalue ¸k, which

equals 1 and N ¡ 1 for the eigenvalues N ¡ 1 and ¡1,
respectively.

2) Sample Complexity: As in Section IV, it can

be shown that

EfTD1 jH0g= 0
VarfTD1 jH0g= 4MN(N ¡ 1)N2coh¾4:

(46)

Under H1, it can be shown that the test statistic TD1k
given by (42) can be expressed as the difference of a

noncentral and a central chi-square random variable,

which results in

EfTD1k jH1g= (N ¡ 1)(N
2
cohP®

2 +2Ncoh¾
2)¡

N¡1X
k=1

2Ncoh¾
2

= (N ¡ 1)N2
cohP®

2

where ®=
PN
p=1 v1p , where v1p is the pth component

of v1, the eigenvector corresponding to the largest

eigenvalue of (N ¡ 1). Similarly, it can be shown that
VarfTD1k jH1g= 4(N ¡ 1)Ncoh¾

2(NNcoh¾
2 + (N ¡ 1)N2

cohP®
2):

Hence, the mean and variance of the test statistic TD1
under H1 are given by

EfTD1 jH1g=M(N ¡1)N2cohP®2

VarfTD1 jH1g= 4M(N ¡1)Ncoh¾2

£ (NNcoh¾2 + (N ¡ 1)N2cohP®2):
(47)

To compute the sample complexity, as before, the

expressions for Pfa and Pd in the presence of noise

uncertainty are evaluated by approximating the pdf

of TD1 with a Gaussian distribution by the moment

matching method. From (43), the test statistic TD1 can

be expressed as the weighted sum of N dependent

random variables, each of which is the sum of M i.i.d.

random variables with finite variance. Hence, by the

CLT, the pdf of the test statistic is well approximated

by the Gaussian distribution for large M. The

accuracy of the Gaussian approximation is shown in

Fig. 5 with M = 50, N = 20, and a coherent SNR of

¡3 dB, and it is seen that the agreement between the
approximated cdf and the exact cdf is excellent. Thus,

the sample complexity can be evaluated as

M =

4

μ
Q¡1(Pfa,nu)

r
N

(N ¡1)¯
2¡Q¡1(Pd,nu)

r
N

(N ¡1)
1

¯2
+
½coh
¯

¶2
½2coh

(48)

where, with a slight abuse of notation, ½coh is defined

as NcohP®
2=¾2n . Thus, it is clear that M is bounded

in the presence of noise uncertainty and no SNR
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limit exists. In summary the proposed modified

PDI technique is robust to both uncertainty in the

data-bits as well as in the noise variance. Next, we

present a version of the modified PDI technique that

is applicable to pilot channels.

B. Modified PDI for Pilot Channel

When a pilot channel is available, the coherent

integration can span multiple data-bits. Then, using

the D-PDI terms with more than one span improves

the detection performance in the presence of a small

but non-zero frequency offset between the transmitter

and the receiver. However, using additional higher

span D-PDI terms without compensating for the

instantaneous phase shift due to the frequency offset

could result in signal degradation [10]. One approach

that can be adopted is to treat the unknown frequency

offset as a random variable and average over its

distribution to obtain the average PDI (A-PDI) [20].

In this work, taking cue from the previous subsection,

we modify the A-PDI test statistic by excluding the

NC-PDI term in (37) and limiting the span of the

D-PDI terms to L¿M. This results in the modified

A-PDI test statistic of the form

TD2 =

LX
p=1

Re

8<:
MX

k=p+1

x[k]x¤[k¡p]sinc(2p¢fmaxTcoh)
9=;
(49)

where ¢fmax is the upper bound on the frequency

offset which depends on the frequency resolution of

the coarse synchronization stage and L is the number

of D-PDI spans included in the test statistic.

1) Analytical Characterization: Here, we derive

an approximation to the distribution of the test

statistic TD2. The test statistic can be expressed in

quadratic form as TD2 = X
HAX, where A is a banded

Toeplitz matrix and X = [x[1],x[2], : : : ,x[M]]T. An

expression for the eigenvalues of a banded Toeplitz

matrix is not known in closed form, except for the

tri-diagonal Toeplitz case. However, since MÀ L, the

asymptotic equivalence of eigenvalues of circulant

and banded Toeplitz matrices can be exploited, and

a corresponding circulant matrix C can be constructed

by a cyclic shift of the row vector deduced from TD2

r1 = [0,sinc(Ã),sinc(2Ã), : : : , sinc(LÃ),0,

: : : ,0,sinc(LÃ), : : : , sinc(2Ã),sinc(Ã)]T (50)

where Ã = 2¢fmaxTcoh. The eigenvalues of A converge

to the corresponding eigenvalues of C asymptotically

[35]. Thus, we use the approximation TD2 ¼ XHCX
to derive the statistics of TD2. Using the fact that
the Fourier basis matrix diagonalizes any circulant
matrix [39],

