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ii CONTENTS

This is an introduction to some of the concepts and resulim@ar algebra
that supplements the course “E2 212: Matrix Theory” offardthe department of
ECE at the Indian Institute of Science, Bangalore durinig2fdl2. The document
is not a comprehensive study of linear algebra. Unlike anthefstandard text
book, | will not attempt to prove every theorem that is statethe document. |
recommend the reader to refer to the class notes for a mareotig coverage of
the subject.



Chapter 1

Vector Space

1.1 Basic Notions

Consider the following set:
R? = {(x1,29) : 21 E R, € R} . (1.2)

The above set is the set of all vectors in a two dimensionabpce. We expect
this space to have the following property(if;, z») € R? and(y;,y.) € R?, then
the sum defined byry, 5) + (y1, y2) := (1 + y1, 22 + y2) € R?. The order in
which we sum isirrelevant, i.e(41, z2) + (y1, y2) = (y1, y2) + (21, 22). Similarly,
if a vector is enlarged or contracted, it still remainsRA, i.e., if (x,, 25) € R?,
a € R, thena(zy, 13) = (v1,79)a := (axy, awy) € R% Obviously, thezero
vector0 := (0,0) € R?. This along with the definition of vector addition, it
is easy to see that the zero vector isatitive identityelement of the vector
spaceR?, i.e., adding any vector to it will not change the vector. Eeery vector
(71, 22) € R?, there is a vectof—x;, —z,) such that the sum of the two gives the
zero vector, the identity element. Take three vecteiszs), (y1, y2), (21, 22) in
R2 Then[(z1, 72) + (y1,y2)] + (21, 22) = (21, 22) + [(y1,92) + (21, 22)]; the order
in which the sum is taken is irrelevant.

Now, it is interesting to see if there are any other spacel thiese proper-
ties. We expect that the three dimensional space that wénlisieould also have
these properties. But the way we add these vectors are Igligjfferent. For
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2 CHAPTER 1. VECTOR SPACE

example(xy, xo, 13), (y1, y2, y3) € R?, then the sum is defined &s,, zo, v3) +
(y1,Y2,y3) := (1 + y1, 2 + Yo, 3 + y3). Note that the “plus” here is quite dif-
ferent from the “plus” in the case @®2. Thus, while defining a vector space it is
crucial to define the “plus” that makes the space a vectoresdasill leave it for
the reader to convince themselves that by properly defitagddition, additive
identity and scalar multiplication, the spaké obeys all the properties mentioned
in the case ofR?.

Now consider the following set

R" :={(x1,29,...,2,) i, E R i =1,2,...,n}. (1.2)

Now, can be thinkof objects of the formx := (xy, 25, ..., 2,) as vectors? This
motivates us to abstract all the propertiesR¥t. This requires the following two
operations:

e \ector addition (the “plus”)

e Multiplication of vectors with scalars

Definition (Vector space) A sét is said to be a vector space oveiif there exist
maps (the “plus”y : (V xV) — R defined by(z, y) — = +y, and multiplication
(o, z) : R xV — R defined by(a, x) := ax, satisfying the following properties:

e Vx,yeV,o4+yeV

There exist @ suchthatvvz € V,0+ 2 ==z

Vx € Vthereisay € Vsuchthat +y=0=y+x

Forallz,y,z € V,we have(z + y) + 2z = = + (y + 2)

Forallz,y € V and for alla € R, a(x + y) = ax + ay
o lr ==z

e Foralla, 8 € R, andz € V, we have(af)z = a(fx)

1 will leave it for you to see that the spa@"® behaves likeR?>.
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Please check tha®” overR is a vector space by defining the above two maps.
Now, one might ask whether can we replacefim the definition above by some
other set? The answer is yes if the set that we replace withldglemjoy some
properties common t®. The exact property that we require is the property of a
field. In general, while talking about a vector spacewe say thal’ is a vector
space over a fiel@. In the initial part of this notes, we consider the undenyin
field to beR (or C in some cases).

Up to this point, we have been giving examples of a vectorepiaat seems
to be a natural extension @&2. However, the following provides an example of
some objects that can be viewed as vectors but not an obwéersston ofR™.

Example: Consider the set of all functions definedds= {f : X — R},
where X := [0, 1] is a non-empty compact set. Supposing that thefset a
vector space, then we can visualize the functions as vectors. The geometrical
viewpoint helps us to understand these strange lookingctshje a better way!
Now, we will see whether the sét is a vector space or not. In fact, we should
also mention the field over which the vector space is defined.

Now, we will look at the first property in the definition of a tecspace. Let
f1, fo € F, then we need to find wheth¢r + f, € F' or not. What is the meaning
of “+” here. Now, let us define the addition(&@s+ f>)(z) := fi(z)+ fo(z) for all
x € X. With this definition, and the property that the sum of comtins function
is a continuous function, it is clear that the sum of two fimtalso belongs té'.
Taking the underlying field aR, we see that for alv € R and f € F', we have
(af)(x) := af(xr) € F. Now, we define the zero functidhas f(z) = 0 for all
x € X. Itis easy to see that this function is the additive ident#ly easy exercise
also shows that the functions commute and the order in wiietfunctions are
summed over does not matter. This shows that thé'seta vector space oveR.

Consider a vector := (x1,,...,x,) IN R™. This vector can be written
asz = z1(1,0,...,0) +22(0,1,0,...,0) + ... + 2,(0,0,...,0,1). We call the
set of vectors; := (0,0,...,1,0,...,0), 1 inthe:" position,i = 1,2,...,n as

standard vectors. This motivates us to have the followiriopdi®n.

Definition Let xy,z»,...,x, be any set of vectors in a vector spadéeoverR,
and leta; € R,i = 1,2,...,n. Then the vectorvx; + asxs + ... + @, 2, IS
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called the linear combination of the vectars zs, . . ., z,,.

Another interesting fact about the standard vectors isdhat + ases + ... +
ane, = 0 implies that all the coefficients have to be zero. Geomdlyigameans
that no more than two vectors lie in a plane!

Definition We say that the vectors,, z», . .., x,, in a vector spac& overR are
linearly independent if for, € R,i=1,2,...,n,

1Ty + oo + ...+ oz, =0
implies thato; =0 foralli =1,2,... n.

The standard vector has another interesting property tiyatector inR"™ can be
written as a linear combinations of it (check!).

