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ii CONTENTS

This is an introduction to some of the concepts and results inlinear algebra

that supplements the course “E2 212: Matrix Theory” offeredin the department of

ECE at the Indian Institute of Science, Bangalore during fall 2012. The document

is not a comprehensive study of linear algebra. Unlike any ofthe standard text

book, I will not attempt to prove every theorem that is statedin the document. I

recommend the reader to refer to the class notes for a more rigorous coverage of

the subject.



Chapter 1

Vector Space

1.1 Basic Notions

Consider the following set:

R2 := {(x1, x2) : x1 ∈ R, x2 ∈ R} . (1.1)

The above set is the set of all vectors in a two dimensional real space. We expect

this space to have the following property; if(x1, x2) ∈ R2 and(y1, y2) ∈ R2, then

the sum defined by(x1, x2) + (y1, y2) := (x1 + y1, x2 + y2) ∈ R2. The order in

which we sum is irrelevant, i.e.,(x1, x2)+(y1, y2) = (y1, y2)+(x1, x2). Similarly,

if a vector is enlarged or contracted, it still remains inR2, i.e., if (x1, x2) ∈ R2,

α ∈ R, thenα(x1, x2) = (x1, x2)α := (αx1, αx2) ∈ R2. Obviously, thezero

vector0 := (0, 0) ∈ R2. This along with the definition of vector addition, it

is easy to see that the zero vector is anadditive identityelement of the vector

spaceR2, i.e., adding any vector to it will not change the vector. Forevery vector

(x1, x2) ∈ R2, there is a vector(−x1,−x2) such that the sum of the two gives the

zero vector, the identity element. Take three vectors(x1, x2), (y1, y2), (z1, z2) in

R2. Then[(x1, x2)+(y1, y2)]+(z1, z2) = (x1, x2)+[(y1, y2)+(z1, z2)]; the order

in which the sum is taken is irrelevant.

Now, it is interesting to see if there are any other spaces with these proper-

ties. We expect that the three dimensional space that we livein should also have

these properties. But the way we add these vectors are slightly different. For

1



2 CHAPTER 1. VECTOR SPACE

example(x1, x2, x3), (y1, y2, y3) ∈ R3, then the sum is defined as(x1, x2, x3) +

(y1, y2, y3) := (x1 + y1, x2 + y2, x3 + y3). Note that the “plus” here is quite dif-

ferent from the “plus” in the case ofR2. Thus, while defining a vector space it is

crucial to define the “plus” that makes the space a vector space. I will leave it for

the reader to convince themselves that by properly defining the addition, additive

identity and scalar multiplication, the spaceR3 obeys all the properties mentioned

in the case ofR2.

Now consider the following set

Rn := {(x1, x2, . . . , xn) : xi ∈ R, i = 1, 2, . . . , n} . (1.2)

Now, can be think1 of objects of the formx := (x1, x2, . . . , xn) as vectors? This

motivates us to abstract all the properties ofR2. This requires the following two

operations:

• Vector addition (the “plus”)

• Multiplication of vectors with scalars

Definition (Vector space) A setV is said to be a vector space overR if there exist

maps (the “plus”)+ : (V ×V ) → R defined by(x, y) → x+y, and multiplication

(α, x) : R×V → R defined by(α, x) := αx, satisfying the following properties:

• ∀x, y ∈ V , x + y ∈ V

• There exist a0 such that∀x ∈ V , 0 + x = x

• ∀x ∈ V there is ay ∈ V such thatx + y = 0 = y + x

• For allx, y, z ∈ V , we have(x + y) + z = x + (y + z)

• For allx, y ∈ V and for allα ∈ R, α(x + y) = αx + αy

• 1x = x

• For allα, β ∈ R, andx ∈ V , we have(αβ)x = α(βx)

1I will leave it for you to see that the spaceRn behaves likeR2.
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Please check thatRn overR is a vector space by defining the above two maps.

Now, one might ask whether can we replace theR in the definition above by some

other set? The answer is yes if the set that we replace with should enjoy some

properties common toR. The exact property that we require is the property of a

field. In general, while talking about a vector spaceV , we say thatV is a vector

space over a fieldF. In the initial part of this notes, we consider the underlying

field to beR (or C in some cases).

Up to this point, we have been giving examples of a vector space that seems

to be a natural extension ofR2. However, the following provides an example of

some objects that can be viewed as vectors but not an obvious extension ofRn.

Example: Consider the set of all functions defined asF := {f : X → R},

whereX := [0, 1] is a non-empty compact set. Supposing that the setF is a

vector space, then we can visualize the functions inF as vectors. The geometrical

viewpoint helps us to understand these strange looking objects in a better way!

Now, we will see whether the setF is a vector space or not. In fact, we should

also mention the field over which the vector space is defined.

Now, we will look at the first property in the definition of a vector space. Let

f1, f2 ∈ F , then we need to find whetherf1 + f2 ∈ F or not. What is the meaning

of “+” here. Now, let us define the addition as(f1+f2)(x) := f1(x)+f2(x) for all

x ∈ X. With this definition, and the property that the sum of continuous function

is a continuous function, it is clear that the sum of two function also belongs toF .

Taking the underlying field asR, we see that for allα ∈ R andf ∈ F , we have

(αf)(x) := αf(x) ∈ F . Now, we define the zero function0 asf(x) = 0 for all

x ∈ X. It is easy to see that this function is the additive identity. An easy exercise

also shows that the functions commute and the order in which the functions are

summed over does not matter. This shows that the setF is a vector space overR.

