E2 212: Homework - 6

1 Topics

- Least-squares
- Using QR: full-rank and rank-deficient cases
- Using the complete orthogonal decomposition
- Constrained LS
- Total LS
- Iterative LS
- The Jordan canonical form

Note: Most of the problems below are from Golub and Van Loan, Horn and Johnson, or David Lewis' books.

2 Problems

1. Show that if

$$
A=\left[\begin{array}{cc}
R & w \\
0 & v
\end{array}\right] \text { and } b=\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

where R is a $k \times k$ block, $w \in \mathbb{R}^{k}, v \in \mathbb{R}^{m-k \times n-k}, c \in \mathbb{R}^{k}, d \in \mathbb{R}^{m-k}$ and the zero is a block of appropriate dimensions, and if A has full column rank, then $\min \|A x-b\|_{2}^{2}=\|d\|_{2}^{2}-\left(v^{T} d /\|v\|_{2}\right)^{2}$.
2. Suppose $A \in \mathbb{R}^{n \times n}$ and $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$. Show how to construct an orthogonal Q such that $Q^{T} A-D Q^{T}=R$ is upper triangular.
3. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and that $r=b-A x$ where $r, b, x \in \mathbb{R}^{n}$ and $x \neq 0$. Show how to compute a symmetric $E \in \mathbb{R}^{n \times n}$ with minimal Frobenius norm so that $(A+E) x=b$. (Hint: Use the QR factorization of $[x, r]$ and note that $E x=r \Rightarrow\left(Q^{T} E Q\right)\left(Q^{T} x\right)=Q^{T} R$.)
4. Show that if

$$
A=\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]
$$

where $T \in \mathbb{R}^{r \times r}, S \in \mathbb{R}^{r \times n-r}, r=\operatorname{rank}(A)$ and T is nonsingular, then

$$
X=\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & 0
\end{array}\right]
$$

satisfies $A X A=A$ and $(A X)^{T}=A X$. We say that X is a $(1,3)$ pseudoinverse of A. Show that for general $A, x_{B}=X b$ where X is a $(1,3)$ pseudoinverse of A.
5. Solve

$$
\min _{\|\mathbf{x}\|_{2}=1}\left\|\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]\right\|_{2}
$$

6. Let $Y=\left[y_{1}, \ldots, y_{k}\right] \in \mathbb{R}^{m \times k}$ be such that

$$
Y^{T} Y=\operatorname{diag}\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{k}^{2}\right), \quad d_{1} \geq d_{2} \geq \cdots \geq d_{k}>0 .
$$

Show that if $Y=Q R$ is the QR factorization of Y, then R is diagonal with $\left|r_{i i}\right|=d_{i}$.
7. Prove the total least squares theorem stated in class. That is, let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, with $m \geq n+1$. Let $C=\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ have the economy-size SVD $C=U \Sigma V^{T}$, where the diagonal elements of $\Sigma \in \mathbb{R}^{n+1 \times n+1}$ are $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n+1}, U=\left[\begin{array}{ll}U_{1} & \mathbf{u}_{2}\end{array}\right]$ where U_{1} represents the first n columns of $U \in \mathbb{R}^{m \times n+1}$, and

$$
V=\left[\begin{array}{ll}
V_{11} & \mathbf{v}_{12} \\
\mathbf{v}_{21} & v_{22}
\end{array}\right] \in \mathbb{R}^{n+1 \times n+1}
$$

where V_{11} is $n \times n, v_{22} \in \mathbb{R}$ and \mathbf{v}_{12} and \mathbf{v}_{21} have appropriate dimensions. Also, let Σ_{1} denote the first $n \times n$ block of Σ.
If $\sigma_{n}(A)>\sigma_{n+1}(C)$, then the matrix

$$
\left[\begin{array}{ll}
E_{0} & \mathbf{r}_{0}
\end{array}\right]=-\mathbf{u}_{2} \sigma_{n+1}(C)\left[\begin{array}{ll}
\mathbf{v}_{12}^{T} & v_{22}
\end{array}\right]
$$

solves

$$
\min _{\mathcal{R}(\mathbf{b}+\mathbf{r}) \subset \mathcal{R}(A+E)}\left\|\left[\begin{array}{ll}
E & \mathbf{r}
\end{array}\right]\right\|_{2} .
$$

Also show that $\mathbf{x}_{T L S}=\mathbf{v}_{12} v_{22}^{-1}$ exists and is the unique solution to $\left(A+E_{0}\right) \mathbf{x}=\mathbf{b}+\mathbf{r}_{0}$. (Hint: see Golub \& Van Loan)
8. Show that the eigenvalues of $M=-L^{-1} U$ (where L and U lower and strictly upper triangular matrices, respectively, as defined as in class for the Gauss-Seidel iterations), are the solutions to the the equation $\operatorname{det}(\lambda L+U)=0$.
9. Show that if $A \in \mathbb{R}^{n \times n}$ is strictly diagonal dominant, i.e., if $\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|$ for each $i=1,2, \ldots, n$, show that the Gauss-Seidel iteration for $A \mathbf{x}=\mathbf{b}$ will always converge.
10. Let $A=\left[\begin{array}{ll}11 & 1 \\ 10 & 1\end{array}\right]$. Using the notation in class, show that $\rho(M)=0.909$ where $\rho(M)$ is the largest eigenvalue of $M \triangleq-L^{-1} U$, and $A=L+U$. Also show that $\rho\left(M_{\omega}\right)=0.537$ for $\omega=(11-\sqrt{11}) / 5$, and that this is the minimum value of $\rho\left(M_{\omega}\right)$ over all possible $0 \neq \omega \in \mathbb{R}$. (Hint: the characteristic polynomial of M_{ω} is quadratic, and the minimum value of $\rho\left(M_{\omega}\right)$ occurs when this quadratic has equal roots.
11. Show that any $n \times n$ matrix A is similar to its transpose.
12. Determine the Jordan canonical form for

$$
\begin{aligned}
A & =\left(\begin{array}{rrr}
-2 & -1 & -3 \\
4 & 3 & 3 \\
-2 & 1 & -1
\end{array}\right) \\
B & =\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 6 & -1 & 4
\end{array}\right) \\
C & =\left(\begin{array}{rrrrrr}
2 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 \\
1 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

13. If an $n \times n$ matrix has trace 0 and rank 1 , show that it is nilpotent.
14. Let $A \in \mathbb{R}^{n \times n}$ have Jordan canonical form J. Let λ be an eigenvalue of A, a_{λ} be the algebraic multiplicity of λ, k be the size of the largest Jordan block corresponding to λ, N_{i} be the number of Jordan blocks of size i corresponding to $\lambda, i=1,2, \ldots, k$, and r_{j} be the $\operatorname{rank}(A-\lambda I)^{j}, j=1,2, \ldots$. Show that
(a) $a_{\lambda}=N_{1}+2 N_{2}+\ldots+k N_{k}$.
(b) $r_{j}=n-a_{\lambda}, j \geq k$.
(c) $r_{j}=n-a_{\lambda}+\sum_{i=m+1}^{n}(i-m) N_{i}, j=1,2, \ldots, k-1$.