Definition We say that the vectors,, z», ..., z, in a vector spacé” over R
spans the vector spaéeif for all z € V, there exists a set of numbeis € R
such thatt = a1 + s + ... + .

ExerciseProve that ifcq, zs, . . ., x,, Spans the vectors space thgnz,, ..., z,,
also spans the vector spacdor all z € V.

The above exercise indicates that in the spanning set obrgetitere could
be some redundancies. This, however, can be removed onechiyllgrou get a
spanning set from which removing even a single vector frowilltmake the set
loose the property of a spanning set. More precisely,

Definition A setxy,z»,...,z, is called a bases vector of the vector spacé
the set is linearly independent and spans the vector spacéhe numbem is
called thedimensiorof the vector space.

Now, we ask the following question: Is the dimension unidligs requires us to
prove an important lemma called the replacement lemma:
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Lemmal Letvq,...,v, be a set of bases vectorsin Letwv be
any non-zero vector ifv. Then there exists a vectoy such that
replacingv; by v, the vectorg vy, v, ..., v, ..., v,) retains the
bases property.

Proof: Sincev € V anduv, ..., v, is a bases vector, we have= > """ | o,v;
with at least oney; # 0. Without Loss Of Generality (WLOG), let this leg # 0.
This implies thatv; can be written ag; = o% — 22;2 Z—ivj, which is a linear
combination ofv, v, ..., v,. It follows that this set of vectors spans the vector
spacé/. Now, the claim i, vy, . .., v, is a bases vector. First, we will prove that

itis linearly independent, i.e.,

Zﬁkvk + v =0

k=2

implies3; = 0 forall i = 1,2,...,n. Substituting forv = " | a;v;, we get
Bava + Bsvz + ..., +Buvn + Bi(0avr + aove + ... 4+ uy) = arfivr + (B2 +
ag)vg + (B3 + asfr)vs + ..., +(0, + fraw)v, = 0. By linear independence of
vy, ..., Uy, We havex; 6, =0, o+ a1 = ... = 08,4+ fia, = 0. Froma; 6, =0
implies 3; = 0 sincea; # 0. Now, usings; = 0, we haves, + a,; = 0 implies
B, = 0, and so on. Thus, all the coefficients have to be zero. Thereioe set of
vectorsv, v, . . ., v, are linearly independentl

Now, we will show that the dimension is unique using the abepdacement
lemma.

Theorem 1 The dimension of the vector space is unique. |

Proof: Suppose for the sake of contradiction there are two setsaséd say
vy, ..., v, @andug, ..., u,, m # n. Further, WLOG, letn < n. Sinceu; # 0, by
using the replacement lemma, we can replace one of the bastes v, . . . , v,
saywv; with w;. This results inuq, vs, . . ., v,, Which is linearly independent. Sim-
ilarly, WLOG, replacingu, by u,, we getuy, us, . . ., v,. By repeatedly using the
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replacement lemmas, continuing this procedure until alfttstvy, ..., v,, are
replaced byuy, ..., u;,, We getuy, ..., Un, Unil, .-, Up. SINCEUY, ..., U, are
assumed to be linearly independent, the veator . ., u,,, vy41, - .., v, cannot

be linearly independent, a contradiction. Therefate= n. [
ExerciseLet V' be a finite dimensional vector space of dimensionThen,
prove that any set of vectors having more thaglements are linearly dependent.
Now, we state and prove the following lemma:

Lemma 2 Any linearly independent set of vectors insamlimen-
sional vectors space can be extended to form a bases.

Proof: Letvq,...,v,, m < n be an independent set of vectorslin By
assuming that the bases exjd&t u, . . . , u,, be any bases vector. By replacement
lemma, WLOG, we can replace the first elements of the bases hy, ..., v,
resulting invy, ..., vy, Uma1, - - - , Uy, retaining the bases property. This is indeed
an extension of the,, . . ., v,, to a bases vectorl

The above theorem relied on the fact that the bases existfl! tis seems
guestionable. However, thanks to the following remarkéid®rem which proves
the existence of bases.

Theorem 2 In any finite dimensional vector space, there exists a
bases.

Proof: The proof is omitted for the time being. In fact, the proofotves using
the Zorn’s lemma in set theory.

Exercise Prove that any vector in a finite dimensional vector spacebsan
uniquely represented as a linear combination of basesngecto

From the title, one may wonder what a vector space has got tattianatri-
ces. Recall that a matrid € R"*™ consists of thej-th entry beingu;; € R.
For example, consider the set of all matrices of dimensiox n denoted by
the setM,, ,,. Itis an easy exercise to show that it is a vector space Bvef
dimensionmn. However, this turns out to be a not so elegant way of looking a
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matrices in vector space theory. Now, we will show that thelgbf vector spaces
Is important by viewing matrices as a representation of @alirmap for a given
bases.



CHAPTER 1. VECTOR SPACE



Chapter 2
Linear Transformation

Consider the following set of linear equations:
y = Az, (2.1)

wherez € R™ and A € R™". Naturally, in these kind of problems, one is
interested in finding the solution far. In order to investigate whether can we
find a solution forz or not, we have to study the behavior of the matdix In
particular, A takes a vector inRR" to a vector in the same space. Further, the
matrix as a mapping is linear in the argument. Finding thatsmi to the above
set of linear equations amount to finding the whether theirmadthas an inverse
or not? If at all the solution exists, one way to solve the &bproblem is to
reduce the matrix to a simpler form such as diagonal, uppeef triangle form
etc. Now, the following questions arise:

e whether the inverse exists or not?
e when can a matrix be diagonalized, and how we do it?
e can we transform any matrix to an upper/lower triangle form?

To answer these questions, we will take a slightly genesaldgioint of view-
ing the matrices as linear transformations, which is dortberfollowing section.

9



10 CHAPTER 2. LINEAR TRANSFORMATION
2.1 Linear Transformation and its Properties

First, we give a definition for linear transformation.