Consider a vectorx := (x1, x2, . . . , xn) in Rn. This vector can be written

asx = x1(1, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + . . . + xn(0, 0, . . . , 0, 1). We call the

set of vectorsei := (0, 0, . . . , 1, 0, . . . , 0), 1 in the ith position,i = 1, 2, . . . , n as

standard vectors. This motivates us to have the following definition.

Definition Let x1, x2, . . . , xn be any set of vectors in a vector spaceV overR,

and letαi ∈ R, i = 1, 2, . . . , n. Then the vectorα1x1 + α2x2 + . . . + αnxn is
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called the linear combination of the vectorsx1, x2, . . . , xn.

Another interesting fact about the standard vectors is thatα1e1 + α2e2 + . . . +

αnen = 0 implies that all the coefficients have to be zero. Geometrically, it means

that no more than two vectors lie in a plane!

Definition We say that the vectorsx1, x2, . . . , xn in a vector spaceV overR are

linearly independent if forαi ∈ R, i = 1, 2, . . . , n,

α1x1 + α2x2 + . . . + αnxn = 0

implies thatαi = 0 for all i = 1, 2, . . . , n.

The standard vector has another interesting property that any vector inRn can be

written as a linear combinations of it (check!).

Definition We say that the vectorsx1, x2, . . . , xn in a vector spaceV over R

spans the vector spaceV if for all x ∈ V , there exists a set of numbersαi ∈ R

such thatx = α1x1 + α2x2 + . . . + αnxn.

ExerciseProve that ifx1, x2, . . . , xn spans the vectors space thenx1, x2, . . . , xn, x

also spans the vector spaceV for all x ∈ V .

The above exercise indicates that in the spanning set of vectors there could

be some redundancies. This, however, can be removed one by one till you get a

spanning set from which removing even a single vector from itwill make the set

loose the property of a spanning set. More precisely,

Definition A setx1, x2, . . . , xn is called a bases vector of the vector spaceV if

the set is linearly independent and spans the vector spaceV . The numbern is

called thedimensionof the vector space.

Now, we ask the following question: Is the dimension unique.This requires us to

prove an important lemma called the replacement lemma:
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Lemma 1 Let v1, . . . , vn be a set of bases vectors inV . Let v be

any non-zero vector inV . Then there exists a vectorvi such that

replacingvi by v, the vectors(v1, v2, . . . , v, . . . , vn) retains the

bases property.

Proof: Sincev ∈ V andv1, . . . , vn is a bases vector, we havev =
∑n

i=1
αivi

with at least oneαi 6= 0. Without Loss Of Generality (WLOG), let this beα1 6= 0.

This implies thatv1 can be written asv1 = v
α1

−
∑n

j=2

αj

α1

vj , which is a linear

combination ofv, v2, . . . , vn. It follows that this set of vectors spans the vector

spaceV . Now, the claim isv, v2, . . . , vn is a bases vector. First, we will prove that

it is linearly independent, i.e.,

n
∑

k=2

βkvk + β1v = 0

impliesβi = 0 for all i = 1, 2, . . . , n. Substituting forv =
∑n

i=1
αivi, we get

β2v2 + β3v3 + . . . , +βnvn + β1(α1v1 + α2v2 + . . . + αnvn) = α1β1v1 + (β2 +

α2β1)v2 + (β3 + α3β1)v3 + . . . , +(βn + β1αn)vn = 0. By linear independence of

v1, . . . , vn, we haveα1β1 = 0, β2 +α2β1 = . . . = βn +β1αn = 0. Fromα1β1 = 0

impliesβ1 = 0 sinceα1 6= 0. Now, usingβ1 = 0, we haveβ2 + α2β1 = 0 implies

β2 = 0, and so on. Thus, all the coefficients have to be zero. Therefore, the set of

vectorsv, v2, . . . , vn are linearly independent.�

Now, we will show that the dimension is unique using the abovereplacement

lemma.

Theorem 1 The dimension of the vector space is unique.

Proof: Suppose for the sake of contradiction there are two sets of bases say

v1, . . . , vn andu1, . . . , um, m 6= n. Further, WLOG, letm < n. Sinceu1 6= 0, by

using the replacement lemma, we can replace one of the bases vector inv1, . . . , vn,

sayv1 with u1. This results inu1, v2, . . . , vn, which is linearly independent. Sim-

ilarly, WLOG, replacingv2 by u2, we getu1, u2, . . . , vn. By repeatedly using the
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replacement lemmas, continuing this procedure until all the first v1, . . . , vm are

replaced byu1, . . . , um, we getu1, . . . , um, vm+1, . . . , vn. Sinceu1, . . . , um are

assumed to be linearly independent, the vectoru1, . . . , um, vm+1, . . . , vn cannot

be linearly independent, a contradiction. Therefore,m = n. �

ExerciseLet V be a finite dimensional vector space of dimensionn. Then,

prove that any set of vectors having more thann elements are linearly dependent.

Now, we state and prove the following lemma:

Lemma 2 Any linearly independent set of vectors in ann dimen-

sional vectors space can be extended to form a bases.

