E2 212: Homework - 6

1 Topics

- Least-squares
 - Using QR: full-rank and rank-deficient cases
 - Using the complete orthogonal decomposition
 - Constrained LS
 - Total LS
 - Iterative LS
- The Jordan canonical form

Note: Most of the problems below are from Golub and Van Loan, Horn and Johnson, or David Lewis' books.

2 Problems

1. Show that if

$$A = \left[\begin{array}{cc} R & w \\ 0 & v \end{array} \right] \text{ and } b = \left[\begin{array}{c} c \\ d \end{array} \right],$$

where R is a $k \times k$ block, $w \in \mathbb{R}^k$, $v \in \mathbb{R}^{m-k \times n-k}$, $c \in \mathbb{R}^k$, $d \in \mathbb{R}^{m-k}$ and the zero is a block of appropriate dimensions, and if A has full column rank, then $\min ||Ax - b||_2^2 = ||d||_2^2 - (v^T d/||v||_2)^2$.

- 2. Suppose $A \in \mathbb{R}^{n \times n}$ and $D = \text{diag}(d_1, \ldots, d_n) \in \mathbb{R}^{n \times n}$. Show how to construct an orthogonal Q such that $Q^T A DQ^T = R$ is upper triangular.
- 3. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and that r = b Ax where $r, b, x \in \mathbb{R}^n$ and $x \neq 0$. Show how to compute a symmetric $E \in \mathbb{R}^{n \times n}$ with minimal Frobenius norm so that (A + E)x = b. (Hint: Use the QR factorization of [x, r] and note that $Ex = r \Rightarrow (Q^T E Q)(Q^T x) = Q^T R$.)
- 4. Show that if

$$A = \left[\begin{array}{cc} T & S \\ 0 & 0 \end{array} \right],$$

where $T \in \mathbb{R}^{r \times r}$, $S \in \mathbb{R}^{r \times n-r}$, $r = \operatorname{rank}(A)$ and T is nonsingular, then

$$X = \left[\begin{array}{cc} T^{-1} & 0\\ 0 & 0 \end{array} \right],$$

satisfies AXA = A and $(AX)^T = AX$. We say that X is a (1,3) pseudoinverse of A. Show that for general A, $x_B = Xb$ where X is a (1,3) pseudoinverse of A.

5. Solve

$$\min_{\|\mathbf{x}\|_{2}=1} \left\| \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} - \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} \right\|_{2}$$

6. Let $Y = [y_1, \ldots, y_k] \in \mathbb{R}^{m \times k}$ be such that

$$Y^T Y = \text{diag}(d_1^2, d_2^2, \dots, d_k^2), \quad d_1 \ge d_2 \ge \dots \ge d_k > 0.$$

Show that if Y = QR is the QR factorization of Y, then R is diagonal with $|r_{ii}| = d_i$.

7. Prove the total least squares theorem stated in class. That is, let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, with $m \geq n+1$. Let $C = \begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ have the economy-size SVD $C = U\Sigma V^T$, where the diagonal elements of $\Sigma \in \mathbb{R}^{n+1 \times n+1}$ are $\sigma_1, \sigma_2, \ldots, \sigma_{n+1}, U = \begin{bmatrix} U_1 & \mathbf{u}_2 \end{bmatrix}$ where U_1 represents the first *n* columns of $U \in \mathbb{R}^{m \times n+1}$, and

$$V = \begin{bmatrix} V_{11} & \mathbf{v}_{12} \\ \mathbf{v}_{21} & v_{22} \end{bmatrix} \in \mathbb{R}^{n+1 \times n+1}$$

where V_{11} is $n \times n$, $v_{22} \in \mathbb{R}$ and \mathbf{v}_{12} and \mathbf{v}_{21} have appropriate dimensions. Also, let Σ_1 denote the first $n \times n$ block of Σ .

If $\sigma_n(A) > \sigma_{n+1}(C)$, then the matrix

$$\begin{bmatrix} E_0 & \mathbf{r}_0 \end{bmatrix} = -\mathbf{u}_2 \sigma_{n+1}(C) \begin{bmatrix} \mathbf{v}_{12}^T & v_{22} \end{bmatrix}$$

solves

$$\min_{\mathcal{R}(\mathbf{b}+\mathbf{r})\subset\mathcal{R}(A+E)} \|\begin{bmatrix} E & \mathbf{r}\end{bmatrix}\|_2$$

Also show that $\mathbf{x}_{TLS} = \mathbf{v}_{12} v_{22}^{-1}$ exists and is the unique solution to $(A + E_0)\mathbf{x} = \mathbf{b} + \mathbf{r}_0$. (Hint: see Golub & Van Loan)

- 8. Show that the eigenvalues of $M = -L^{-1}U$ (where L and U lower and strictly upper triangular matrices, respectively, as defined as in class for the Gauss-Seidel iterations), are the solutions to the the equation $\det(\lambda L + U) = 0$.
- 9. Show that if $A \in \mathbb{R}^{n \times n}$ is strictly diagonal dominant, i.e., if $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$ for each i = 1, 2, ..., n, show that the Gauss-Seidel iteration for $A\mathbf{x} = \mathbf{b}$ will always converge.
- 10. Let $A = \begin{bmatrix} 11 & 1 \\ 10 & 1 \end{bmatrix}$. Using the notation in class, show that $\rho(M) = 0.909$ where $\rho(M)$ is the largest eigenvalue of $M \triangleq -L^{-1}U$, and A = L + U. Also show that $\rho(M_{\omega}) = 0.537$ for $\omega = (11 \sqrt{11})/5$, and that this is the minimum value of $\rho(M_{\omega})$ over all possible $0 \neq \omega \in \mathbb{R}$. (Hint: the characteristic polynomial of M_{ω} is quadratic, and the minimum value of $\rho(M_{\omega})$ occurs when this quadratic has equal roots.
- 11. Show that any $n \times n$ matrix A is similar to its transpose.
- 12. Determine the Jordan canonical form for

$$A = \begin{pmatrix} -2 & -1 & -3 \\ 4 & 3 & 3 \\ -2 & 1 & -1 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 6 & -1 & 4 \end{pmatrix}$$
$$C = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

- 13. If an $n \times n$ matrix has trace 0 and rank 1, show that it is nilpotent.
- 14. Let $A \in \mathbb{R}^{n \times n}$ have Jordan canonical form J. Let λ be an eigenvalue of A, a_{λ} be the algebraic multiplicity of λ , k be the size of the largest Jordan block corresponding to λ , N_i be the number of Jordan blocks of size i corresponding to λ , i = 1, 2, ..., k, and r_j be the rank $(A \lambda I)^j$, j = 1, 2, ... Show that
 - (a) $a_{\lambda} = N_1 + 2N_2 + \ldots + kN_k$.
 - (b) $r_j = n a_\lambda, j \ge k.$
 - (c) $r_j = n a_\lambda + \sum_{i=m+1}^n (i-m)N_i, \ j = 1, 2, \dots, k-1.$