TD2 ¼ (FHX)H¤F(FHX) (51)

where F
¢
=[f

1
,f
2
, : : :f

M
], and

f
k
=

1p
M

·
1,exp

½
¡j2¼k
M

¾
,exp

½
¡j2¼2k

M

¾
,

: : : ,exp

½
¡j2¼(M ¡ 1)k

M

¾¸T
and ¤Fk = diagf¸F1 ,¸F2 , : : : ,¸FMg. Thus,

TD2 ¼
MX
k=1

¸Fk jy[k]j2 (52)

where y[k] = fH
k
X. Using (44) and (45), the Pfa and

Pd can now be evaluated by numerically inverting the
characteristic function.
2) Sample Complexity: The modified A-PDI

technique is robust against noise uncertainty as the
mean of the test statistic under both the hypotheses is
independent of noise variance. The mean and variance
under H1 depend on the instantaneous frequency
offset in the data samples since the projection of the
data onto the Fourier basis varies with the frequency
offset. The mean and variance of the test statistic
with the modified A-PDI technique is presented in
a generalized form in terms of the eigen-values and
eigen-vectors of the circulant matrix C defined above.
Computing the mean of TD2 under either hypothesis, it
can be shown that

EfTD2 jH0g= 2Ncoh¾2
MX
k=1

¸Fk = TrfCg= 0

EfTD2 jH1g=
MX
k=1

¸Fk jfHk ¹kj2
(53)

where ¹k = EfX jH1g. Similarly, using the fact that
the test statistic is a weighted sum of central Â2

random variables under H0 and is a weighted sum
of noncentral Â2 random variables under H1, the
expression for the variance of the test statistic under
either hypothesis is given by

VarfTD2 jH0g= 4N2
coh¾

4

MX
k=1

¸2Fk

(54)

VarfTD2 jH1g= 4Ncoh¾2
Ã

MX
k=1

¸2FkNcoh¾
2 +¸2Fk jf

H

k
¹
k
j2
!
:

As in the previous subsection, the sample complexity

can now be computed using Gaussian approximations.

The test statistic TD2 in (49) can be viewed as the

weighted sum of L dependent random variables, each
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Fig. 6. Empirical cdf to validate Gaussian approximation of cdf

of modified PDI (pilot channel), M = 50, ½coh =¡3 dB, 4-span
D-PDI.

of which is the sum of at least M ¡L i.i.d. random
variables with finite variance. Hence, by the CLT, the

pdf of the test statistic is well approximated by the

Gaussian distribution for large M. Figure 6 compares

the empirical cdf obtained via computer simulations

with the Gaussian approximation for the case of a

4-span D-PDI with M = 50 and a coherent SNR of

¡3 dB. We see that the approximation error is small,
although not as good as in the previous sections. Yet,

it is shown in the next section that the effect of the

error in the approximation on the computed Pfa and Pd
values is negligible. The sample complexity with and

without noise uncertainty can also be obtained using

the above expressions.

VI. SIMULATION RESULTS

This section presents Monte Carlo simulation

results to verify the theoretical expressions derived

above and to illustrate the performance improvement

offered by the proposed modified PDI technique.

The detection performance of the different PDI

techniques is quantified through the receiver operating

characteristic (ROC) curves. The simulation setup is

as follows. The SNR at the output of the coherent

integration stage is taken as ¡2 dB. The sample
complexity of the NC-PDI technique is set as M =

100. The coherent processing assumes accurate

alignment to data-bit boundary as this permits the

maximum possible coherent processing for a given

data rate. Since the focus here is on data-bit and noise

uncertainty, the effects of frequency and time offsets

are ignored in the simulations, unless stated otherwise.

In Fig. 7, the plot of the ROC for the quadratic

NC-PDI technique with noise uncertainty of 0 dB

(i.e., no noise uncertainty), 0.3 dB, and 0.5 dB is

shown. The theoretical plots of the ROC are evaluated

from (6), and the close match between the theoretical

and experimental curves is clear. Also, the detection

Fig. 7. ROC of NC-PDI (quadratic form) with and without noise

uncertainty, M = 100, ½coh =¡2 dB.

Fig. 8. ROC of NC-PDI (nonquadratic form) with and without

noise uncertainty, M = 100, ½coh =¡2 dB.

performance degrades as ¯ increases, and if the noise

uncertainty is increased further, the ROC curve need

not remain concave.