Proof: Let v1, . . . , vm, m < n be an independent set of vectors inV . By

assuming that the bases exists, letu1, . . . , un be any bases vector. By replacement

lemma, WLOG, we can replace the firstm elements of the bases byv1, . . . , vm

resulting inv1, . . . , vm, um+1, . . . , un retaining the bases property. This is indeed

an extension of thev1, . . . , vm to a bases vector.�

The above theorem relied on the fact that the bases exists! Well, this seems

questionable. However, thanks to the following remarkabletheorem which proves

the existence of bases.

Theorem 2 In any finite dimensional vector space, there exists a

bases.

Proof: The proof is omitted for the time being. In fact, the proof involves using

the Zorn’s lemma in set theory.

Exercise Prove that any vector in a finite dimensional vector space canbe

uniquely represented as a linear combination of bases vectors.

From the title, one may wonder what a vector space has got to dowith matri-

ces. Recall that a matrixA ∈ Rn×m consists of theij-th entry beingaij ∈ R.

For example, consider the set of all matrices of dimensionm × n denoted by

the setMm,n. It is an easy exercise to show that it is a vector space overR of

dimensionmn. However, this turns out to be a not so elegant way of looking at
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matrices in vector space theory. Now, we will show that the study of vector spaces

is important by viewing matrices as a representation of a linear map for a given

bases.
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Chapter 2

Linear Transformation

Consider the following set of linear equations:

y = Ax, (2.1)

wherex ∈ Rn and A ∈ Rn×n. Naturally, in these kind of problems, one is

interested in finding the solution forx. In order to investigate whether can we

find a solution forx or not, we have to study the behavior of the matrixA. In

particular,A takes a vector inRn to a vector in the same space. Further, the

matrix as a mapping is linear in the argument. Finding the solution to the above

set of linear equations amount to finding the whether the matrix A has an inverse

or not? If at all the solution exists, one way to solve the above problem is to

reduce the matrix to a simpler form such as diagonal, upper/lower triangle form

etc. Now, the following questions arise:

• whether the inverse exists or not?

• when can a matrix be diagonalized, and how we do it?

• can we transform any matrix to an upper/lower triangle form?

To answer these questions, we will take a slightly general standpoint of view-

ing the matrices as linear transformations, which is done inthe following section.

9



10 CHAPTER 2. LINEAR TRANSFORMATION

2.1 Linear Transformation and its Properties

First, we give a definition for linear transformation.

Definition A mapT : V → W between two vector spacesV andW is said to be

linear if the following property is satisfied:

• T (αv1 + βv2) = αTv1 + βTv2 for all α, β ∈ R

Now, we return to the question that we posed in the beginning of this chapter:

when does the inverse forT exists? Intuitively, for all vectorw ∈ W , there should

be a corresponding elementv ∈ V that the linear transformation maps to, and

it should be unique. First of all, the question makes sense ifthe spaceW is as

big/small asV . Otherwise, there is no hope of finding the inverse. The above

intuition brings in the notions of surjective mapping and one-one mapping, which

is defined in the following:

Definition A mapT : V → W is said to be surjective if for everyw ∈ W , there

exists an elementv ∈ V such thatTv = w.

Definition A mapT : V → W is said to be injective (or one-one) if for allv1 ∈ V

andv2 ∈ V , Tv1 = Tv2 impliesv1 = v2.

Definition The image of a mapT : V → W is defined asImag(T ) := {Tv :

v ∈ V }.

Definition The kernel or Null of a mapT : V → W is defined asNull(T ) :=

{v ∈ V : Tv = 0 ∈ W}.

It is an easy exercise to show thatImag(T ) is a vector space (Exercise). But

note thatImag(T ) ⊆ W . This calls for defining another notion called a subspace.

Definition Let V be a vector space. A spaceU ⊆ V is said to be a subspace if

for all u1, u2 ∈ U ⇒ αu1 + βu2 ∈ U for all α, β ∈ R.

Exercise: Check that the above is a valid definition for subspaces.

As noted earlier, the inverse of a map exists if and only if themap covers the

entire range and the mapping is unique, which is the essence of the following

theorem.
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Theorem 3 A mapT : V → V is said to be invertible if and only if it

is surjective and injective, i.e., it is bijective.

Proof: Directly follows from the definition of surjective and injective map-

pings.�

Now, one may wonder what is the use of the above theorem. It is really hard to

check for these properties! This motivates us to investigate some other properties

of a map that implies invertibility and it is easily verifiable. Instead of trying

out different things, let us see whether there are any other properties of a map that

implies that the map is surjective and injective. Let us firstinvestigate the property

of a map being injective.

Suppose let the map be injective. Then, for all for allv1 ∈ V andv2 ∈ V ,

Tv1 = Tv2 impliesv1 = v2. Let us also assume that the map is linear, we have

Tv1 = Tv2 ⇒ T (v1 − v2) = 0 ∈ W . This implies thatv1 − v2 = 0 ∈ V ⇒ v1 =

v2. This implies that if the map is injective then the Kernel contains only the zero

vector. In other words,

Theorem 4 If the linear mapT : V → W is injective then the

Null(T ) = 0 ∈ V .

Now, let us use the above argument in the reverse direction, i.e., letNull(T ) =

0 ∈ V . Let there exists vectorsv1, v2 ∈ V such thatTv1 = Tv2. From linearity,

this impliesT (v1 − v2) = 0 ∈ W . By the assumption thatNull(T ) = 0 ∈ V , we

havev1 = v2. This proves that ifNull(T ) = 0 ∈ V , then the map is injective.