Definition AmapT : V — W between two vector spacésandlV is said to be
linear if the following property is satisfied:

o T(avy + fPvy) = aTvy + BTv foralla, f € R

Now, we return to the question that we posed in the beginnfrifie chapter:
when does the inverse f@rexists? Intuitively, for all vectow € W, there should

be a corresponding elementc V' that the linear transformation maps to, and
it should be unique. First of all, the question makes sensigeispacdl is as
big/small asV’. Otherwise, there is no hope of finding the inverse. The above
intuition brings in the notions of surjective mapping aneéamne mapping, which

is defined in the following:

Definition AmapT : V — W is said to be surjective if for eveny € W, there
exists an element € V' such thatl'v = w.

Definition AmapT : V — W is said to be injective (or one-one) if for all € V'
anduvy € V, Tvy = Tvy impliesv; = vsy.

Definition The image of a mafi’ : V' — W is defined admag(T) := {Tv :
veVl.

Definition The kernel or Null of amafi’ : V' — W is defined asVull(T') :=
{veV :Tv=0e W}

It is an easy exercise to show thatag(T') is a vector space (Exercise). But
note that'mag(7") C W. This calls for defining another notion called a subspace.

Definition Let V' be a vector space. A spateC V is said to be a subspace if
forall uy,us € U = auy + Puy € U forall o, 8 € R.

Exercise: Check that the above is a valid definition for subspaces.

As noted earlier, the inverse of a map exists if and only ifrtte@ covers the
entire range and the mapping is unique, which is the essentte dollowing
theorem.



2.1. LINEAR TRANSFORMATION AND ITS PROPERTIES 11

t

Theorem 3 A mapT : V — V is said to be invertible if and only if
is surjective and injective, i.e., it is bijective.

Proof: Directly follows from the definition of surjective and imgve map-
pings.]

Now, one may wonder what is the use of the above theorem.dalyrhard to
check for these properties! This motivates us to investigame other properties
of a map that implies invertibility and it is easily verifigl Instead of trying
out different things, let us see whether there are any ottogrgpties of a map that
implies that the map is surjective and injective. Let us firgéstigate the property
of a map being injective.

Suppose let the map be injective. Then, for all forwalle V andv, € V,
Tv; = Tvy impliesv; = vy. Let us also assume that the map is linear, we have
Tvy =Tvy = T(vy —vy) =0 € W. Thisimpliesthat; —v, =0€ V = v =
vy. This implies that if the map is injective then the Kernel @ins only the zero
vector. In other words,

Theorem 4 If the linear mapT : V — W is injective then the
Null(T)=0¢€ V.

Now, let us use the above argument in the reverse direct@mnlgtNull(T) =
0 € V. Let there exists vectors, v, € V' such thatl'v; = Tv,. From linearity,
this impliesT (v, — v9) = 0 € WW. By the assumption tha¥ull(7) =0 € V, we
havev, = vy. This proves that itVull(T") = 0 € V, then the map is injective.
Now, we state the following theorem:

—

Theorem 5 The linear mapl’ : V' — W is injective if and only i
Null(T)=0¢€ V.

Since Null(T) is a subspace df, then how big isNull(T), i.e., what is the
dim(Null(T))? Now, we will answer this question in the general situation.
SinceNwull(T) is a subspace df, letvy, . . ., v, be a bases vector afull(T).
By thebases completion lemmthis can be extended to a bases of the entire space
V. Without loss of generality, let this be,, ..., v, Vmit, - -+, Umn, 1.€., the
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dimension o ism+n. Now, we know thaf'v; =0 € Wforalli =1,2,...,m.
Consider

TUm+1, TUm+2, . 7TUm+n,

which is in the range space @f. Since range space is a subspace, we expect
that the bases should be relatedTto,, .1, Tvn12, ..., TUmin. NOW, letw €
I'mag(T). Then, there exists a vector:= """  «au; € V such thatl'v =

w. This implies thatl'v = """ «;Tw;, which is a linear combination of
Tvmi1, TOmsa, ..., Tvme,. Since every vector in the range space can be written
as a linear combination dfl"v,, 11, Tvm12, - - s TOman},

{TUm+1, TUm+2, . 7TUm+n}

spans/mag(T). Naturally, we ask whether this set vector forms a basesy Onl
condition that we need to check is the linear independenagition. Let

m—+n
i=m+1
By linearity,
m—+n m+n
i=m-+1 i=m+1
This implies thatzz’j,’fﬂ ;v; = 0 (why?). By linear independency of the set
{Um-i-la e avm+n}>
we haves!s = 0. This proves that the vect¢f'v,, 1, Tv 12, . . ., TV } fOrms

a bases of the image @f. Now, from the above, we have that the dimension of
I'mag(T) is n, the dimension of the Kernel &f is m, and the dimension df is
m + n. Thus, we have the following theorem:

Theorem 6 For every linear mag@' : V. — W, we have

dim(Imag(T)) + dim(Null(T)) = dim(V).
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Now, if Ker(T) = 0 € V, then the above theorem implies thétn (1) =
dim(Imag(V)). If V.= W, thendim(Imag(V')) = dim(V'), the entire space.
Thus, the map is both injective and surjectivesiér(7) = 0 € V andiW = V!
Thus, we have:

—h

Theorem 7 A linear map7' : V — V is invertible if and only i
Ker(T) = 0.

Remark:We will define the dimension of the image of a linear map asait,
denoted-ank(T'). The above theorem can be restated as rank plus nullity opa ma
T is equal to the dimension of the vector sp&teAlthough, we promised to arrive
at a condition that is easily verifiable, it looks like the ddion Ker(T) = 0 is
hard to check. Instead, let us check if we can say somethiagtdber(7") #

0. This implies that there exists at least one veatoe V', v # 0 such that
Tv = 0. This can be written in a slightly different forffi(v — 0v) = 0. Those
who are already familiar with the notions of eigenvectord aigenvalues would
immediately recognize that the above is a problem of findihgtiwver a map has
zero as its eigenvalue or not. This seems promising as it atada solving a
polynomial! At least now, we have some hope that ther-(7") is computable,
and we can hope to answer whether the inverse of a map existg.oWith this
hope, we continue to study some additional properties ofeali map and relegate
the study of eigenvectors and eigenvalues to the next achapte

Note that all matrix transformation of the ford: comes under linear trans-
formation. Is the converse true? In the following, we showat tiis is indeed
true!

