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Abstract

We review the development and extensions of the classical total least squares method and describe algorithms
for its generalization to weighted and structured approximation problems. In the generic case, the classical total
least squares problem has a unique solution, which is given in analytic form in terms of the singular value de-
composition of the data matrix. The weighted and structured total least squares problems have no such analytic
solution and are currently solved numerically by local optimization methods. We explain how special structure of
the weight matrix and the data matrix can be exploited for efficient cost function and first derivative computation.
This allows to obtain computationally efficient solution methods. The total least squares family of methods has a
wide range of applications in system theory, signal processing, and computer algebra. We describe the applications
for deconvolution, linear prediction, and errors-in-variables system identification.

Keywords: Total least squares; Orthogonal regression; Errors-in-variables model; Deconvolution; Linear pre-
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1 Introduction

The total least squares method was introduced by Golub and Van Loan [25, 27] as a solution technique for an overde-
termined system of equations AX ≈ B, where A ∈ Rm×n and B ∈ Rm×d are the given data and X ∈ Rn×d is unknown.
With m > n, typically there is no exact solution for X , so that an approximate one is sought for. The total least
squares method is a natural generalization of the least squares approximation method when the data in both A and B
is perturbed.

The least squares approximation X̂ls is obtained as a solution of the optimization problem

{X̂ls,ΔBls} := argmin
X ,ΔB

‖ΔB‖F subject to AX = B+ΔB. (LS)

The rationale behind this approximation method is to correct the right-hand side B as little as possible in the Frobenius
norm sense, so that the corrected system of equations AX = B̂, B̂ := B+ΔB has an exact solution. Under the condition
that A is full column rank, the unique solution X̂ls = (A&A)−1A&B of the optimally corrected system of equations
AX = B̂ls, B̂ls := B+ΔBls is by definition the least squares approximate solution of the original incompatible system
of equations.

The definition of the total least squares method is motivated by the asymmetry of the least squares method: B is
corrected while A is not. Provided that both A and B are given data, it is reasonable to treat them symmetrically. The
classical total least squares problem looks for the minimal (in the Frobenius norm sense) corrections ΔA and ΔB on
the given data A and B that make the corrected system of equations ÂX = B̂, Â := A+ΔA, B̂ := B+ΔB solvable, i.e.,

{X̂tls,ΔAtls,ΔBtls} := arg min
X ,ΔA,ΔB

∥∥[
ΔA ΔB

]∥∥
F subject to (A+ΔA)X = B+ΔB. (TLS1)

∗Corresponding author.
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The total least squares approximate solution X̂tls for X is a solution of the optimally corrected system of equations
ÂtlsX = B̂tls, Âtls := A+ΔAtls, B̂tls := B+ΔBtls.

The least squares approximation is statistically motivated as a maximum likelihood estimator in a linear regression
model under standard assumptions (zero mean, normally distributed residual with a covariance matrix that is a multiple
of the identity). Similarly, the total least squares approximation is a maximum likelihood estimator in the errors-in-
variables model

A= Ā+ Ã, B= B̄+ B̃, there exists an X̄ ∈ R
n×d such that ĀX̄ = B̄ (EIV)

under the assumption that vec(
[
Ã B̃

]
) is a zero mean, normally distributed random vector with a covariance matrix

that is a multiple of the identity. In the errors-in-variables model, Ā, B̄ are the “true data”, X̄ is the “true” value of the
parameter X , and Ã, B̃ consist of “measurement noise”.

Our first aim is to review the development and generalizations of the total least squares method. We start in
Section 2 with an overview of the classical total least squares method. Section 2.1 gives historical notes that relate
the total least squares method to work on consistent estimation in the errors-in-variables model. Section 2.2 presents
the solution of the total least squares problem and the resulting basic computational algorithm. Some properties,
generalizations, and applications of the total least squares method are stated in Sections 2.3, 2.4, and 2.5.

Our second aim is to present an alternative formulation of the total least squares problem as a matrix low rank
approximation problem

Ĉtls := argmin
Ĉ

‖C−Ĉ‖F subject to rank(Ĉ) ≤ n, (TLS2)

which in some respects, described in detail later, has advantages over the classical one. WithC=
[
A B

]
, the classical

total least squares problem (TLS1) is generically equivalent to the matrix low rank approximation problem (TLS2),
however, in certain exceptional cases, known in the literature as non-generic total least squares problems, (TLS1) fails
to have a solution, while (TLS2) always has a solution.

The following example illustrates the geometry behind the least squares and total least squares approximations.
Example 1 (Geometry of the least squares and total least squares methods). Consider a data matrix C =

[
a b

]
with

m = 20 rows and n+ d = 2 columns. The data is visualized in the plane: the rows
[
ai bi

]
of C correspond to the

circles on Figure 1. Finding an approximate solution x̂ of the incompatible system of equations ax ≈ b amounts to
fitting the data points by a non-vertical line passing through the origin. (The vertical line can not be represented by
an x ∈ R). The cases when the best fitting line happens to be vertical correspond to non-generic problems.

Alternatively, finding a rank-1 approximation Ĉ of the given matrixC (refer to problem (TLS2)) amounts to fitting
the data points

[
ai bi

]
by points

[
âi b̂i

]
(corresponding to the rows of Ĉ) that lie on a line passing through the

origin. Note that now we do not exclude an approximation by the vertical line, because approximation points lying
on a vertical line define a rank deficient matrix Ĉ and problem (TLS2) does not impose further restrictions on the
solution.

The least squares and total least squares methods assess the fitting accuracy in different ways: the least squares
method minimizes the sum of the squared vertical distances from the data points to the fitting line, while the total
least squares method minimizes the sum of the squared orthogonal distances from the data points to the fitting line.
Figure 1 shows the least squares and total least squares fitting lines as well as the data approximation (the crosses
lying on the lines). In the least squares case, the data approximation Ĉls =

[
a b+Δbls

]
is obtained by correcting the

second coordinate only. In the total least squares case, the data approximation Ĉtls =
[
a+Δatls b+Δbtls

]
is obtained

by correcting both coordinates.
In (TLS1) the constraint ÂX = B̂ represents the rank constraint rank(Ĉ) ≤ n, via the implication

there exists an X ∈ R
n×d such that ÂX = B̂ =⇒ Ĉ :=

[
Â B̂

]
, rank(Ĉ) ≤ n.

Note, however, that the reverse implication does not hold in general. This lack of equivalence is the reason for the
existence of non-generic total least squares problems. (TLS1) is non-generic when the rank deficiency of Ĉtls (an
optimal solution of (TLS2)) can not be expressed as existence of linear relations ÂX = B̂ for some X ∈ Rn×d. In
Section 3.1, we give an interpretation of the linear system of equations ÂX = B̂ as an input/output representation of a
linear static model.
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Figure 1: Least squares and total least squares fits of a set ofm= 20 data points in the plane. ◦—data points
[
ai bi

]
,

×—approximations
[
âi b̂i

]
, solid line—fitting model âx̂= b̂, dashed lines—approximation errors.

Apart from ÂX = B̂with Ĉ=
[
Â B̂

]
, there are numerous other ways to represent the rank constraint rank(Ĉ)≤ n.