Now, we state the following theorem:

Theorem 5 The linear mapT : V → W is injective if and only if

Null(T ) = 0 ∈ V .

SinceNull(T ) is a subspace ofV , then how big isNull(T ), i.e., what is the

dim(Null(T ))? Now, we will answer this question in the general situation.

SinceNull(T ) is a subspace ofV , letv1, . . . , vm be a bases vector ofNull(T ).

By thebases completion lemma, this can be extended to a bases of the entire space

V . Without loss of generality, let this bev1, . . . , vm, vm+1, . . . , vm+n, i.e., the
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dimension ofV ism+n. Now, we know thatTvi = 0 ∈ W for all i = 1, 2, . . . , m.

Consider

Tvm+1, T vm+2, . . . , T vm+n,

which is in the range space ofT . Since range space is a subspace, we expect

that the bases should be related toTvm+1, T vm+2, . . . , T vm+n. Now, let w ∈

Imag(T ). Then, there exists a vectorv :=
∑n+m

i=m+1
αivi ∈ V such thatTv =

w. This implies thatTv =
∑n+m

i=m+1
αiTvi, which is a linear combination of

Tvm+1, T vm+2, . . . , T vm+n. Since every vector in the range space can be written

as a linear combination of{Tvm+1, T vm+2, . . . , T vm+n},

{Tvm+1, T vm+2, . . . , T vm+n}

spansImag(T ). Naturally, we ask whether this set vector forms a bases? Only

condition that we need to check is the linear independency condition. Let

m+n
∑

i=m+1

βiTvi = 0.

By linearity,
m+n
∑

i=m+1

βiTvi = 0 ⇒ T
m+n
∑

i=m+1

βivi = 0.

This implies that
∑m+n

i=m+1
βivi = 0 (why?). By linear independency of the set

{vm+1, . . . , vm+n},

we haveβ ′
is = 0. This proves that the vector{Tvm+1, T vm+2, . . . , T vm+n} forms

a bases of the image ofT . Now, from the above, we have that the dimension of

Imag(T ) is n, the dimension of the Kernel ofT is m, and the dimension ofV is

m + n. Thus, we have the following theorem:

Theorem 6 For every linear mapT : V → W , we have

dim(Imag(T )) + dim(Null(T )) = dim(V ).
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Now, if Ker(T ) = 0 ∈ V , then the above theorem implies thatdim(V ) =

dim(Imag(V )). If V = W , thendim(Imag(V )) = dim(V ), the entire space.

Thus, the map is both injective and surjective ifKer(T ) = 0 ∈ V andW = V !

Thus, we have:

Theorem 7 A linear mapT : V → V is invertible if and only if

Ker(T ) = 0.

Remark:We will define the dimension of the image of a linear map as itsrank,

denotedrank(T ). The above theorem can be restated as rank plus nullity of a map

T is equal to the dimension of the vector spaceV . Although, we promised to arrive

at a condition that is easily verifiable, it looks like the condition Ker(T ) = 0 is

hard to check. Instead, let us check if we can say something about Ker(T ) 6=

0. This implies that there exists at least one vectorv ∈ V , v 6= 0 such that

Tv = 0. This can be written in a slightly different formT (v − 0v) = 0. Those

who are already familiar with the notions of eigenvectors and eigenvalues would

immediately recognize that the above is a problem of finding whether a map has

zero as its eigenvalue or not. This seems promising as it amounts to solving a

polynomial! At least now, we have some hope that theKer(T ) is computable,

and we can hope to answer whether the inverse of a map exists ornot. With this

hope, we continue to study some additional properties of a linear map and relegate

the study of eigenvectors and eigenvalues to the next chapter.

Note that all matrix transformation of the formAx comes under linear trans-

formation. Is the converse true? In the following, we show that this is indeed

true!

2.2 Matrices and Linear transformations

In this section, I will excuse myself by giving a “not so” rigorous explanation of

why a matrix can be thought of as a representation for any linear transformation

in a vector space with a fixed basis. Consider a linear mapT : V → W . Let

v1, . . . , vn andw1, . . . , wm be a set of bases vectors forV andW , respectively.

Now, consider any vectorv ∈ V . Now, let us investigate the action ofT on v.
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Sincev ∈ V , we havev :=
∑n

i=1
αivi for someα′

is ∈ R. Now, by linearity, we

have

Tv = T
n
∑

i=1

αivi =
n
∑

i=1

αiTvi.

Note thatTvi ∈ W , and thereforeTvi :=
∑m

j=1
βijwj for someβij ∈ R. Upon

substitution, we have

Tv =
n
∑

i=1

αi

m
∑

j=1

βijwj =
∑

i,j

αiβijwj.

Now, sinceTv ∈ W , we haveTv :=
∑m

j=1
γiwj for someγi ∈ R. Equating both,

we get
∑

i,j

αiβijwj =

m
∑

j=1

γiwj.

This implies that
∑

j

αiβij =
∑

j

γj.

This in matrix form becomesBA = Γ, whereβij is theij−th entry ofB ∈ Rm×n,

αi is theith entry ofA, andγj is thejth entry ofΓ. For a fixed bases vector, the

variables that depends on the vectorv is A andΓ, and not the matrixB. Thus,

for a given bases, any linear transformation seems to have a matrix representation.

Now on, we can think of linear transformations as matrices with a fixed bases. We

state this result as a theorem. We leave it for the reader to use the above discussion

as a hint and rigourously prove the following theorem.