2.2 Matrices and Linear transformations

In this section, | will excuse myself by giving a “not so” rigus explanation of
why a matrix can be thought of as a representation for anatir@nsformation
in a vector space with a fixed basis. Consider a linear ffiapl’ — W. Let
vy, ...,v, andwy,...,w,, be a set of bases vectors fgrand W, respectively.
Now, consider any vectar € V. Now, let us investigate the action @fon v.
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Sincev € V, we havev := " | o,v; for someas € R. Now, by linearity, we

have . .
Tv = TZaivi = ZaiTUi.
i=1 i=1

Note thatT'v; € W, and therefordv; := Z;”zl Bi;w; for someg;; € R. Upon
substitution, we have

Tv:Zai

n m
i=1  j=1

Bijw; = Z @i fijw;.
Z'hj

Now, sincel’v € W, we havel'v := 3 " | v;w; for somey; € R. Equating both,
we get

Z Oéiﬁijw]' = Z ’)/Z"LU]'.
%7 7j=1
This implies that

Z iy = Z i
J J

This in matrix form becomeB8A = I', whereg;; is theij—th entry of B € R™*",

«; is thei™ entry of A, and~; is the ;" entry of I". For a fixed bases vector, the
variables that depends on the vectas A andI’, and not the matrix3. Thus,
for a given bases, any linear transformation seems to haaramepresentation.
Now on, we can think of linear transformations as matriceh wifixed bases. We
state this result as a theorem. We leave it for the readesetthesabove discussion
as a hint and rigourously prove the following theorem.

Theorem 8 There is a one-one correspondence between the set of all
linear maps from/ to W of dimensions: andm, respectively, and
the set of alln x n matrices.

With this remarkable theorem, all the properties mentionettiis book thus
far holds true even for the corresponding matrices. In otlueds, we can replace
linear transformation everywhere with matrices in this kloblow, let us return
to the question that we posed in the beginning of this chapéerwhen does the
inverse of a matrix exists? From theorem 7, it amounts tokihgdf there is a
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nonzero vector € R™*™ such thatAz = 0. By stacking the columns of the
matrix A asA := [a; az ... a,), and writingz = [zy,...,2,], the equation
Az = 0 can be rewritten a§ ", z;a, = 0. This is just the linear combination
of the columns of the matrix. Thus, the matrix inverse exilsend only if the
columns of the matrix are linearly independent. This linedependency of the
columnsis defined as column rank. Similarly, one can defiaedw rank. Is there
any relationship between column rank and row rank? In theelegve address
this question.

First, we observe the following interesting fact. For anytmmaA, the linear
map7 : R™™ — R™™ defined byT'(e;) := a;, wheree; is the standard bases
vector, has one-one correspondence with the matrix for a fixed atdnohses
(check!). Now, we can define the rank of the matd»as the rank of the corre-
sponding linear transformation, which is equal to the disi@m of the image of
T. Note thatTe;, i = 1,2,...,n must span thédmag(T). ButTe; = a;. This
implies that the rank ofl is equal to the number of linearly independent columns
of the matrixA. Now, is this equal to the number of linearly independentsaiv
A? The answer is yes!

Theorem 9 Row rank of any matrixl € R"*" is equal to the column
rank of A.

Proof: Let the column rank ofA ber > 0. Letey,...,c. be a bases for the
column space, and €t := [cy, ..., c.] € R™*". Then, each columns of can be
written as a linear combination of the bases. In matrix fomtan be written as
A = CR, whereR € R™*" contains the coefficient of the bases expansion. Note
that the column rank af’ is ». Now, each rows of the matrix can be written as a
linear combination of the rows @t with coefficients being the elements frath
Thus, the row space of is contained in the row space & Thus, row rank of
Ais less than or equal to the row rank 8fwhich is at most. This implies that
the row rank ofA is at most equal to which is equal to the column rank df by
assumption. Now, applying the same argument to the traesplag completes
the proof.(J

1This consists of one in thé&" position and zeros in the rest of the positions
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Remark: This proof seems a little constructive in nature. There m@e
elegant alternative proof of the above theorem which willifteoduced in the
next chapter.

Since we now know that the column rank and row rank are equatam pose
the following questions:

e what happens to the rank of a matrix when it is multiplied bgtaer matrix
of full rank?

e what happens to the rank of a matrix when it is multiplied bgtaer matrix
which is rank deficient?

e what happens to the rank of a matrix by additive perturb&tion

We answer these questions in a more general fashion in tiseguént theorems.

Theorem 10 Let A € R™™ and B € R™*P. Then,

rank(AB) < min{rank(A), rank(B)}.

Proof: ConsiderC' := AB. From the proof of theorem 9, the column rank of
C'is at most equal to the column rank df which is equal ta-ank(A). On the
other hand, the row rank @f is at most equal to the row rank &, i.e.,rank(B).
Combining the two, we get the desired inequalify.

The above theorem says that by multiplying a mattixvith another matrix
can only reduce the rank of the mateix Now, we will answer the last question
posed above.

Theorem 11 (Rank Inequality Theorem (RIT)) Let € R™*™ and
B € R™". Then,

rank(A+ B) < rank(A) + rank(B).

Proof: We prove this result in stages. First, consider

rank(A+ B) := dim{Imag(A+ B)} = dim{Ax + Bx : x € R"}.
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Now, we investigate the set
{Ax + Bz : x € R"}.

Note that/mag{A} andImag{ B} are subspaces. The detx + Bz : v € R"}
can be viewed as the sum of two subspaces. This occurs friggueninear
algebra and it deserves a definition.

Definition Let U and W be subspaces df. Then the direct sun/ & W is
defined as
UapW ={ut+w:uelUweW}

Verify that the direct sum is indeed a subspace. Also, na@etkie intersection
of subspaces is again a subspace. Let us denote the iniendgct/ N W = {z :
reUNW}CV.

Let us denote the image of and B by U and W, respectively. Now, con-
sider the bases,, ..., x; of U N W. This bases can be extended to the subspace
UorWorU @ W. Let us denote the extension of,...,x; to U andWW by
By = {x1,...,x, 241, s T}y @nd By = {1, ..., 2, T141, . . ., Tn}, FESPEC-
tively. Now, consider the union

BIUB2 = {.Tl,...,l’l,$l+1,...,l’m,.i’l+1,...,.fn}.

We claim that this is a bases bf® WW. Supposing that this is true, then the proof
is complete by a simple observation tha& | | Bs| = |Bi| + |Ba| — |B1[) Bal,
which implies that B, | By| < |By| + | Bal.