For example, ÂX = B̂with ĈΠ=
[
Â B̂

]
, whereΠ is an arbitrary permutation matrix, i.e., in (TLS2) we can choose to

express any d columns of Ĉ as a linear combination of the remaining columns in order to ensure rank deficiency of Ĉ.
Any a priori fixed selection, however, leads to non-generic problems and therefore will be inadequate in certain cases.
Of special importance are the kernel representation RĈ& = 0, where RR& = Id , and the image representation Ĉ& = PL,
where P ∈ R(n+d)×n, L ∈ Rn×m. In contrast to the input/output representations, the kernel and image representations
are equivalent to rank(Ĉ) ≤ n.

The representation-free total least squares problem formulation (TLS2), described in Section 3, is inspired by the
behavioral approach to system theory, put forward by J. C. Willems in the three part remarkable paper [91]. We give
an interpretation of the abstract rank condition as existence of a linear static model for the given data. Then

the total least squares method is viewed as a tool for deriving approximate linear static models.

This point of view is treated in more details for dynamic as well as static models in [51].
In Sections 4 and 5 we describe the extensions of the classical total least squares problem to weighted and struc-

tured total least squares problems and classify the existing methods according to the representation of the rank con-
straint (input/output, kernel, or image) and the optimization method that is used for the solution of the resulting
parameter optimization problem. We show that the block-Hankel structured total least squares problem is a kernel
problem for approximate modeling by a linear time-invariant dynamical model. Motivating examples are the decon-
volution problem, the linear prediction problem, and the errors-in-variables system identification problem.



Overview of total least squares methods 4

Notation
R and R+ the set of real numbers and nonnegative real numbers
:= and :⇐⇒ left-hand side is defined by the right-hand side
=: and ⇐⇒ : right-hand side is defined by the left-hand side
vec column-wise vectorization of a matrix
C, ΔC, Ĉ data, correction, and approximation matrices
C =

[
A B

]
input/output partitioning of the data

c1, . . . ,cm observations,
[
c1 · · · cm

]
=C&

c= col(a,b) the column vector c= [ ab ]
B ⊆ Rn+d a static model in Rn+d

L linear static model class
B ∈ Ln linear static model of dimension at most n, i.e.,

a subspace (in Rn+d) of dimension at most n
X , R, P parameters of input/output, kernel, and image representations
Bi/o(X) input/output representation, see (I/O repr) on page 9
colspan(P) image representation, i.e., the space spanned by the columns of P
ker(R) kernel representation, i.e., the right null space of R

2 The classical total least squares method

2.1 History

Although the name “total least squares” appeared only recently in the literature [25, 27], this fitting method is not new
and has a long history in the statistical literature where it is known as “orthogonal regression”, “errors-in-variables”,
and “measurement errors”. The univariate (n = 1, d = 1) problem is discussed already in 1877 by Adcock [2].
Latter on contributions are made by Adcock [3], Pearson [62], Koopmans [30], Madansky [43], and York [94]. The
orthogonal regression method has been rediscovered many times, often independently. About thirty years ago, the
technique was extended by Sprent [76] and Gleser [24] to multivariate (n> 1, d > 1) problems.

More recently, the total least squares method also stimulated interest outside statistics. In the field of numerical
analysis, this problem was first studied by Golub and Van Loan [25, 27]. Their analysis, as well as their algorithm, are
based on the singular value decomposition. Geometrical insight into the properties of the singular value decomposition
brought Staar [77] independently to the same concept. Van Huffel and Vandewalle [84] generalized the algorithm of
Golub and Van Loan to all cases in which their algorithm fails to produce a solution, described the properties of
these so-called non-generic total least squares problems and proved that the proposed generalization still satisfies the
total least squares criteria if additional constraints are imposed on the solution space. This seemingly different linear
algebraic approach is actually equivalent to the method of multivariate errors-in-variables regression analysis, studied
by Gleser [24]. Gleser’s method is based on an eigenvalue-eigenvector analysis, while the total least squares method
uses the singular value decomposition which is numerically more robust in the sense of algorithmic implementation.
Furthermore, the total least squares algorithm computes the minimum norm solution whenever the total least squares
solution is not unique. These extensions are not considered by Gleser.

In engineering fields, e.g., experimental modal analysis, the total least squares technique (more commonly known
as the Hv technique), was also introduced about 20 years ago by Leuridan et al. [41]. In the field of system iden-
tification, Levin [42] first studied the problem. His method, called the eigenvector method or Koopmans–Levin
method [19], computes the same estimate as the total least squares algorithm whenever the total least squares problem
has a unique solution. Compensated least squares was yet another name arising in this area: this method compensates
for the bias in the estimator, due to measurement error, and is shown by Stoica and Söderström [78] to be asymp-
totically equivalent to total least squares. Furthermore, in the area of signal processing, the minimum norm method
Kumaresan and Tufts [34] was introduced and shown to be equivalent to minimum norm total least squares, see Dowl-
ing and Degroat [16]. Finally, the total least squares approach is tightly related to the maximum likelihood principal
component analysis method introduced in chemometrics by Wentzell et al. [90, 72], see the discussion in Section 4.2.

The key role of least squares in regression analysis is the same as that of total least squares in errors-in-variables
modeling. Nevertheless, a lot of confusion exists in the fields of numerical analysis and statistics about the principle of
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total least squares and its relation to errors-in-variables modeling. The computational advantages of total least squares
are still largely unknown in the statistical community, while inversely the concept of errors-in-variables modeling did
not penetrate sufficiently well in the field of computational mathematics and engineering.

A comprehensive description of the state of the art on total least squares from its conception up to the summer of
1990 and its use in parameter estimation has been presented in Van Huffel and Vandewalle [87]. While the latter book
is entirely devoted to total least squares, a second [81] and third [82] edited books present the progress in total least
squares and in the field of errors-in-variables modeling respectively from 1990 till 1996 and from 1996 till 2001.

2.2 Algorithm

The following theorem gives conditions for the existence and uniqueness of a total least squares solution.
Theorem 2 (Solution of the classical total least squares problem). Let

C :=
[
A B

]
=UΣV&, where Σ= diag(σ1, . . . ,σn+d)

be a singular value decomposition ofC, σ1 ≥ · · ·≥ σn+d be the singular values ofC, and define the partitionings

V :=

n d[
V11 V12
V21 V22

]
n
d and Σ :=

n d[
Σ1 0
0 Σ2

]
n
d .

A total least squares solution exists if and only ifV22 is non-singular. In addition, it is unique if and only if σn .= σn+1.
In the case when the total least squares solution exists and is unique, it is given by

X̂tls = −V12V−1
22

and the corresponding total least squares correction matrix is

ΔCtls :=
[
ΔAtls ΔBtls

]
= −U diag(0,Σ2)V&.

In the generic case when a unique total least squares solution X̂tls exists, it is computed from the d right singular
vectors corresponding to the smallest singular values by normalization. This gives Algorithm 1 as a basic algorithm
for solving the classical total least squares problem (TLS1). Note that the total least squares correction matrix ΔCtls is
such that the total least squares data approximation

Ĉtls :=C+ΔCtls =U diag(Σ1,0)V&

is the best rank-n approximation ofC.

Algorithm 1 Basic total least squares algorithm.
Input: A ∈ Rm×n and B ∈ Rm×d.
1: Compute the singular value decomposition

[
A B

]
=UΣV&.

2: if V22 is nonsingular then
3: Set X̂tls = −V12V−1

22 .
4: else
5: Output a message that the problem (TLS1) has no solution and stop.
6: end if
Output: X̂tls — a total least squares solution of AX ≈ B.