Theorem 8 There is a one-one correspondence between the set of all

linear maps fromV to W of dimensionsn andm, respectively, and

the set of allm × n matrices.

With this remarkable theorem, all the properties mentionedin this book thus

far holds true even for the corresponding matrices. In otherwords, we can replace

linear transformation everywhere with matrices in this book! Now, let us return

to the question that we posed in the beginning of this chapter, i.e., when does the

inverse of a matrix exists? From theorem 7, it amounts to checking if there is a
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nonzero vectorx ∈ Rn×n such thatAx = 0. By stacking the columns of the

matrix A asA := [a1 a2 . . . an], and writingx := [x1, . . . , xn], the equation

Ax = 0 can be rewritten as
∑n

i=1
xiai = 0. This is just the linear combination

of the columns of the matrix. Thus, the matrix inverse existsif and only if the

columns of the matrix are linearly independent. This linearindependency of the

columns is defined as column rank. Similarly, one can define the row rank. Is there

any relationship between column rank and row rank? In the sequel, we address

this question.

First, we observe the following interesting fact. For any matrix A, the linear

mapT : Rn×m → Rn×m defined byT (ei) := ai, whereei is the standard bases

vector1, has one-one correspondence with the matrix for a fixed standard bases

(check!). Now, we can define the rank of the matrixA as the rank of the corre-

sponding linear transformation, which is equal to the dimension of the image of

T . Note thatTei, i = 1, 2, . . . , n must span theImag(T ). But Tei = ai. This

implies that the rank ofA is equal to the number of linearly independent columns

of the matrixA. Now, is this equal to the number of linearly independent rows of

A? The answer is yes!

Theorem 9 Row rank of any matrixA ∈ Rm×n is equal to the column

rank ofA.

Proof: Let the column rank ofA be r > 0. Let c1, . . . , cr be a bases for the

column space, and letC := [c1, . . . , cr] ∈ Rn×r. Then, each columns ofA can be

written as a linear combination of the bases. In matrix form,A can be written as

A = CR, whereR ∈ Rr×n contains the coefficient of the bases expansion. Note

that the column rank ofC is r. Now, each rows of the matrixA can be written as a

linear combination of the rows ofR with coefficients being the elements fromC.

Thus, the row space ofA is contained in the row space ofR. Thus, row rank of

A is less than or equal to the row rank ofR which is at mostr. This implies that

the row rank ofA is at most equal tor which is equal to the column rank ofA by

assumption. Now, applying the same argument to the transpose of A completes

the proof.�

1This consists of one in theith position and zeros in the rest of the positions



16 CHAPTER 2. LINEAR TRANSFORMATION

Remark: This proof seems a little constructive in nature. There is amore

elegant alternative proof of the above theorem which will beintroduced in the

next chapter.

Since we now know that the column rank and row rank are equal, we can pose

the following questions:

• what happens to the rank of a matrix when it is multiplied by another matrix

of full rank?

• what happens to the rank of a matrix when it is multiplied by another matrix

which is rank deficient?

• what happens to the rank of a matrix by additive perturbation?

We answer these questions in a more general fashion in the subsequent theorems.

Theorem 10 LetA ∈ Rn×m andB ∈ Rm×p. Then,

rank(AB) ≤ min{rank(A), rank(B)}.

Proof: ConsiderC := AB. From the proof of theorem 9, the column rank of

C is at most equal to the column rank ofA, which is equal torank(A). On the

other hand, the row rank ofC is at most equal to the row rank ofB, i.e.,rank(B).

Combining the two, we get the desired inequality.�

The above theorem says that by multiplying a matrixA with another matrix

can only reduce the rank of the matrixA. Now, we will answer the last question

posed above.

Theorem 11 (Rank Inequality Theorem (RIT)) LetA ∈ Rm×n and

B ∈ Rm×n. Then,

rank(A + B) ≤ rank(A) + rank(B).

Proof: We prove this result in stages. First, consider

rank(A + B) := dim{Imag(A + B)} = dim{Ax + Bx : x ∈ Rn}.
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Now, we investigate the set

{Ax + Bx : x ∈ Rn}.

Note thatImag{A} andImag{B} are subspaces. The set{Ax + Bx : x ∈ Rn}

can be viewed as the sum of two subspaces. This occurs frequently in linear

algebra and it deserves a definition.

Definition Let U and W be subspaces ofV . Then the direct sumU ⊕ W is

defined as

U ⊕ W := {u + w : u ∈ U, w ∈ W}.

Verify that the direct sum is indeed a subspace. Also, note that the intersection

of subspaces is again a subspace. Let us denote the intersection byU ∩W := {x :

x ∈ U ∩ W} ⊆ V .

Let us denote the image ofA andB by U andW , respectively. Now, con-

sider the basesx1, . . . , xl of U ∩ W . This bases can be extended to the subspace

U or W or U ⊕ W . Let us denote the extension ofx1, . . . , xl to U andW by

B1 := {x1, . . . , xl, xl+1, . . . , xm}, andB2 := {x1, . . . , xl, x̄l+1, . . . , x̄n}, respec-

tively. Now, consider the union

B1

⋃

B2 := {x1, . . . , xl, xl+1, . . . , xm, x̄l+1, . . . , x̄n}.

We claim that this is a bases ofU ⊕W . Supposing that this is true, then the proof

is complete by a simple observation that|B1

⋃

B2| = |B1| + |B2| − |B1

⋂

B2|,

which implies that|B1

⋃

B2| ≤ |B1| + |B2|.