Clearly, B; | B, spans the direct sum. Therefore, we need to prove that it is
linearly independent. Consider the linear combination

ZO[Z'ZE'Z‘ + Z ﬁjfj = 0.
i=1

J=l+1
Now, we prove that all the coefficients have to be zero. Forsidles of
contradiction, let us assume that some# 0. Then, we can write the vector
Tp = o | Doy i+ D @»jj}. This means that the vectot is in the

a;
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span ofB; | Bz/x;. Thus,B; |J B2/ x; still spansU & W. However, by remov-
ing z; from B;, any vector of the formu + 0 € U & W cannot be written as

a linear combination ofx1, ...,z x4, . . ., T, Tig1, - - -, Tn }/2;, @ contradic-
tion. Therefore, none of the,s can be nonzero. By a similar argument, it is easy
to see that none of th& s can be nonzero. Thus, all the coefficients have to be
zero, which proves linear independentcy.

Now, as a relatively straight forward extension of the rardquality theorem,
we have:

Theorem 12 Let A and B be two matrices oveR of same dimen-
sions. Then,

|rank(A) — rank(B)| < rank(A — B) (2.2)

Proof: Writing (2.2) in its glory, we have
—rank(A — B) < rank(A) — rank(B) < rank(A — B) (2.3)

Let us first prove the second inequality, ilnk(A) < rank(A— B)+rank(B).
This is easy. Note that = A + B — B. From theorem 11, the rank ¢f can be
upper bounded as

rank(A) = rank(A+ B — B) < rank(A — B) + rank(B).

This proves the second inequality above. Now, writihg= B + A — A, the rank
of B can be upper bounded as

rank(B) < rank(B — A) + rank(A).

Sincerank(B — A) = rank(A — B), the first inequality follows

The following is a simple result which follows directly bying A = A+ E —
E, and then using the RIT.
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Corollary 1 Let A € R™ ™ with rank(A) = r and E € R"™" with
rank(E) = k,r < n, then

r—k<rank(A+ FE)<r+k. (2.4)

Yet another theorem.

Theorem 13 Let A € R™*", and letB € R"*? be such thatiB = 0.
Then,

rank(A) + rank(B) < n.

Proof: The equalityAB = 0 implies that the columns of the matrix are in
the null space ofi. This implies that the image spaceBfis in the null space of
A. Thus,Null(A) C Imag(B) implies that

dim(Null(A)) < dim(Imag(B)) = rank(B).
Applying the rank-nullity theorem to the map: R" — R?, we get
rank(A) + dim(Null(A)) = n.

Usingdim(Null(A)) < rank(B), we getrank(A) + rank(B) < n. O
Let me state another theorem mainly to illustrate some Upedof technique
in linear algebra.

Theorem 14 Let A € R ", and letS be a subspace qR". Let us
denote the image of underS as

A(S) :={Ax: 2z € S}.

If Null(A) NS = 0, thendim(A(S)) = dim(S).

Proof: First, it is easy to see that(S) is a subspace. Therefore, there ex-
ists a bases of, sayuz,...,z,. OperatingA on these bases vector, we get
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Axy, Az, ..., Az,. Now, the claim is that these set of vectors forms the bases
of A(S). First, we prove that the above set of vectors sp&fs). Consider any
vectory € A(S). Sincey € A(S), there exists a vectar € S such thaty = Ax.
Butz :=Y"" , o, for somea)s € R. Thisimpliesthay = Az = >""" | a; Ax;.
Note this is a linear combination olxz;, Az», ..., Azx,. Further, any vector
y € A(S) can be written in this form. Thuslzy, Ax,, ..., Az, spansA(S).

Next, we will show that this set of vectors are linearly indegent. Consider
the following linear combination:

=1
= A Bui=Ay=0 (2.6)
=1

for somey = " | Biz;. Thus, allg;’s are zeros provided the vectgris zero
which happens only when the null space is zero. That i§ifl(A)(S = 0,
then) " | B;z; = 0, which implies that3; = 0 forall i = 1,2,...,n by linear
independency ok, ..., z,. Thus,Az,..., Ax, are linearly independent, and
therefore it forms a basesl

For any given matricest € R"™*"™ and B € R"*P, consider the following

matrix:
M = 40 (2.7)
0 B

It is interesting to see what is the rank/af in terms of the ranks ofl andB. We
will state this result as a theorem below:

Theorem 15 For any given two matricegd € R™*" and B € R"*?,
we have
A0

rank N = rank(A) + rank(B). (2.8)

Proof: Easy exercise.]
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Next, let me illustrate the use of the above theorem. Considefollowing:

I, 0
rank ( 0 AB ) =n+rank(AB). (2.9)

Now, supposing that we carry out a transformation of the maising a set of
rank invariant transformation that results in a differerdtrix but with a similar
structure as above, we get a new set of inequalitiest us try this on the above
matrix itself.

(F2)-(0) () (2h) e
0 AB A AB A0 0 A

Since the above is a rank invariant transformation, we have

I, 0 B I,
rank = n+rank(AB) = rank > rank(A)+rank(B).
0 AB 0 A

(2.11)
This leads to the following theorem:

Theorem 16 (Frobenius inequality) For any two matrices € R™*™ and B €
R"™*P, we have the following rank inequality:

n + rank(AB) > rank(A) + rank(B).

Now, you see how to prove some of the not so trivial rank inéties. Let us
see if we can give a more sophisticated inequality. Towdrndsconsider

( B0 ) 12
0 ABC

The rank of the above matrix igink(B) + rank(ABC'). Let us do some elemen-
tary transformation on the above matrix as follows:

B 0 B 0 B —-BC BC B
— — —
0 ABC AB ABC AB 0 0 AB

(2.13)

2Can you figure out the transformation that is done below?
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Thus, we have

B
rank 0 = rank(B)+ rank(ABC)
0 ABC

0 AB
> rank(BC) + rank(AB).

= rank ( be B ) (the last matrix above)

This is summarized in the following lemma:

Lemma3 Let4A € R™*", B € R™*?, andC € RP*4, Then,

rank(B) + rank(ABC) > rank(BC) + rank(AB).

Exercise Let A € R™*". Then, prove that
rank(I,, — AAT) — rank(I, — ATA) = m — n.