Most total least squares problems which arise in practice can be solved by Algorithm 1. Extensions of the basic
total least squares algorithm to problems in which the total least squares solution does not exist or is not unique are
considered in detail in [87]. In addition, it is shown how to speed up the total least squares computations directly
by computing the singular value decomposition only partially or iteratively if a good starting vector is available.
More recent advances, e.g., recursive total least squares algorithms, neural based total least squares algorithms, rank-
revealing total least squares algorithms, total least squares algorithms for large scale problems, etc., are reviewed
in [81, 82]. A novel theoretical and computational framework for treating non-generic and non-unique total least
squares problems is presented by Paige and Strakos [61].
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2.3 Properties

Consider the errors-in-variables model (EIV) and assume that vec(
[
Ã B̃

]
) is a zero mean random vector with a

multiple of the identity covariance matrix. In addition, assume that limm→∞ Ã&Ã/m exists and is a positive definite
matrix. Under these assumptions it is proven [23, 25] that the total least squares solution X̂tls is a weakly consistent
estimator of the true parameter values X̄ , i.e.,

X̂tls → X̄ in probability as m→ ∞.

This total least squares property does not depend on the distribution of the errors. The total least squares correction[
ΔAtls ΔBtls

]
, however, being a rank d matrix is not an appropriate estimator for the measurement error matrix[

Ã B̃
]
(which is a full rank matrix with probability one). Note that the least squares estimator X̂ls is inconsistent in

the errors-in-variables case.
In the special case of a single right hand side (d = 1) and A full rank, the total least squares problem has an analytic

expression that is similar to the one of the least squares solution

least squares: x̂ls = (A&A)−1A&b, total least squares: x̂tls = (A&A−σ 2n+1I)
−1A&b, (∗)

where σn+1 is the smallest singular value of
[
A b

]
. From a numerical analyst’s point of view, (∗) tells that the total

least squares solution is more ill-conditioned than the least squares solution since it has a higher condition number.
The implication is that errors in the data are more likely to affect the total least squares solution than the least squares
solution. This is particularly true for the worst case perturbations. In fact, total least squares is a deregularizing
procedure. However, from a statistician’s point of view, (∗) tells that the total least squares method asymptotically
removes the bias by subtracting the error covariance matrix (estimated by σ 2n+1I) from the data covariance matrixA&A.

While least squares minimizes a sum of squared residuals, total least squares minimizes a sum ofweighted squared
residuals:

least squares: min
x

‖Ax−b‖2, total least squares: min
x

‖Ax−b‖2

‖x‖2+1
.

From a numerical analyst’s point of view, total least squares minimizes the Rayleigh quotient. From a statistician’s
point of view, total least squares weights the residuals by multiplying them with the inverse of the corresponding error
covariance matrix in order to derive a consistent estimate.

Other properties of total least squares, which were studied in the field of numerical analysis, are its sensitivity
in the presence of errors on all data [87]. Differences between the least squares and total least squares solution are
shown to increase when the ratio between the second smallest singular value of

[
A b

]
and the smallest singular value

of A is growing. In particular, this is the case when the set of equations Ax ≈ b becomes less compatible, the vector
y is growing in length, or A tends to be rank-deficient. Assuming independent and identically distributed errors, the
improved accuracy of the total least squares solution compared to that of the least squares solution is maximal when
the orthogonal projection of b is parallel to the singular vector of A corresponding to the smallest singular value.
Additional algebraic connections and sensitivity properties of the total least squares and least squares problems, as
well as other statistical properties have been described in [87, 81].

2.4 Extensions

The statistical model that corresponds to the basic total least squares approach is the errors-in-variables model with
the restrictive condition that the measurement errors are zero mean independent and identically distributed. In order
to relax these restrictions, several extensions of the total least squares problem have been investigated. The mixed
least squares-total least squares problem formulation allows to extend consistency of the total least squares estimator
in errors-in-variables models, where some of the variables are measured without error. The data least squares prob-
lem [15] refers to the special case in which the A matrix is noisy and the B matrix is exact. When the errors

[
Ã B̃

]

are row-wise independent with equal row covariance matrix (which is known up to a scaling factor), the generalized
total least squares problem formulation [86] allows to extend consistency of the total least squares estimator.

More general problem formulations, such as restricted total least squares [88], which also allow the incorporation
of equality constraints, have been proposed, as well as total least squares problem formulations using !p norms in
the cost function. The latter problems, called total !p approximations, proved to be useful in the presence of outliers.
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Robustness of the total least squares solution is also improved by adding regularization, resulting in regularized total
least squares methods [20, 26, 74, 73, 7]. In addition, various types of bounded uncertainties have been proposed in
order to improve robustness of the estimators under various noise conditions [18, 11].

Similarly to the classical total least squares estimator, the generalized total least squares estimator is computed
reliably using the singular value decomposition. This is no longer the case for more general weighted total least
squares problems where the measurement errors are differently sized and/or correlated from row to row. Consistency
of the weighted total least squares estimator is proven and an iterative procedure for its computation is proposed
in [32]. This problem is discussed in more detail in Section 4.

Furthermore, constrained total least squares problems have been formulated. Arun [5] addressed the unitarily
constrained total least squares problem, i.e., AX ≈ B, subject to the constraint that the solution matrix X is unitary. He
proved that this solution is the same as the solution to the orthogonal Procrustes problem [28, page 582]. Abatzoglou
et al. [1] considered yet another constrained total least squares problem, which extends the classical total least squares
problem to the case where the errors

[
Ã B̃

]
are algebraically related. In this case, the total least squares solution is

no longer statistically optimal (e.g., maximum likelihood in the case of normal distribution).
In the so-called structured total least squares problems [12], the data matrix

[
A B

]
is structured. In order

to preserve the maximum likelihood properties of the solution, the total least squares problem formulation is ex-
tended [31] with the additional constraint that the structure of the data matrix

[
A B

]
is preserved in the correction

matrix
[
ΔA ΔB

]
. Similarly to the weighted total least squares problem, the structured total least squares solution, in

general, has no closed form expression in terms of the singular value decomposition. An important exception is the
circulant structured total least squares, which can be solved using the fast Fourier transform, see [6]. In the general
case, a structured total least squares solution is searched via numerical optimization methods. However, efficient al-
gorithms are proposed in the literature that exploit the matrix structure on the level of the computations. This research
direction is further described in Section 5.

Regularized structured total least squares solution methods are proposed in [95, 56]. Regularization turns out to be
important in the application of the structured total least squares method for image deblurring [57, 60, 59]. In addition,
solution methods for nonlinearly structured total least squares methods are developed in [68, 40].

2.5 Applications

Since the publication of the singular value decomposition based total least squares algorithm [27], many new total
least squares algorithms have been developed and, as a result, the number of applications in total least squares and
errors-in-variables modeling has increased in the last decade. Total least squares is applied in computer vision [58],
image reconstruction [65, 54, 22], speech and audio processing [39, 29], modal and spectral analysis [89, 93], linear
system theory [14, 13], system identification [66, 37, 63, 52], and astronomy [8]. An overview of errors-in-variables
methods in system identification is given by Söderström in [75]. In [81, 82], the use of total least squares and errors-
in-variables models in the application fields are surveyed and new algorithms that apply the total least squares concept
are described.