Clearly,B1

⋃

B2 spans the direct sum. Therefore, we need to prove that it is

linearly independent. Consider the linear combination

m
∑

i=1

αixi +

n
∑

j=l+1

βjx̄j = 0.

Now, we prove that all the coefficients have to be zero. For thesake of

contradiction, let us assume that someαj 6= 0. Then, we can write the vector

xj = −1

αj

[

∑m

i=1,i6=j αixi +
∑n

j=l+1
βjx̄j

]

. This means that the vectorxj is in the
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span ofB1

⋃

B2/xj . Thus,B1

⋃

B2/xj still spansU ⊕ W . However, by remov-

ing xj from B1, any vector of the formu + 0 ∈ U ⊕ W cannot be written as

a linear combination of{x1, . . . , xl, xl+1, . . . , xm, x̄l+1, . . . , x̄n}/xj , a contradic-

tion. Therefore, none of theα′
is can be nonzero. By a similar argument, it is easy

to see that none of theβ ′
is can be nonzero. Thus, all the coefficients have to be

zero, which proves linear independency.�

Now, as a relatively straight forward extension of the rank inequality theorem,

we have:

Theorem 12 Let A and B be two matrices overR of same dimen-

sions. Then,

|rank(A) − rank(B)| ≤ rank(A − B) (2.2)

Proof: Writing (2.2) in its glory, we have

−rank(A − B) ≤ rank(A) − rank(B) ≤ rank(A − B) (2.3)

Let us first prove the second inequality, i.e.,rank(A) ≤ rank(A−B)+rank(B).

This is easy. Note thatA = A + B − B. From theorem 11, the rank ofA can be

upper bounded as

rank(A) = rank(A + B − B) ≤ rank(A − B) + rank(B).

This proves the second inequality above. Now, writingB = B + A−A, the rank

of B can be upper bounded as

rank(B) ≤ rank(B − A) + rank(A).

Sincerank(B − A) = rank(A − B), the first inequality follows.�

The following is a simple result which follows directly by using A = A+E−

E, and then using the RIT.
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Corollary 1 Let A ∈ Rm×n with rank(A) = r and E ∈ Rm×n with

rank(E) = k, r ≤ n, then

r − k ≤ rank(A + E) ≤ r + k. (2.4)

Yet another theorem.

Theorem 13 LetA ∈ Rm×n, and letB ∈ Rn×p be such thatAB = 0.

Then,

rank(A) + rank(B) ≤ n.

Proof: The equalityAB = 0 implies that the columns of the matrixB are in

the null space ofA. This implies that the image space ofB is in the null space of

A. Thus,Null(A) ⊆ Imag(B) implies that

dim(Null(A)) ≤ dim(Imag(B)) = rank(B).

Applying the rank-nullity theorem to the mapA : Rn → Rp, we get

rank(A) + dim(Null(A)) = n.

Usingdim(Null(A)) ≤ rank(B), we getrank(A) + rank(B) ≤ n. �

Let me state another theorem mainly to illustrate some useful proof technique

in linear algebra.

Theorem 14 Let A ∈ Rm×n, and letS be a subspace ofRn. Let us

denote the image ofA underS as

A(S) := {Ax : x ∈ S}.

If Null(A)
⋂

S = 0, thendim(A(S)) = dim(S).

Proof: First, it is easy to see thatA(S) is a subspace. Therefore, there ex-

ists a bases ofS, sayx1, . . . , xn. OperatingA on these bases vector, we get
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Ax1, Ax2, . . . , Axn. Now, the claim is that these set of vectors forms the bases

of A(S). First, we prove that the above set of vectors spansA(S). Consider any

vectory ∈ A(S). Sincey ∈ A(S), there exists a vectorx ∈ S such thaty = Ax.

But x :=
∑n

i=1
αixi for someα′

is ∈ R. This implies thaty = Ax =
∑n

i=1
αiAxi.

Note this is a linear combination ofAx1, Ax2, . . . , Axn. Further, any vector

y ∈ A(S) can be written in this form. Thus,Ax1, Ax2, . . . , Axn spansA(S).

Next, we will show that this set of vectors are linearly independent. Consider

the following linear combination:

n
∑

i=1

βiAxi = 0 (2.5)

⇒ A
n
∑

i=1

βixi = Aȳ = 0 (2.6)

for someȳ =
∑n

i=1
βixi. Thus, allβi’s are zeros provided the vectorȳ is zero

which happens only when the null space is zero. That is ifNull(A)
⋂

S = 0,

then
∑n

i=1
βixi = 0, which implies thatβi = 0 for all i = 1, 2, . . . , n by linear

independency ofx1, . . . , xn. Thus,Ax1, . . . , Axn are linearly independent, and

therefore it forms a bases.�

For any given matricesA ∈ Rm×n andB ∈ Rn×p, consider the following

matrix:

M :=

(

A 0

0 B

)

(2.7)

It is interesting to see what is the rank ofM in terms of the ranks ofA andB. We

will state this result as a theorem below:

Theorem 15 For any given two matricesA ∈ Rm×n andB ∈ Rn×p,

we have

rank

(

A 0

0 B

)

= rank(A) + rank(B). (2.8)

Proof: Easy exercise.�
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Next, let me illustrate the use of the above theorem. Consider the following:

rank

(

In 0

0 AB

)

= n + rank(AB). (2.9)

Now, supposing that we carry out a transformation of the matrix using a set of

rank invariant transformation that results in a different matrix but with a similar

structure as above, we get a new set of inequalities.2 Let us try this on the above

matrix itself.
(

In 0

0 AB

)

→

(

In 0

A AB

)

→

(

In − B

A 0

)

→

(

B In

0 A

)

(2.10)

Since the above is a rank invariant transformation, we have

rank

(

In 0

0 AB

)

= n+rank(AB) = rank

(

B In

0 A

)

≥ rank(A)+rank(B).