Hint: Write the above asank(l,, — AAT) + n = rank(l, — AT A) + m, and
construct the corresponding matrix and perform the appatgpelementary trans-
formations.

The following section can be skipped in the first reading.

2.3 Isomorphisms and Homomorphisms

Consider two vector spacésandlV both of finite dimensions over the same field
F. Note that till now we have been considering a real field. Hmreextending
the study of linear operators to any other field is not difficul

Now, let us consider the special case of the dimensions ahd I/ being
equal ton. By the existence of bases theorem, there are two sets o bastors
By :={uy,...,u,} andBy := {wy, ..., w,} of U andWW, respectively. Now, one
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can define a map as follows:
f:U—-W (2.14)

such that
e it maps bases to bases, i.£(1;) := w;, i = 1,2,...,n, and

e it preserves the structure of a vector space, f.@vu; + Sus) := af(uy) +
Bf(us), uy, us € U foranya, 3 € F.

With the above map, consider any vectore U. This can be written as
uw =Y o;u; for someas € F. With this it is easy to see that the inverse of
the map exists, which is explained as follows.

For any vector inv € W, we have

wo= Zﬁlwl (2.15)
= Z@f(u» (2.16)
= f(Z@-uZ) (2.17)

i=1
= f(u), (2.18)

whereu := "7 | oyu; € U. In other words, given any vector in € W, there is

a corresponding vectar € U that the function maps to. This implies that the map
is surjective! Is the map one-one? For any two vectoagdu in U, f(u) = f(u)
impliesu = u (prove this!). This implies that the map in one-one. Thus,Ittap

is bijective. It is not just bijective but also preserves #ieicture of the spaces.
To put it differently, all that the may is doing is to in some sense relabel the
vectors inU. The key property that preserves the structure is the squaprty

of the map. We give a hame to such mappings, which is definedllasvé for
two vector space§ andV.

e Definition: Amap f : U — W is said to be an isomorphism if

— itis one-one and surjective, and
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— flaus + Bus) == af(u1) + Bf(us), ur,up € U foranya, g € F.

We say that the two vector spac€sand ¥ are isomorphic if there exist a map
from U to W that is an isomorphism.

Exercise Prove that any finite dimensional vector spacef dimensionn
over a fieldF is isomorphic tarF”.

Exercise Prove that if an isomorphism exists between two finite dishemal
vector spaceB” andF™ over a fieldF, thenm = n.

The concept of isomorphism helps us to visualize any finitgetisional vector
space as a bunch of elements contained in the field over winectpace is defined.
Note that the above definition of isomorphism relies on tlue thaat the operator
is bijective. However, in most cases, this may not be trueer@fore, relaxing
the definition by removing the condition of the map being diijee results in the
following.

Definition: (Homomorphism) A magf : U — W is said to be a homomor-
phism if f(au, + Bug) = af(u1) + Bf(u2), u1,us € U foranya, 5 € F.

Note that the above preserves algebraic structure. Alaaniip is isomorphic,
then it is also a homomorphic. Let us denote the set of all hoorphisms from
U into V by Hom(U,V). In the following section, we shall study moreoabthis
set.

2.4 Dual Space

Intuitively, one possible way to learn more about a vect@cspunder considera-
tion is to take an operator and operate on the vector spaceesnthe result. In
some sense, each operator will give us different infornmedtmout the space. If we
have enough number of such operators, we expect that wedshewalble to say a
lot about the space. Also, it provides a convenient tool wiwere can deduce the
property of the space by studying its dual provided the dsiatore amenable to
analysis.

Consider for instance the set Hom(U,V). Now, we shall seetthia can be
given a vector space structure. In order to do so, we shouldedéhe binary
operator+ over it. The “plus” is defined al; + 75)(u) := T (u) + T2 (u) for all
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u € U, and for allT}, 75 € Hom(U,V). Let us define the scalar multiplication as
(aT)(u) := aT'(u) for all T € Hom(U,V), andu € U. With this definition, it is
easy to see that Hom(U,V) is a vector space @ew~hich is stated as a theorem
below.

14

Theorem 17 The set Hom(U,V) is a vector space owewunder the
binary and scalar operations defined above.

Since Hom(U,V) is a vector space, a natural thing to do is testroct a bases
for it. In order to understand the construction of bases, wkerestrict to the
following special cases df andV'.

Let the bases off andV be {u, us, us}, and{v;, v, }, respectively. Now, we
say thatly, ..., Ty is a bases of Hom(U,V), if for all' € Hom(U,V), we have

N
T = Z a; 15,
i=1

andTy, ..., Ty is alinearly independent set. This means that

N N
Tu = (Z a;T)u = Z o; Thu
i=1 i=1

forall w € U, and
N
Y BT =0
=1

forallu € U impliess; = 0foralli =1,2,..., N. Now, we will construct a set
of bases that spans Hom(U,V). LBt:= {T1,...,Tx}, and see what is it that is
required for this to be a basis. First of all, we need

o Tu; C span{B},i=1,2,3forall T € Hom(U,V), and

e B should be linearly independent.

Now, let us investigate the first requirementfot 1,2, 3 as follows.
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e T € Hom(U,V), Tu; C span{B}, which can be written as

2 N

Tuy = Zﬂlwi = Z o Tiug. (2-19)
=1 =1

Now, the equality above is possiblelifu; = vy, Tou; = vq, Tju; = 0 for
alli = 3, .. .,N, andﬁll = 011, ﬁlg = (¥12.

e T € Hom(U,V), T'us C span{B}, which can be written as

2 N

Tug = Zﬂm’vi = Z o Tius. (2-20)
=1 =1

Now, the equality above is possiblelifus; = vy, Tyus = vq, Tjus = 0 for
alli = 9,.. .,N, andﬂgl = (91, 622 = (¥99.

e T € Hom(U,V), T'us C span{B}, which can be written as

2 N

Tuz = Zﬂ:ﬁvi = Z aziTius. (2.21)
=1 =1

Now, the equality above is possiblelifus = vy, Tgus = vq, Tyuz = 0 for
alli = 7,..., N, andﬂgl = 31, (32 = Q3.