A lot of common problems in system identification and signal processing can be reduced to special types of block-
Hankel and block-Toeplitz structured total least squares problems. In the field of signal processing, in particular
in-vivo magnetic resonance spectroscopy, and audio coding, new state-space based methods have been derived by
making use of the total least squares approach for spectral estimation with extensions to decimation and multichannel
data quantification [35, 36]. In addition, it has been shown how to extend the least mean squares algorithm to the
errors-in-variables context for use in adaptive signal processing and various noise environments. Finally, total least
squares applications also emerge in other fields, including information retrieval [21], shape from moments [69], and
computer algebra [96, 47].

3 Representation-free total least squares problem formulation

An insightful way of viewing the abstract rank constraint rank(C)≤ n is as the existence of a linear static model forC:
rank(C)≤ n is equivalent to the existence of a subspaceB ⊂Rn+d of dimension at most n that contains the rows ofC.
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A subspace B ⊆ Rn+d is referred to as a linear static model. Its dimension n is a measure of the model
complexity: the higher the dimension the more complex and therefore less useful is the modelB.

The set of all linear static models of dimension at most n is denoted by Ln. It is a nonconvex set and has special
properties that make it a Grassman manifold.

Let
[
c1 · · · cm

]
:=C&, i.e., ci is the transposed ith row of the matrixC and define the shorthand notation

C ∈ B ⊆ R
n+d :⇐⇒ ci ∈ B, for i= 1, . . . ,m.

We have the following equivalence

rank(C) ≤ n ⇐⇒ C ∈ B ∈ Ln,

which relates the total least squares problem (TLS2) to approximate linear static modeling. We restate problem (TLS2)
with this new interpretation and notation.
Problem 3 (Total least squares). Given a data matrix C ∈ Rm×(n+d) and a complexity specification n, solve the opti-
mization problem

{B̂tls,Ĉtls } := arg min
B∈Ln

min
Ĉ∈B

‖C−Ĉ‖F. (TLS)

Note that (TLS) is a double minimization problem. On the inner level is the search for the best approximation of
the given dataC in a given modelB. The optimum value of this minimization

Mtls(C,B) := min
Ĉ∈B

‖C−Ĉ‖F (Mtls)

is a measure of the lack of fit between the data and the model and is called misfit. On the outer level is the search
for the optimal model in the model class Ln of linear static models with bounded complexity. The optimality of the
model is in terms of the total least squares misfit functionMtls.

The double minimization structure, described above, is characteristic for all total least squares problems. Since
the model B is linear and the cost function is convex quadratic, the inner minimization can be solved analytically
yielding a closed form expression for the misfit function. The resulting outer minimization, however, is a nonconvex
optimization problem and needs numerical solution methods. In the case of the basic total least squares problem and
the generalized total least squares problem, presented in Section 3.3, the outer minimization can be brought back to a
singular value decomposition computation. In more general cases, however one has to rely on nonconvex optimization
methods and the guarantee to compute a global solution quickly and efficiently is lost.

In order to solve numerically the abstract total least squares problem (TLS), we need to parameterize the fitting
model. This important issue is discussed next.

3.1 Kernel, image, and input/output representations

As argued in the introduction, the representation-free formulation is conceptually useful. For analysis, however, often
it is more convenient to consider concrete representations of the model, which turn the abstract problem (TLS) into
concrete parameter optimization problems, such as (TLS1). In this section, we present three representations of a linear
static model: kernel, image, and input/output. They give different parameterizations of the model and are important
in setting up algorithms for the solution of the problem.

Kernel representation

Let B ∈ Ln, i.e., B is an n-dimensional subspace of Rn+d. A kernel representation of B is given by a system of
equations Rc= 0, such that

B = {c ∈ R
n+d | Rc= 0} =: ker(R).

The matrix R ∈ Rg×(n+d) is a parameter of the modelB.
The parameter R is not unique. There are two sources for the non-uniqueness:
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1. R might have redundant rows, and

2. for a full rank matrixU , ker(R) = ker(UR).

The parameter R having redundant rows is related to the minimality of the representation. For a given linear static
model B, the representation Rc = 0 of B is minimal if R has the minimal number of rows among all parameters R
that define a kernel representation of B. The kernel representation, defined by R, is minimal if and only if R is full
row rank.

Because of item 2, a minimal kernel representation is still not unique. All minimal representations, however, are
related to a given one via a pre-multiplication of the parameter R with a nonsingular matrix U . In a minimal kernel
representation, the rows of R are a basis for B⊥, the orthogonal complement of B, i.e., B⊥ = rowspan(R). The
choice of R is non-unique due to the non-uniqueness in the choice of basis ofB⊥.

The minimal number of independent linear equations necessary to define a linear static model B is d, i.e., in a
minimal representation B = ker(R) with rowdim(R) = d.

Image representation

The dual of the kernel representation B = ker(R) is the image representation

B = {c ∈ R
n+d | c= Pl, l ∈ R

l } =: colspan(P).

Again for a givenB ∈Ln an image representationB = colspan(P) is not unique because of possible non-minimality
of P and the choice of basis. The representation is minimal if and only if P is a full column rank matrix. In a
minimal image representation, coldim(P) = dim(B) and the columns of P form a basis forB. Clearly colspan(P) =
colspan(PU), for any nonsingular matrixU ∈ Rl×l. Note that

ker(R) = colspan(P) = B ∈ Ln =⇒ RP= 0,

which gives a link between the parameters P and R.

Input/output representation

Both, the kernel and the image representations, treat all variables on an equal footing. In contrast, the more classical
input/output representation

Bi/o(X) := {c =: col(a,b) ∈ R
n+d | X&a= b} (I/O repr)

distinguishes free variables a ∈ Rn, called inputs, and dependent variables b ∈ Rd, called outputs. In an input/output
representation, a can be chosen freely, while b is fixed by a and the model. Note that for repeated observations C& =[
c1 · · · cm

]
the statement C ∈ Bi/o(X) is equivalent to the linear system of equations AX = B, where

[
A B

]
:=C

with A ∈ Rm×n and B ∈ Rm×d.
The partitioning c= col(a,b) gives an input/output partitioning of the variables: the first n := dim(a) variables are

inputs and the remaining d := dim(b) variables are outputs. An input/output partitioning is not unique. Given a kernel
or image representation, finding an input/output partitioning is equivalent to selecting a d×d full rank submatrix of R
or an n× n full rank submatrix of P. In fact, generically, any splitting of the variables into a group of d variables
(outputs) and a group of remaining variables (inputs), defines a valid input/output partitioning. In non-generic cases
certain partitionings of the variables into inputs and outputs are not possible.

Note that in (I/O repr), the first n variables are fixed to be inputs, so that givenX , the input/output representBi/o(X)
is fixed and vice versa, given B ∈ Ln, the parameter X (if it exists) is unique. Thus, as opposed to the parameters
R and P in the kernel and the image representations, the parameter X in the input/output representation (I/O repr) is
unique.

Consider the input/output Bi/o(X), kernel ker(R), and image colspan(P) representations of B ∈ Ln and define
the partitionings

R=:
[
Ri Ro

]
, Ro ∈ R

d×d and P=:
[
Pi
Po

]
, Pi ∈ R

n×n.

The links among the parameters X , R, and P are summarized on Figure 2.
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B = ker(R) !! RP=0 ""

X&=−R−1o Ri

##!!!!!!!!!!!!!!!!!!!!!
B = colspan(P)

X&=PoP−1i

$$""""""""""""""""""""""

B = Bi/o(X)

R=[X& −I]

%%!!!!!!!!!!!!!!!!!!!!!