(2.11)

This leads to the following theorem:

Theorem 16 (Frobenius inequality) For any two matricesA ∈ Rm×n andB ∈

Rn×p, we have the following rank inequality:

n + rank(AB) ≥ rank(A) + rank(B).

Now, you see how to prove some of the not so trivial rank inequalities. Let us

see if we can give a more sophisticated inequality. Towards this consider

(

B 0

0 ABC

)

. (2.12)

The rank of the above matrix isrank(B)+ rank(ABC). Let us do some elemen-

tary transformation on the above matrix as follows:

(

B 0

0 ABC

)

→

(

B 0

AB ABC

)

→

(

B − BC

AB 0

)

→

(

BC B

0 AB

)

(2.13)
2Can you figure out the transformation that is done below?
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Thus, we have

rank

(

B 0

0 ABC

)

= rank(B) + rank(ABC)

= rank

(

BC B

0 AB

)

(the last matrix above)

≥ rank(BC) + rank(AB).

This is summarized in the following lemma:

Lemma 3 LetA ∈ Rm×n, B ∈ Rn×p, andC ∈ Rp×q. Then,

rank(B) + rank(ABC) ≥ rank(BC) + rank(AB).

Exercise: Let A ∈ Rm×n. Then, prove that

rank(Im − AAT ) − rank(In − AT A) = m − n.

Hint: Write the above asrank(Im − AAT ) + n = rank(In − AT A) + m, and

construct the corresponding matrix and perform the appropriate elementary trans-

formations.

The following section can be skipped in the first reading.

2.3 Isomorphisms and Homomorphisms

Consider two vector spacesU andW both of finite dimensions over the same field

F. Note that till now we have been considering a real field. However, extending

the study of linear operators to any other field is not difficult.

Now, let us consider the special case of the dimensions ofU andW being

equal ton. By the existence of bases theorem, there are two sets of bases vectors

B1 := {u1, . . . , un} andB2 := {w1, . . . , wn} of U andW , respectively. Now, one
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can define a map as follows:

f : U → W (2.14)

such that

• it maps bases to bases, i.e.,f(ui) := wi, i = 1, 2, . . . , n, and

• it preserves the structure of a vector space, i.e.,f(αu1 + βu2) := αf(u1) +

βf(u2), u1, u2 ∈ U for anyα, β ∈ F.

With the above map, consider any vectoru ∈ U . This can be written as

u :=
∑n

i=1
αiui for someα′

is ∈ F. With this it is easy to see that the inverse of

the map exists, which is explained as follows.

For any vector inw ∈ W , we have

w :=
n
∑

i=1

βiwi (2.15)

=

n
∑

i=1

βif(ui) (2.16)

= f

(

n
∑

i=1

βiui

)

(2.17)

= f(u), (2.18)

whereu :=
∑n

i=1
αiui ∈ U . In other words, given any vector inw ∈ W , there is

a corresponding vectoru ∈ U that the function maps to. This implies that the map

is surjective! Is the map one-one? For any two vectorsu andū in U , f(u) = f(ū)

impliesu = ū (prove this!). This implies that the map in one-one. Thus, the map

is bijective. It is not just bijective but also preserves thestructure of the spaces.

To put it differently, all that the mapf is doing is to in some sense relabel the

vectors inU . The key property that preserves the structure is the secondproperty

of the map. We give a name to such mappings, which is defined as follows for

two vector spacesU andW .

• Definition: A mapf : U → W is said to be an isomorphism if

– it is one-one and surjective, and
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– f(αu1 + βu2) := αf(u1) + βf(u2), u1, u2 ∈ U for anyα, β ∈ F.

We say that the two vector spacesU andW are isomorphic if there exist a map

from U to W that is an isomorphism.

Exercise: Prove that any finite dimensional vector spaceV of dimensionn

over a fieldF is isomorphic toFn.

Exercise: Prove that if an isomorphism exists between two finite dimensional

vector spacesFn andF
m over a fieldF, thenm = n.

The concept of isomorphism helps us to visualize any finite dimensional vector

space as a bunch of elements contained in the field over which the space is defined.

Note that the above definition of isomorphism relies on the fact that the operator

is bijective. However, in most cases, this may not be true. Therefore, relaxing

the definition by removing the condition of the map being bijective results in the

following.

Definition: (Homomorphism) A mapf : U → W is said to be a homomor-

phism iff(αu1 + βu2) := αf(u1) + βf(u2), u1, u2 ∈ U for anyα, β ∈ F.

Note that the above preserves algebraic structure. Also, ifa map is isomorphic,

then it is also a homomorphic. Let us denote the set of all homomorphisms from

U into V by Hom(U,V). In the following section, we shall study more about this

set.