From the above, it is easy to see that. . ., Ti is sufficient to span Hom(U,V).
Therefore, letV = 6. Now, from the above discussion, let us recall the condstion
that are required for the sé& with N = 6 to be a bases:

e Tiuy = vy, andTiu, = 0,
o Thu; = vy, andThu, = 0,
o Thus = vy, andTsuy = 0,
o Tyuy = v9, andTyuy = 0,
e Tyus = vy, andTsus = 0,

o Thus = V9, andT6U3 = 0.
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Thus, assuming the above conditions Bn it is easy to see that it spans
Hom(U,V). We will now investigate the linear independen€édq. .., T;. Here,
we need to prove thaZle GiTiu = 0 for all u € U implies 5; = 0 for all
i=1,2,...,6. Picku = uy, then, from the conditions df, . . ., T, we have

6
> BiTus =0 = Bioy + Bavy = 0. (2.22)
i=1
By linear independency af;, v,, we have3; = (, = 0. Thus, the above equation

becomes ]
> BiTu=0,
=3

for all u € U. Now, picku = us. Then,

6
ZﬁzTﬂm = 0= [3v1 + [avy = 0.
i1

This implies that3; = 8, = 0. Continuing this process further, it is easy to see
that all /s have to be zero. This proves linear independency. Thus, ., T
forms a basis of Hom(U,V) fodim(U) = 3, anddim(V') = 2. Note that the
number6 = 3 x 2 is the product of the dimensions of each vector spaces. This
can be easily generalized to atiyandV’ of finite dimensions, which is the essence
of the following theorem.

Theorem 18 Let U and V' be two vector spaces of dimensionsand
n, respectively. Then, Hom(U,V) is a vector space of dimensio

Proof: Exercise. Hint: Try to imitate the proof form = 3, andn = 2 case
described above.
As an important corollary, we have:
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Corollary 2 LetV be a vector space ovérof dimensiom. Then,
Hom(V,F) is a vector space of dimension Further, V' and
Hom(V, IF) are isomorphic to each other.

Proof: From Theorem 18, the dimension Bbm(V,F) is equal ton. The
isomorphism follows from a previous exercige.

Now, let us investigate the above corollary even furthery &ectorv € V
can be written as = > | o,v;, whereuv,, ..., v, is a bases vector df. Let
F € Hom(V,F). Consider

Fv) = FZaivi (2.23)
i=1
= ) aF(v) (2.24)
i=1
= QeF, (2.25)
where® := (ay,...,a,), F := (F(v1),..., F(v,))T, ande represents the usual

dot product orR™. Note that the vectdr is fixed for a given bases. Also, itis easy
to check that this representation is unique given the basgenrs. Thus, not only
that all the linear operators iom(V, IF) can be written as a dot product but also
there is a one-one correspondence between the elememtsaotl Hom(V, F).
Therefore, it is interesting to see if this can be generdliegen further. This
requires us to generalize the notions of the dot productghvisidone in the next
chapter. The spacdom(V,F) is special in linear algebra, and has a name to
it. It is called the dual space, as it behaves likebut the objects appears to be
completely different.

Definition: (Dual space) If is a vector space ovéf, then its dual space is
Hom(V,F). The elements of the dual space are calilegar functionals

In the following chapter, we will generalize the notions ot groduct and the
distance to an arbitrary finite dimensional vector spaces.



Chapter 3
Inner Product and Normed Spaces

Consider two vectors := (z1,z3) andy := (y1,y2) in R%. The inner-product is
defined as
(x,y) := 2191 + T2Y2. (3.2)

Now, let us investigate the properties thiaty) posses, which are listed below:
1. (x,x) >0, forallz € R", and(z, z) = 0 if and only ifz = 0.
2. (axy + fra,y) == a{x,y) + B {xy,y) forall o, 5 € R.
3. (z,y) = (y,x).

In the case where the underlying field is complex, the abofiaitien of the
dot product of two vectors := (x;, z3) andy := (yi,y») in C? becomes:

(z,y) = 2191 + 2o (3.2)
Now, let us investigate the properties thaty) posses, which are listed below:
1. (x,x) >0, forallz € C*, and(x,z) = 0 ifand only ifz = 0.

2. <Oé._'l§'1 + ﬁl’g, y) =a <..'lf1,y> + B <..'lf2,’y> for all a, ﬁ e C.

3. (z,y) = (y,2).

29
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Consider two vectors := (z1,23) andy := (y1,v2) in R?. The distance
betweenr andy denotediist(z, y) is calculated using the following formula.

dist(x,y) ==/ (x1 —y1)2 + (12 — y2)2. (3.3)

From this the length of any vectaris defined agen(z) := dist(0, x). Itis easy
to see thaten(x) : R* — RT satisfies the following properties:

1. len(z) > 0 for all z € R? with equality if and only ifz = 0.
2. len(z) + len(y) > len(z + y) for all z,y € R2.
3. len(ax) = |a|len(x), for all x € R2.

The above can be easily generalizedRb6 as follows. The functiorien(x) :
R"™ — RT is a length function orR™ if it satisfies the following properties:

1. len(x) > 0 for all z € R™ with equality if and only ifz = 0.
2. len(z) + len(y) > len(x +y) forall z,y € R™.
3. len(ax) = |allen(x), for all z € R™.

Generalizing the notions of distance and inner product taraitrary vector
space over a real or a complex field is done below.

Definition: (Norm) A function on the vector spadé overF denoted)| * || :
V — RT is said to be a norm if it satisfies the following properties:

1. ||z|| > 0 for all z € R™ with equality if and only ifz = 0.
2. [lzll + Iyl = [l + y| forall z, y € R™.

3. ||ax|| = |af||z|], for all z € R™.

Definition: (Inner-product) A function on the vector spakeoverF (F = R
or C) denoted(x, x) : V' x V' — [ is said to be an inner-product if it satisfies the
following properties:

1. (z,z) > 0,forallz € V,and(x,z) = 0if and only ifz = 0.
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2. (o) + By, y) = a(r1,y) + F (r,y) foralla, f € F.

3. (z,y) = (y,2).

Note that in the above definition, we have used the fact tleattimjugate of
real number is the number itself. Recall that the dot produ@®@™ can be used
to measure the distance between two vectorandy by simply taking the dot
product of the difference, i.er,—y ez —y. In other words, the dot product induces
the distance notion in the real space. Now, consider a geneex product space
(V, (x,%)). A natural question to ask is if/ (x, ) is a norm. Let us check all the
properties of the norm.