P&=[I X ]

&&""""""""""""""""""""""

Figure 2: Links among kernel, image, and input/output representations ofB ∈ Ln.

3.2 Solution of the total least squares problem

Approximation of the data matrix C with a model B in the model class Ln is equivalent to finding a matrix Ĉ ∈
Rm×(n+d) with rank at most n. In the case when the approximation criterion is ‖C−Ĉ‖F (total least squares problem)
or ‖C−Ĉ‖2, the problem has a solution in terms of the singular value decomposition ofC. The result is known as the
Eckart–Young–Mirsky low-rank matrix approximation theorem [17]. We state it in the next lemma.
Lemma 4 (Matrix approximation lemma). Let C =UΣV& be the singular value decomposition of C ∈ Rm×(n+d) and
partition the matricesU , Σ=: diag(σ1, . . . ,σn+d), and V as follows:

U =:
n d[
U1 U2

]
m , Σ=:

n d[
Σ1 0
0 Σ2

]
n
d

and V =:
n d[
V1 V2

]
n+d . (SVDPRT)

Then the rank-n matrix Ĉ∗ =U1Σ1V&
1 is such that

‖C−Ĉ∗‖F = min
rank(Ĉ)≤n

‖C−Ĉ‖F =
√
σ 2n+1+ · · ·+σ 2n+d.

The solution Ĉ∗ is unique if and only if σn+1 .= σn.
The solution of the total least squares problem (TLS) trivially follows from Lemma 4.

Theorem 5 (Solution of the total least squares problem). LetC=UΣV& be the singular value decomposition ofC and
partition the matricesU , Σ, and V as in (SVDPRT). Then a total least squares approximation ofC inLn is

Ĉtls =U1Σ1V&
1 , B̂tls = ker(V&

2 ) = colspan(V1),

and the total least squares misfit is

Mtls(C,B) = ‖Σ2‖F =
√
σ 2n+1+ · · ·+σ 2n+d, where Σ2 =: diag(σn+1, . . . ,σn+d).

A total least squares approximation always exists. It is unique if and only if σn .= σn+1.
Note 6 (Non-generic total least squares problems). The optimal approximating model B̂tls might have no input/output
representation (I/O repr). In this case, the optimization problem (TLS1) has no solution. By suitable permutation of
the variables, however, (TLS1) can be made solvable, so that X̂tls exists and B̂tls = Bi/o(X̂tls).

The issue of whether the total least squares problem is generic or not is not related to the approximation
of the data per se but to the possibility of representing the optimal model B̂tls in the form (I/O repr), i.e.,
to the possibility of imposing a given input/output partition on B̂tls.

3.3 Generalized total least squares problem

LetW! ∈ Rm×m andWr ∈ R(n+d)×(n+d) be given positive definite matrices and define the following generalized total
least squares misfit function

Mgtls(C,B) = min
Ĉ∈B

∥∥√W!(C−Ĉ)
√
Wr

∥∥
F. (Mgtls)

(W! allows for a row weighting and Wr for a column weighting in the cost function.) The resulting approximation
problem is called generalized total least squares problem.
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Problem 7 (Generalized total least squares). Given a data matrix C ∈ Rm×(n+d), positive definite weight matricesW!

andWr, and a complexity specification n, solve the optimization problem

{B̂gtls,Ĉgtls } = arg min
B̂∈Ln

Mgtls(C,B). (GTLS)

The solution of the generalized total least squares problem can be obtained from the solution of a total least
squares problem for a modified data matrix.
Theorem 8 (Solution of the generalized total least squares problem). Define the modified data matrix

Cm :=
√
W!C

√
Wr,

and let Ĉm,tls, B̂m,tls = ker(Rm,tls) = colspan(Pm,tls) be a total least squares approximation ofCm inLn. Then a solution
of the generalized total least squares problem (GTLS) is

Ĉgtls =
(√

W!
)−1Ĉm,tls

(√
Wr

)−1
,

B̂gtls = ker
(
Rm,tls

√
Wr

)
= colspan

((√
Wr

)−1Pm,tls

)

and the corresponding generalized total least squares misfit is Mgtls(C,Bgtls) = Mtls(Cm,Bm,tls). A generalized total
least squares solution always exists. It is unique if and only if B̂m,tls is unique.

Robust algorithms for solving the generalized total least squares problem without explicitly computing the inverses
(
√
W!)−1 and (

√
Wr)−1 are proposed in [86, 85, 88]. These algorithms give better accuracy when the weight matrices

are nearly rank deficient. In addition, they can treat the singular case, which implies that some rows and/or columns
ofC are considered exact and are not modified in the solution Ĉ.

If the matricesW! andWr are diagonal, i.e.,W! = diag(w!,1, . . . ,w!,m), wherew! ∈Rm
+ andWr = diag(wr,1, . . . ,wr,n+d),

where w! ∈ R
n+d
+ the generalized total least squares problem is called scaled total least squares.

4 Weighted total least squares

For a given positive definite weight matrixW ∈ Rm(n+d)×m(n+d) define the weighted matrix norm

‖C‖W :=
√
vec&(C&)W vec(C&)

and the weighted total least squares misfit function

Mwtls(C,B) := min
Ĉ∈B

‖C−Ĉ‖W . (Mwtls)

The approximation problem with weighted total least squares misfit function is called the weighted total least squares
problem.
Problem 9 (Weighted total least squares). Given a data matrixC ∈ Rm×(n+d), a positive definite weight matrixW , and
a complexity specification n, solve the optimization problem

{B̂wtls,Ĉwtls } := arg min
B∈Ln

Mwtls(C,B). (WTLS)

The motivation for considering the weighted total least squares problem is that it defines the maximum likeli-
hood estimator for the errors-in-variables model when the measurement noise C̃ =

[
Ã B̃

]
is zero mean, normally

distributed, with a covariance matrix
cov

(
vec(C̃&)

)
= σ 2W−1, (∗∗)

i.e., the weight matrixW is up to a scaling factor σ 2 the inverse of the measurement noise covariance matrix.
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Note 10 (Element-wise weighted total least squares). The special case when the weight matrixW is diagonal is called
element-wise weighted total least squares (element-wise weighted total least squares). It corresponds to an errors-in-
variables problem with uncorrelated measurement errors. LetW = diag(w1, . . . ,wm(n+d)) and define the m× (n+d)
weight matrix Σ by Σi j := w(i−1)(n+d)+ j. Denote by 3 the element-wise product A3B=

[
ai jbi j

]
. Then

‖ΔC‖W = ‖Σ3ΔC‖F.

Note 11 (Total least squares as an unweighted weighted total least squares). The extreme special case whenW = I
is called unweighted. Then the weighted total least squares problem reduces to the total least squares problem. The
total least squares misfit Mtls weights equally all elements of the correction matrix ΔC. It is a natural choice when
there is no prior knowledge about the data. In addition, the unweighted case is computationally easier to solve than
the general weighted case.