In Fig. 8, the ROC plots for the nonquadratic

NC-PDI discussed in Section III are shown.

The expressions in (19) and (20) are used to

generate the theoretical curves marked (T); and

the simulation-based curves are marked (S). The

performance degradation of the quadratic and

nonquadratic PDI due to noise uncertainty are similar.

Thus, in general, the NC-PDI techniques are not

robust to noise uncertainty.

In Fig. 9, the ROC curves with and without noise

uncertainty are plotted, for the D-PDI technique. Here,

a coherent processing duration of half the data-bit

duration is employed, with a signal with coherent

SNR of ¡2 dB and a sample complexity of M = 50.

In contrast with NC-PDI, the D-PDI offers a 1.5 dB

improvement for the same value of M over NC-PDI

[36], because of the so-called squaring loss in the

latter [31, 12], NC-PDI [36], and hence, the value of
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Fig. 9. ROC of D-PDI method with and without noise

uncertainty, Tcoh = (Tb=2)ms, M = 50, ½coh =¡2 dB.

M = 50 ensures that the comparison with the NC-PDI

method is fair. The expressions in (27) and (30) are

used to plot the theoretical curves. It is clear from

the plot that there is only a slight degradation in

performance due to noise uncertainty, caused because

the threshold is set based on the largest possible noise

variance. The curves marked “no data-bits” refer

to the case where all data-bits are +1. The curves

marked “data-bit pattern 1” and “data-bit pattern 2”

represent the performance when the data is i.i.d.

Bernoulli distributed and when the data sequence is

alternate +1 and ¡1, respectively. In the presence
of data-bits, with a coherent integration duration of

half the data-bit duration (for example, 10 ms in the

case of GNSS signal detection), the odd terms of the

test statistic straddle adjacent data-bits. Due to this,

there is a severe degradation in the performance of the

D-PDI technique.

Figure 10 shows the performance of the modified

PDI technique for a data channel proposed in this

paper, along with the theoretical expressions obtained

in (44) and (45). From the figure, it can be seen that

in the presence of noise uncertainty the performance

degradation is small, similar to the D-PDI technique.

Also, it is interesting to note that the test statistic

in (38) with N = 20, Tcoh = Tb=20 offers better

performance than N = 2 and Tcoh = Tb=2 (recall that

Ncoh = fsTcoh). This is because the signal induced bias

in the noise variance term causes part of the signal

in the test statistic to get canceled out, leading to

poor performance as the coherent integration duration

increases. Thus, the proposed scheme is robust against

the artefacts introduced due to uncertainty in both

noise variance and data-bits. Finally, the performance

of the proposed modified PDI technique is compared

with that of the cyclostationarity-based detector

proposed in [18] (curves marked “CS detector”). To

keep the comparison fair, the cyclostationarity-based

detector is simulated with M = 200 and an SNR of

Fig. 10. ROC of modified PDI for data channel with and without

noise uncertainty, M = 100, ½coh =¡2 dB.

¡5 dB. This keeps the dwell time (equal to (100Tb))
the same for both detectors and also accounts for

the fact that the maximum coherent integration

duration for the cyclostationarity-based detector is

Tb=2. The performance of the cyclostationarity-based

detector closely matches that of the modified PDI

with N = 2 and Tcoh = Tb=2. This is as expected

since the modified PDI detector reduces to the

cyclostationary detector when the test statistic is the

sum (rather than an arbitrary convex combination)

of two cyclic frequency components. However,

the proposed modified PDI technique with N = 20

clearly outperforms the cyclostationarity-based

detector.

In Fig. 11, the performance of the modified PDI

technique for a pilot channel proposed in this paper

is shown, with the theoretical curves plotted using the

inversion of the characteristic function, as explained in

Section V-B. In the presence of a non-zero frequency

offset, the number of spans used in the test statistic

needs to be limited. In the simulation, two and

four spans are considered, and these correspond

to a maximum frequency offset of ¢fmaxTcoh =

0:2 and ¢fmaxTcoh = 0:1, respectively. The sample

complexity is set as M = 50. From the ROC plots, it

is observed that there is a significant improvement

in the 4-span D-PDI compared with the 2-span and

1-span D-PDI cases. However, the frequency search

resolution in the coarse synchronization stage limits

the number of additional spans that can be used

in computing the test statistic. Also, note that the

circulant approximation for the banded Toeplitz

structure closely matches the performance of the

modified PDI test statistic.