The first property of the norm directly follows from the defian of the inner
product. Now, let us check for the triangle inequality. ety € V. Then, we
need to prove the following:

2+ yll* < ll=l* + [yl (3.4)
which is equivalent to prove the following:
(w+y,z+y) <(z.2)"+(y,9) (3.5)

Using the definitions of the inner product, the right han@ sitthe above equation
can be simplified as follows

(z+y,z+y)’ = (x,2)+ (Y + ({y2)+ Y y)° (3.6)
= |lzlI* + 2 (z,y) + ly]*. (3.7)

The proof would be complete {fr, y) < ||z||||y|| is true. This is because

1)1 + 2 (2, 9) + lyl® < 2l + 2llzlly ] + ylI* (3.8)
= (=l +lly1)* (3.9)

Now, the goal is to check ifz, y) < ||z||||y| is true. This is the famouSauchy-
Schwartanequality.
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Theorem 19 Let(V, (x, x)) be an inner product space. Then, forally € V', we
have

(@, y) < |l=[lllyll- (3.10)

Proof: Let us first assume thatandy are unit norm vectors. Then, we need to
prove that(z, y) < 1. Note that there is nothing to prove if one of the vector is a

zero vector. The inequalityr, y) < 1 can be proved as follows:

0 < {(x—y,z—vy) (3.11)
= lzll + llyll = 2(z,y) (3.12)
= 2—2(z,y) (3.13)
= (z,y) > 1. (3.14)

Consider any pait, y in V, not necessarily unit vectors. Consider= % and

lll

g:i= ”—Z” Sincez andy are unit vectors, usinge, y) < 1 for unit vectors, we get
(2, y) < lz[llly]l. O (3.15)

Now, we know that in any inner product space, the inner prbdhces a
norm. One natural question to ask is if we can say whetherma iomduced by
an inner product or not? The answer is the following:

Theorem 20 Let(V (x, %)) be an inner product space. The norfx(]) is induced
by the inner product if and only if it satisfies the followirgrallelogram identity

lz+ylI* + llz — ylI* = 2(ll=]* + lly]1*) (3.16)

forall z,y € V.

Proof: If norm is induced by an inner product, then the above eqoas valid,
which is easy to verify. However, the proof of the conversenstted.]

3.1 Orthogonality and Orthogonal Projection

Inner product not only induces a norm that brings in the motd length but
also enables us to talk about the angles between two vedkasexample, in
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R? with the usual dot product, the angle between two vectors (z;,x,) and
y := (y1,y2) is measured using

lei=cos™ ! — Y | 3.17

aNgie = o8 len(z)len(y) 317

Two vectors are said to be orthogonadik § = 0, which implies that: e y = 0.
Now, we generalize this in the following definition.

Definition Let (V, (x,*)) be an inner product space. We say that € V" are
orthogonal if and only ifz, y) = 0.

In this chapter, it is understood that the vector space is@@riproduct space.
Consider a vector spadé. Letx € V be a vector. Then, consider the following
set:

AL ={y eV :(z,y) =0} (3.18)

It is easy to see that the sét" is a subspace. Now consider any veatos V.
Intuitively, we see that the differenee := v — ax should be orthogonal to the
span{z} for some properly chosem € R. Now, let us investigate the value af
for which this is true. Towards this, we need to checlif- az, r) = 0:

0 = (v—azx,az) (3.19)
= a{v,r) —ao®(z,1) (3.20)
sat = EZ 2 (3.21)

Thus,w = v — a*z € AL, which implies that = o*z + w. This can interpreted
as any vector it/ can be written as the sum of a vector in the span ahd a
vector in the orthogonal compliment of the spancof

Now, we shall see if we can generalize this to an arbitrarysgabe ofV/.
Towards, this we need the notion of projection of a vectoo@subspace. First,
let us look at the projection of one vector, say¥ V' onto another vector, saye<
V', denotedProj, (u). This makes sense only when the two vectors are different in
the sense thatpan{u} # span{v}. Our intuition inR? suggests the following
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simple definitiont

Proj, (u) = EZZiu (3.22)

Now, it is easy to see that the vector= Proj,(u) — w is orthogonal ta. Thus,

beginning with two vectors, we have found two different west: andv that are

orthogonal to each other, and they span the same space af thahdu. Gen-

eral version of this method is called Gram-Schmidt orth@diaation procedure,
which is explained below.

3.1.1 Gram-Schmidt Orthogonalization

Consider a vector spadéwith a set of baseévy, ..., v,}. Now, the procedure is
as follows:

e Lety, :=v;.
e Obtain an orthogonal vectat by using the vector, as

Vg 1= Vg — I:)I’O_jz—)1 (’Ug). (323)

e The third vectors which is orthogonal to both; andv, is obtained as

U3 1= v3 — Proj,, (v3) — Projy, (vs). (3.24)

e Thei-th vector,; = 1,2, ..., nis obtained as follows:

i—1
V; 1=V — Z PI’OJ;)], (Ui). (325)
j=1

1An interesting observation is that the vectot: = L) s a projection ofv ontozx.

<I,I>
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Itis easy to see that the above procedure leads to a set ohortinal vectors start-
ing from a set of bases vector. The following theorem stdtasthe orthogonal
vector thus obtained still retains the bases property.

Theorem 21 Let the bases vector of a vector spacee{v,, ..., v,}.
Let {vy,...,0,} be the corresponding orthogonal vectors obtained
by applying Gram-Schmidt orthogonalization procedure. efh

{v1,...,0,} is also a bases.

Proof: First, let us prove linear independency {af;, ..., v,}, i.e., we need to
prove that

n
E o;U; = 0
i=1

impliesa; = 0 for all 1 <1 < n. Taking the inner product of the above equation
with v;, we getw; (v;, v;) = 0. Since(v;, v;) > 0, we haven; = 0, and this is true
forall 1 < i < n. Thus, all ofa;’s = 0. This proves linear independency. Now,
since the vector space is of dimensionand the sefv,, ..., u,} hasn linearly
independent vectors, it should span the space, which ptbhedbeorem(]

As a simple consequence of the above, we have:

Lemma 4 Let {vy,...,0,} be an orthogonal bases vector. Then,
{01,...,0,}, Where
. U;
Vi ‘= T—
oA

is an orthonormal bases.

Proof: Easy exercise.]
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