Special structure of the weight matrixW results in special weighted total least squares problems. Figure 3 shows
a hierarchical classification of various problems considered in the literature. From top to bottom the generality of
the problems decreases: on the top is a weighted total least squares problem for a general positive semi-definite
weight matrix and on the bottom is the classical total least squares problem. In between are weighted total least
squares problems with (using the stochastic terminology) uncorrelated errors among the rows, among the columns,
and among all elements (element-wise weighted total least squares case). Row-wise and column-wise uncorrelated
weighted total least squares problems, in which the row or column weight matrices are equal are generalized total least
squares problems with respectivelyW! = I andWr = I. In order to express easily the structure of the weight matrix in
the case of column-wise uncorrelated errors, we introduce the weight matrix W̄ as follows: cov

(
vec(C̃)

)
= σ 2W̄−1,

compare with (∗∗), where C̃ is transposed.
WithW = I, (WTLS) coincides with the total least squares problem (TLS). Except for the special case of general-

ized total least squares, however, the weighted total least squares problem has no closed form solution in terms of the
singular value decomposition. As an optimization problem it is non-convex, so that the currently available solution
methods do not guarantee convergence to a global optimum solution. In the rest of this section, we give an overview
of solution methods for the weighted total least squares problem, with emphasis on the row-wise weighted total least
squares case, i.e., when the weight matrixW is block diagonalW = diag(W1, . . . ,Wm),Wi ∈ R(n+d)×(n+d),Wi > 0. In
the errors-in-variables setting, this assumption implies that the measurement errors c̃i and c̃ j are uncorrelated for all
i, j = 1, . . . ,m, i .= j, which is a reasonable assumption for most applications.

Similarly to the total least squares and generalized total least squares problems, the weighted total least squares
problem is a double minimization problem. The inner minimization is the search for the best approximation of the
data in a given model and an outer minimization is the search for the model. First, we solve the inner minimization
problem—the misfit computation.

4.1 Best approximation of the data by a given model

Since the model is linear, (Mwtls) is a convex optimization problem with an analytic solution. In order to give
explicit formulas for the optimal approximation Ĉwtls and misfitMwtls(C,B), however, we need to choose a particular
parameterization of the given modelB. We state the results for the kernel and the image representations. The results
for the input/output representation follow from the given ones by the substitutions R 4→

[
X& −I

]
and P 4→

[ I
X&

]
.

Theorem 12 (Weighted total least squares misfit computation, kernel representation version). Let ker(R) be a minimal
kernel representation of B ∈ Ln. The best weighted total least squares approximation of C in B, i.e., the solution
of (Mwtls), is

ĉwtls,i =
(
I−W−1

i R&(RW−1
i R&)−1R

)
ci, for i= 1, . . . ,m

with the corresponding misfit

Mwtls
(
C,ker(R)

)
=

√
m

∑
i=1

c&i R&(RW−1
i R&)−1Rci. (MwtlsR)

The image representation is dual to the kernel representation. Correspondingly, the misfit computation with
kernel and with image representations of the model are dual problems. The kernel representation leads to a least norm
problem and the image representation leads to a least squares problem.
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Figure 3: Hierarchy of weighted total least squares problems according to the structure of the weight matrixW . On
the left side are weighted total least squares problems with row-wise uncorrelated measurement errors and on the right
side are weighted total least squares problems with column-wise uncorrelated measurement errors.

Theorem 13 (Weighted total least squares misfit computation, image representation version). Let colspan(P) be a
minimal image representation ofB ∈ Ln. The best weighted total least squares approximation ofC inB is

ĉwtls,i = P(P&WiP)−1P&Wici, for i= 1, . . . ,m

with the corresponding misfit

Mwtls
(
C,colspan(P)

)
=

√
m

∑
i=1

c&i Wi
(
I−P(P&WiP)−1P&Wi

)
ci. (MwtlsP)

4.2 Optimization over the model parameters

The remaining problem—the minimization with respect to themodel parameters is a nonconvex optimization problem
that in general has no closed form solution. For this reason numerical optimization methods are employed for its
solution.

Special optimization methods for the weighted total least squares problem are proposed in [12, 90, 64, 45, 44]. The
Riemannian singular value decomposition framework of De Moor [12] is derived for the structured total least squares
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problem but includes the weighted total least squares problem with diagonal weight matrix and d = 1 as a special
case. The restriction to more general weighted total least squares problems comes from the fact that the Riemannian
singular value decomposition framework is derived for matrix approximation problems with rank reduction by one.
De Moor proposed an algorithm resembling the inverse power iteration algorithm for computing the solution. The
method, however, has no proven convergence properties.

The maximum likelihood principle component analysis method of Wentzell et al. [90] is an alternating least
squares algorithm. It applies to the general weighted total least squares problems and is globally convergent, with
linear convergence rate. The method of Premoli and Rastello [64] is a heuristic for solving the first order optimality
condition of (WTLS). A solution of a nonlinear equation is sought instead of a minimum point of the original opti-
mization problem. The method is locally convergent with super linear convergence rate. The region of convergence
around a minimum point could be rather small in practice. The weighted low rank approximation framework of Man-
ton et al. [44] proposes specialized optimization methods on a Grassman manifold. The least squares nature of the
problem is not exploited by the algorithms proposed in [44].

The Riemannian singular value decomposition, maximum likelihood principle component analysis,
Premoli–Rastello, and weighted low rank approximation methods differ in the parameterization of the
model and the optimization algorithm used, see Table 1.

Method Representation Algorithm
Riemannian singular value decomposition kernel inverse power iteration

maximum likelihood principle component analysis image alternating projections
Premoli–Rastello input/output iteration based on heuristic linearization

weighted low rank approximation kernel Newton method

Table 1: Model representations and optimization algorithms used in the methods of [12, 90, 64, 44, 72].

5 Structured total least squares

The total least squares problem is a tool for approximate modeling by a static linear model. Similarly, the structured
total least squares problem with block-Hankel structured data matrix is a tool for approximate modeling by a linear
time-invariant dynamic model. In order to show how the block-Hankel structure occurs, consider a difference equation
represented of the an linear time-invariant model

R0wt +R1wt+1+ · · ·+Rlwt+l = 0. (KER)

Here R0, . . . ,Rl are the model parameters and the integer l is the lag of the equation. For t = 1, . . . ,T − l, the difference
equation (KER) is equivalent to the block-Hankel structured system of equations

[
R0 R1 · · · Rl

]






w1 w2 · · · wT−l
w2 w3 · · · wT−l+1
...

...
...

wl+1 wl+2 · · · wT






︸ ︷︷ ︸
Hl(w)

= 0. (Hank eqn)

Thus the constraint that a time series w =
(
w(1), . . . ,w(T )

)
is a trajectory of the linear time-invariant model implies

rank deficiency of the block-Hankel matrixHl(w).
Next we show three typical examples that illustrate the occurrence of structured system of equations in approxi-

mate modeling problems.
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5.1 Examples

Deconvolution

The convolution of the (scalar) sequences

(. . . ,a−1,a0,a1, . . .) and (. . . ,x−1,x0,x1, . . .)

is the sequence (. . . ,b−1,b0,b1, . . .) defined as follows:

bi =
∞

∑
j=−∞

x jai− j. (CONV)

Assume that x j = 0 for all j < 1 and for all j > n. Then (CONV) for i = 1, . . . ,m can be written as the following
structured system of equations






a0 a−1 · · · a1−n
a1 a0 · · · a2−n
...

...
...

am−1 am+n−2 · · · am−n






︸ ︷︷ ︸
A






x1
x2
...
xn






︸ ︷︷ ︸
x

=






b1
b2
...
bm






︸ ︷︷ ︸
b

. (CONV’)

Note that the matrix A is Toeplitz structured and is parameterized by the vector a= col(a1−n, . . . ,am−1) ∈ Rm+n−1.
The aim of the deconvolution problem is to find x, given a and b. With exact data the problem boils down to

solving the system of equations (CONV’). By construction it has an exact solution. Moreover the solution is unique
whenever A is of full column rank, which can be translated to a persistency of excitation condition on a, see [92].