In Fig. 12, the sample complexity for the NC-PDI

technique is shown as a function of the coherent

SNR ½coh. Two different noise uncertainty values

are used: ¯ = 0:3 dB for the quadratic case and
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Fig. 11. ROC of modified PDI for pilot channel with and

without noise uncertainty, M = 50, ½coh =¡2 dB.

¯ = 0:2 dB for the nonquadratic case. In the presence

of noise uncertainty, the sample complexity becomes

unbounded as the coherent SNR decreases. Figure 13

shows a similar plot for the D-PDI and modified PDI

techniques. The performance degradation is small

even in the presence of noise uncertainty of magnitude

¯ = 1 dB. The parameter N in the modified PDI

technique for data is set to 20, and in the case of the

modified PDI for the pilot channel, the number of

spans L is set to 4 and ¢fTcoh = 0. The simulation

results closely match the theoretical values.

Finally, we consider a case study of a typical

GNSS receiver. The noise floor is assumed to be

at ¡111 dBm [28]. If the coherent integration

duration Tcoh = 10 ms and the noise uncertainty is

0.3 dB, reliable signal detection is not possible, and

the sample complexity M!1, when the SNR at
the output of the coherent integration stage drops

below ½coh =¡5:6 dB. This corresponds to an SNR
of SNRL =¡48:7 dB at the input to the coherent
integration stage, i.e., to an input signal strength of

¡159:7 dBm.1 Current state-of-the-art GNSS receivers
are capable of detecting signals with SNR as low

as ¡157 dBm in an indoor environment [37]. Thus,

the lowest SNR for reliable detection with current

technology is only 2.7 dB away from the SNR wall

due to a 0.3 dB noise uncertainty.

VII. CONCLUSIONS

This paper studied the performance of two popular

suboptimal PDI techniques, namely, the NC-PDI

and the D-PDI, under uncertainties in the frequency,

timing, noise variance, and the data-bit sequence.

It was demonstrated that the NC-PDI was robust to

the data-bit uncertainty, but its performance severely

degrades under noise uncertainty. In particular, it was

1The gain from the coherent integration duration of 10 ms is about

43.1 dB [28].

Fig. 12. Sample complexity versus coherent SNR (NC-PDI

quadratic and NC-PDI nonquadratic): Pfa = 0:1 and Pd = 0:9.

Fig. 13. Sample complexity versus coherent SNR (D-PDI,

modified PDI data, modified PDI pilot): Pfa = 0:1 and Pd = 0:9.

shown that a fundamental lower limit on the SNR

for reliable detection exists under noise uncertainty

in the NC-PDI technique, in both the quadratic and

nonquadratic forms. It was also shown that the D-PDI

technique is inherently robust to noise uncertainty,

but its performance is nonrobust in the presence of

data-bit polarity changes. A robust modified PDI

technique that combines the advantages of both the

D-PDI and NC-PDI techniques was proposed. A

detailed analytical characterization of the probabilities

of false alarm and detection, as well as of the sample

complexity required to achieve a given performance

level, was derived for all the detectors considered.

Monte Carlo simulations illustrated the accuracy

of the theoretical expressions and the performance

improvement offered by the proposed technique in the

face of uncertainty in the noise variance and data-bit

polarities. Future work could include quantifying the

magnitude of noise uncertainty in GNSS systems,
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demonstrating its effect, and validating the robustness

of the proposed detectors in practical receivers.

APPENDIX

A. 1-Span D-PDI as a Weighted Sum of Â2 Random
Variables

Here, it is shown that the 1-span D-PDI test

statistic can be expressed as a weighted sum of

independent Â2 random variables. The test statistic

TC =Ref
PM
k=2 x[k]x

¤[k¡ 1]g can be expressed
in the quadratic form as XHAX, where X =

[x[1],x[2] : : :x[M]]T and A is a tri-diagonal Toeplitz

matrix [38]. From [39], its eigenvalues are given by

¸k = cos

μ
¼k

M +1

¶
: (55)

The corresponding eigenvectors form an orthonormal

basis as A is a symmetric matrix. The kth eigenvector

is represented as

vk =

·
sin

μ
k¼

M +1

¶
sin

μ
2k¼

M +1

¶

sin

μ
3k¼

M +1

¶
¢ ¢ ¢sin

μ
Mk¼

M +1

¶¸H
: (56)

Using this, the test statistic TC can be expressed as

TC = (V
HX)H¤VHX

where V
¢
=[v1,v2, : : : ,vM] is the eigenvector matrix, ¤

is a diagonal matrix with the eigenvalues of A as its

diagonal elements, and ¤= diag(¸1,¸2, : : : ,¸M). The

test statistic TC can now be written as

TC =

MX
k=1

¸kjy[k]j2

where y[k] = vHk X is an orthogonal linear

transformation of X. It is now straightforward to show

that

y[k]»
½
CN(0,Ncoh¾

2), under H0

CN(vHk ¹X ,Ncoh¾
2), under H1:

Thus, jy[k]j2 is a Â2 random variable with two degrees

of freedom. So, the 1-span D-PDI test statistic can

be expressed as a linear combination of independent

Â2 random variables. Note that the above test statistic

is an indefinite quadratic form, as both negative and

positive eigenvalues are present. The M eigenvalues

can be grouped into M=2 pairs of antisymmetric

eigenvalues. This gives an alternative representation

of the 1-span D-PDI test statistic as the weighted sum

of the difference between two Â2 random variables

TC =

M=2X
k=1

¸k(jyp[k]j2¡ jyn[k]j2)

where yp[k] and yn[k] represent the components

of y[k] corresponding to the positive and negative

eigenvalues, respectively. The above analysis holds

for both even and odd values of M.

B. Cross-Covariance of TC1 and TC2

Here, the cross-covariance of the two random

variables TC1 and TC2 under both hypotheses is

evaluated. Substituting for TC1 and TC2 from (33), a

typical term in the resulting expression is given by

Ef(xI[2m]xI[2m¡ 1]+ xQ[2m]xQ[2m¡ 1])
£ (xI[2l+1]xI[2l] + xQ[2l+1]xQ[2l])g: (57)

The xI[k]s and xQ[k]s are i.i.d. Gaussian random

variables. The term inside the expectation above is of

one of the following three mutually exclusive forms:

m= l+1, m= l, or m 6= l, l+1. In all three cases, it is
straightforward to show that the expectation under H0
is zero.

To evaluate the cross-covariance under hypothesis

H1, we again recognize that the term in (57) is of one

of the following three forms.

Case 1 m= l+1: It can be shown that the four

terms in the expansion of (57) evaluate to

EfxI[2l+2]gEfx2I [2l+1]gEfxI[2l]g=N4cohP2 cos4 μ+N3cohP¾2 cos2 μ
EfxI[2l+2]gEfxI[2l+1]gEfxQ[2l+1]gEfxQ[2l]g=N4cohP2 cos2 μ sin2 μ
EfxQ[2l+2]gEfxQ[2l+1]gEfxI[2l+1]gEfxI[2l]g=N4cohP2 cos2 μ sin2 μ

EfxQ[2l+2]gEfx2Q[2l+1]gEfxI[2l]g=N4cohP2 sin4 μ+N3cohP¾2 sin2 μ

(58)

where μ is the unknown phase offset, as in (2). Putting

the above four terms together, when m= l+1, a

typical term as in (57) simplifies to N4cohP
2 +N3cohP¾

2.

Case 2 m= l: Similarly, it can be shown that

a typical term in (57) again evaluates to N4cohP
2 +

N3cohP¾
2.
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Case 3 m 6= l, l+1: In this case, the expression

results in terms of the following form, with p 6= q:

EfxI[2l+p]gEfxI[2l+q]gEfxI[2l+1]gEfxI[2l]g=N4cohP2 cos4 μ
EfxI[2l+p]gEfxI[2l+ q]gEfxQ[2l+1]gEfxQ[2l]g=N4cohP2 cos2 μ sin2(μ)
EfxQ[2l+p]gEfxQ[2l+q]gEfxI[2l+1]gEfxI[2l]g=N4cohP2 cos2 μ sin2(μ)
EfxQ[2l+p]gEfxQ[2l+ q]gEfxQ[2l+1]gEfxQ[2l]g=N4cohP2 sin4 μ:

(59)

The sum of the above terms evaluates to N4cohP
2.

Putting the above cases together, there are M=2

terms such that m= l+1, M=2¡ 2 terms such that
m= l, and the remaining (M=2¡ 1)(M=2¡ 2) terms
correspond to m 6= l, l+1. Therefore, we have

EfTC1TC2g=
M

2

μ
M

2
¡ 1
¶
N4cohP

2 + (M ¡ 2)N3cohP¾2:

(60)

Since EfTC1g= (M=2)N2cohP and EfTC2g= ((M=2)¡ 1)
¢N2cohP, the covariance Cov(TC1,TC2) under H1 is

Cov(TC1,TC2) = EfTC1TC2g¡EfTC1gEfTC2g
= (M ¡2)N3cohP¾2: (61)

Thus, the variance of the 1-span D-PDI test statistic

under H1 is given by

VarfTC jH1g= 2(M ¡ 1)N2coh¾4 +2(2M ¡ 3)N3cohP¾2:
(62)
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