The deconvolution problem is more realistic and more challenging when the data a,b is perturbed. We assume
that m > n, so that the system of equations (CONV’) is overdetermined. Because both a and b are perturbed and
the A matrix is structured, the deconvolution problem is a total least squares problem with structured data matrix
C =

[
A b

]
, A Toeplitz and b unstructured.

Linear prediction

In many signal processing applications the sum of damped exponentials model

ŷt =
l

∑
i=1

cieditei(ωit+φi), where i :=
√
−1 (SDE)

is considered. Given an observed sequence (yd,1, . . . ,yd,T ) (“d” stands for data), the aim is to find parameters
{ci,di,ωi,φi }li=1 of a sum of damped exponentials model, such that the signal ŷ given by (SDE) is close to the
observed one, e.g.,

min

∥∥∥∥∥∥∥






yd,1
...

yd,T




−






ŷ1
...
ŷT






∥∥∥∥∥∥∥
.

Note that the sum of damped exponentials model is just an autonomous linear time-invariant model, i.e., ŷ is a
free response of an linear time-invariant system. Therefore ŷ satisfies a homogeneous linear difference equation

ŷt +
l

∑
τ=1

aτ ŷt+τ = 0. (LP)

Approximating yd by a signal ŷ that satisfies (LP) is a linear prediction problem, so modeling yd as a sum of damped
exponentials is equivalent to the linear prediction problem. Of course, there is a one-to-one relation between the initial
conditions ŷ0, . . . , ŷ−l+1 and parameters {ai }li=1 of (LP) and the parameters {ci,di,ωi,φi }li=1 of (SDE).
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For a time horizon t = 1, . . . ,T , with T > l+1, (LP) can be written as the structured system of equations





ŷ1 ŷ2 · · · ŷl
ŷ2 ŷ3 · · · ŷl+1
...

...
...

ŷm ŷm+1 · · · ŷT−1











a1
a2
...
al






= −






ŷl+1
ŷl+2

...
ŷT






,

where m := T − l. Therefore, the Hankel matrix Hl+1(ŷ) with l+ 1 columns, constructed from ŷ is rank deficient.
Conversely, if Hl+1(ŷ) has a one dimensional left kernel, then ŷ satisfies the linear recursion (LP). Therefore, the
linear prediction problem is the problem of finding the smallest in some sense (e.g., 2-norm) correction Δy on the
given sequence yd that makes a block-Hankel matrix Hl+1(ŷ) constructed from the corrected sequence ŷ := yd−Δy
rank deficient. This is an structured total least squares problem Ax≈ bwith Hankel structured data matrixC=

[
A b

]
.

Errors-in-variables identification

Consider the linear time-invariant system described by the difference equation

ŷt +
l

∑
τ=1

aτ ŷt+τ =
l

∑
τ=0

bτ ût+τ (DE)

and define the parameter vector

x := col(b0, . . . ,bl ,−a0, . . . ,−al−1) ∈ R
2l+1.

Given a set of input/output data (ud,1,yd,1), . . . ,(ud,T ,yd,T ) and an order specification l, we want to find the parameter x
of a system that fits the data.

For a time horizon t = 1, . . . ,T , (DE) can be written as the structured system of equations





û1 û2 · · · ûl+1 ŷ1 ŷ2 · · · ŷl
û2 û3 · · · ûl+2 ŷ2 ŷ3 · · · ŷl+1
...

...
...

...
...

...
ûm ûm+1 · · · ûT ŷm ŷm+1 · · · ŷT−1





x=






ŷl+1
ŷl+2

...
ŷT






, (DE’)

where m := T − l. We assume that the time horizon is large enough to ensurem> 2l+1. The system (DE’) is satisfied
for exact data and a solution is the true value of the parameter x. Moreover, under additional assumption on the input
(persistency of excitation) the solution is unique.

For perturbed data an approximate solution is sought and the fact that the system of equation (DE’) is structured
suggests the use of the structured total least squares method. Under appropriate conditions for the data generating
mechanism an structured total least squares solution provides a maximum likelihood estimator. The structure arising
in the errors-in-variables identification problem isC =

[
H &

l (ud) H &
l (yd)

]
.

5.2 History of the structured total least squares problem

The origin of the structured total least squares problem dates back to the work of Aoki and Yue [4], although the name
“structured total least squares” appeared only 23 years later in the literature [12]. Aoki and Yue consider a single input
single output system identification problem, where both the input and the output are noisy (errors-in-variables setting)
and derive a maximum likelihood solution. Under the normality assumption for the measurement errors, a maximum
likelihood estimate turns out to be a solution of the structured total least squares problem. Aoki and Yue approach the
optimization problem in a similar way to the one presented in Section 5.3: they use classical nonlinear least squares
minimization methods for solving an equivalent unconstrained problem.

The structured total least squares problem occurs frequently in signal processing applications. Cadzow [10],
Bresler and Macovski [9] propose heuristic solution methods that turn out to be suboptimal with respect to the !2-
optimality criterion, see Tufts and Shah [80] and De Moor [13, Section V]. These methods, however, became popular
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because of their simplicity. For example, the method of Cadzow is an iterative method that alternates between un-
structured low rank approximation and structure enforcement, thereby only requiring singular value decomposition
computations and manipulation of the matrix entries.

Tufts and Shah propose in [80], a noniterative method for Hankel structured total least squares approximation
that is based on perturbation analysis and provides nearly optimal solution for high signal-to-noise ratio (SNR). In
a statistical setting, this method achieves the Cramer-Rao lower bound asymptotically as the SNR tends to infinity.
Noniterative methods for solving the linear prediction problem (which, as shown in Section 5.1, is equivalent to
Hankel structured total least-squares problem) are proposed by Tufts and Kumaresan in their seminal work [79, 33].

Abatzoglou et al. [1] are considered to be the first who formulated a structured total least squares problem. They
called their approach constrained total least squares and motivate the problem as an extension of the total least squares
method to matrices with structure. The solution approach adopted by Abatzoglou et al. is closely related to the one of
Aoki and Yue. Again an equivalent optimization problem is derived, but it is solved numerically using a Newton-type
optimization method.

Shortly after the publication of the work on the constrained total least squares problem, De Moor [12] lists many
applications of the structured total least squares problem and outlines a new framework for deriving analytical prop-
erties and numerical methods. His approach is based on the Lagrange multipliers and the basic result is an equivalent
problem, called Riemannian singular value decomposition, which can be considered as a “nonlinear” extension of the
classical singular value decomposition. As an outcome of the new problem formulation, an iterative solution method
based on the inverse power iteration is proposed.

Another algorithm for solving the structured total least squares problem (even with !1 and !∞ norm in the cost
function), called structured total least norm, is proposed by Rosen et al. [67]. In contrast to the approaches of Aoki,
Yue and Abatzoglou et al., Rosen et al. solve the problem in its original formulation. The constraint is linearized
around the current iteration point, which results in a linearly constrained least squares problem. In the algorithm of
Rosen et al., the constraint is incorporated in the cost function by adding a multiple of its residual norm.

The weighted low rank approximation framework of Manton et al. [44] has been extended in [70, 71] to structured
low rank approximation problems. All problem formulations and solution methods cited above, except for the ones in
the structured low rank approximation framework, aim at rank reduction of the data matrixC by one. A generalization
of the algorithm of Rosen et al. to problems with rank reduction by more than one is proposed by Van Huffel et al. [83].
It involves, however, Kronecker products that unnecessary inflate the dimension of the involved matrices.

When dealing with a general affine structure the constrained total least squares, Riemannian singular value decom-
position, and structured total least norm methods have cubic computational complexity per iteration in the number of
measurements. Fast algorithms with linear computational complexity are proposed by Mastronardi et al. [38, 55, 53]
for special structured total least squares problems with data matrixC=

[
A b

]
that is Hankel or composed of a Hankel

block A and an unstructured column b. They use the structured total least norm approach but recognize that a matrix
appearing in the kernel subproblem of the algorithm has low displacement rank. This structure is exploited using the
Schur algorithm.

The structured total least squares solution methods outlined above point out the following issues:

• structure: the structure specification for the data matrix C varies from general affine to specific affine, like
Hankel/Toeplitz, or Hankel/Toeplitz block augmented with an unstructured column,

• rank reduction: all methods, except for [83, 70, 71], reduce the rank of the data matrix by one,

• computational efficiency: the efficiency varies from cubic for the methods that use a general affine structure to
linear for the efficient methods of Lemmerling et al. [38] and Mastronardi et al. [55] that use a Hankel/Toeplitz
type structure.

Efficient algorithms for problems with block-Hankel/Toeplitz structure and rank reduction with more than one are
proposed by Markovsky et al. [50, 49, 48]. In addition, a numerically reliable and robust software implementation is
available [46].

5.3 Structured total least squares problem formulation and solution method

LetS :Rnp →Rm×(n+d) be an injective function. A matrixC ∈Rm×(n+d) is said to beS -structured ifC ∈ image(S ).
The vector p for whichC= S (p) is called the parameter vector of the structured matrixC. Respectively, Rnp is called
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the parameter space of the structureS .

The aim of the structured total least squares problem is to perturb as little as possible a given parameter
vector p by a vector Δp, so that the perturbed structured matrixS (p+Δp) becomes rank deficient with
rank at most n.

Problem 14 (Structured total least squares). Given a data vector p∈Rnp , a structure specificationS :Rnp →Rm×(n+d),
and a rank specification n, solve the optimization problem

Δpstls = argmin
Δp

‖Δp‖ subject to rank
(
S (p−Δp)

)
≤ n.

In what follows, we will use the input/output representation

S (p−Δp)Xext = 0, Xext :=
[
X
−I

]

of the rank constraint, so that the structured total least squares problem becomes the following parameter optimization
problem

X̂stls = argmin
X ,Δp

‖Δp‖ subject to S (p−Δp)
[
X
−I

]
= 0. (STLSX)

The structured total least squares problem is said to be affine structured if the function S is affine, i.e.,

S (p) = S0+
np

∑
i=1

Sipi, for all p ∈ R
np and for some Si, i= 1, . . . ,np. (AFF)

In an affine structured total least squares problem, the constraintS (p−Δp)Xext= 0 is bilinear in the decision variables
X and Δp.
Lemma 15. LetS : Rnp → Rm×(n+d) be an affine function. Then

S (p−Δp)Xext = 0 ⇐⇒ G(X)Δp= r(X),

where
G(X) :=

[
vec

(
(S1Xext)&

)
· · · vec

(
(SnpXext)&

)]
∈ R

md×np , (G)

and
r(X) := vec

((
S (p)Xext

)&)
∈ R

md .

Using Lemma 15, we rewrite the affine structured total least squares problem as follows

min
X

(
min
Δp

‖Δp‖ subject to G(X)Δp= r(X)
)
. (STLS′X)

The inner minimization problem has an analytic solution, which allows to derive an equivalent optimization problem.
Theorem 16 (Equivalent optimization problem for affine structured total least squares). Assuming that np ≥ md, the
affine structured total least squares problem (STLS′X ) is equivalent to

min
X
r&(X)Γ†(X)r(X) where Γ(X) := G(X)G&(X), (STLS′′X)

and Γ† is the pseudoinverse of Γ.
The significance of Theorem 16 is that the constraint and the decision variable Δp in problem (STLS′X) are elimi-

nated. Typically the number of elements nd in X is much smaller than the number of elements np in the correction Δp.
Thus the reduction in the complexity is significant.

The equivalent optimization problem (STLS′′X) is a nonlinear least squares problem, so that classical optimization
methods can be used for its solution. The optimization methods require a cost function and first derivative evaluation.
In order to evaluate the cost function for a given value of the argument X , we need to form the weight matrix Γ(X) and
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to solve the system of equations Γ(X)y(X) = r(X). This straightforward implementation requiresO(m3) floating point
operation (flops). For large m (the applications that we aim at) this computational complexity becomes prohibitive.

It turns out, however, that for the special case of affine structures

S (p) =
[
C1 · · · Cq

]
, for all p ∈ R

np , where Cl, for l = 1, . . . ,q, is
block-Toeplitz, block-Hankel, unstructured, or exact.

(A)

the weight matrix Γ(X) has a block-Toeplitz and block-banded structure, which can be exploited for efficient cost
function and first derivative evaluations. According to Assumption (A), S (p) is composed of blocks, each one
of which is block-Toeplitz, block-Hankel, unstructured, or exact (an exact block Cl is not modified in the solution
Ĉ := S (p−Δp), i.e., Ĉl =Cl).
Theorem 17 (Structure of the weight matrix Γ [50]). Consider the equivalent optimization problem (STLS′′X ). If in
addition to the assumptions of Theorem 16, the structure S is such that (A) holds, then the weight matrix Γ(X) has
the block-Toeplitz and block-banded structure,

Γ(X) =






Γ0 Γ&1 · · · Γ&s 0

Γ1
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . Γ&s

Γs
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . Γ&1

0 Γs · · · Γ1 Γ0






,

where s=maxl=1,...,q(nl−1) and nl is the number of block columns in the blockCl .

6 Conclusions

We reviewed the development and extensions of the classical total least squares problem and presented a new total
least squares problem formulation. The new formulation is a matrix low rank approximation problem and allows
for different representations of the rank constraint. Once a representation is fixed the matrix low rank approximation
problem becomes a parameter optimization problem. The classical total least squares formulation results from the new
one when an input/output representation is chosen. The input/output representation is a linear system of equations
AX = B, which is the classical way of addressing approximation problems. However, the input/output representation
is not equivalent to the low rank constraint, which leads to non-generic total least squares problems. Using the
representation-free formulation, we classified existing total least squares solution methods. The existing methods
differ in the representation and the optimization method used.

The basic and generalized total least squares problems have an analytic solution in terms of the singular value
decomposition of the data matrix, which allows fast and reliable computation of the solution. Moreover, all globally
optimal solutions can be classified in terms of the singular value decomposition. In contrast, more general total
least squares problems like the weighted and structured total least squares problems require numerical optimization
methods, which at best find a single locally optimal solution. The separation between the global total least squares
problem and general weighted and structured total least squares problems is an important dividing line in the total
least squares hierarchy.

We emphasized the double minimization structure of the total least squares problems and showed how it can be
used for deriving efficient solution methods. The key step in our approach is the elimination of the correction by
analytically minimizing over it. Then the structure of the data and weight matrices are exploited for efficient cost
function and first derivative evaluation.
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