2.4 Dual Space

Intuitively, one possible way to learn more about a vector space under considera-

tion is to take an operator and operate on the vector space andsee the result. In

some sense, each operator will give us different information about the space. If we

have enough number of such operators, we expect that we should be able to say a

lot about the space. Also, it provides a convenient tool where one can deduce the

property of the space by studying its dual provided the dual is more amenable to

analysis.

Consider for instance the set Hom(U,V). Now, we shall see that this can be

given a vector space structure. In order to do so, we should define the binary

operator+ over it. The “plus” is defined as(T1 + T2)(u) := T1(u) + T2(u) for all



2.4. DUAL SPACE 25

u ∈ U , and for allT1, T2 ∈ Hom(U,V). Let us define the scalar multiplication as

(αT )(u) := αT (u) for all T ∈ Hom(U,V), andu ∈ U . With this definition, it is

easy to see that Hom(U,V) is a vector space overF, which is stated as a theorem

below.

Theorem 17 The set Hom(U,V) is a vector space overF under the

binary and scalar operations defined above.

Since Hom(U,V) is a vector space, a natural thing to do is to construct a bases

for it. In order to understand the construction of bases, we will restrict to the

following special cases ofU andV .

Let the bases ofU andV be{u1, u2, u3}, and{v1, v2}, respectively. Now, we

say thatT1, . . . , TN is a bases of Hom(U,V), if for allT ∈ Hom(U,V), we have

T =

N
∑

i=1

αiTi,

andT1, . . . , TN is a linearly independent set. This means that

Tu = (
N
∑

i=1

αiTi)u =
N
∑

i=1

αiTiu

for all u ∈ U , and
N
∑

i=1

βiTiu = 0

for all u ∈ U impliesβi = 0 for all i = 1, 2, . . . , N . Now, we will construct a set

of bases that spans Hom(U,V). LetB := {T1, . . . , TN}, and see what is it that is

required for this to be a basis. First of all, we need

• Tui ⊆ span{B}, i = 1, 2, 3 for all T ∈ Hom(U,V), and

• B should be linearly independent.

Now, let us investigate the first requirement fori = 1, 2, 3 as follows.
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• T ∈ Hom(U,V),Tu1 ⊆ span{B}, which can be written as

Tu1 =

2
∑

i=1

β1ivi =

N
∑

i=1

α1iTiu1. (2.19)

Now, the equality above is possible ifT1u1 = v1, T2u1 = v2, Tiu1 = 0 for

all i = 3, . . . , N , andβ11 = α11, β12 = α12.

• T ∈ Hom(U,V),Tu2 ⊆ span{B}, which can be written as

Tu2 =

2
∑

i=1

β2ivi =

N
∑

i=1

α2iTiu2. (2.20)

Now, the equality above is possible ifT3u2 = v1, T4u2 = v2, Tiu2 = 0 for

all i = 5, . . . , N , andβ21 = α21, β22 = α22.

• T ∈ Hom(U,V),Tu3 ⊆ span{B}, which can be written as

Tu3 =

2
∑

i=1

β3ivi =

N
∑

i=1

α3iTiu3. (2.21)

Now, the equality above is possible ifT5u3 = v1, T6u3 = v2, Tiu3 = 0 for

all i = 7, . . . , N , andβ31 = α31, β32 = α32.

From the above, it is easy to see thatT1, . . . , T6 is sufficient to span Hom(U,V).

Therefore, letN = 6. Now, from the above discussion, let us recall the conditions

that are required for the setB with N = 6 to be a bases:

• T1u1 = v1, andT1u1 = 0,

• T2u1 = v2, andT2u1 = 0,

• T3u2 = v1, andT3u2 = 0,

• T4u2 = v2, andT4u2 = 0,

• T5u3 = v1, andT5u3 = 0,

• T6u2 = v2, andT6u3 = 0.
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Thus, assuming the above conditions onB, it is easy to see that it spans

Hom(U,V). We will now investigate the linear independence of T1, . . . , T6. Here,

we need to prove that
∑

6

i=1
βiTiu = 0 for all u ∈ U implies βi = 0 for all

i = 1, 2, . . . , 6. Picku = u1, then, from the conditions onT1, . . . , T6, we have

6
∑

i=1

βiTiu1 = 0 ⇒ β1v1 + β2v2 = 0. (2.22)

By linear independency ofv1, v2, we haveβ1 = β2 = 0. Thus, the above equation

becomes
6
∑

i=3

βiTiu = 0,

for all u ∈ U . Now, picku = u2. Then,

6
∑

i=1

βiTiu2 = 0 ⇒ β3v1 + β4v2 = 0.

This implies thatβ3 = β4 = 0. Continuing this process further, it is easy to see

that all β ′
is have to be zero. This proves linear independency. Thus,T1, . . . , T6

forms a basis of Hom(U,V) fordim(U) = 3, anddim(V ) = 2. Note that the

number6 = 3 × 2 is the product of the dimensions of each vector spaces. This

can be easily generalized to anyU andV of finite dimensions, which is the essence

of the following theorem.

Theorem 18 Let U andV be two vector spaces of dimensionsm and

n, respectively. Then, Hom(U,V) is a vector space of dimension mn

Proof: Exercise. Hint: Try to imitate the proof form = 3, andn = 2 case

described above.

As an important corollary, we have:
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Corollary 2 LetV be a vector space overF of dimensionn. Then,

Hom(V, F) is a vector space of dimensionn. Further, V and

Hom(V, F) are isomorphic to each other.

Proof: From Theorem 18, the dimension ofHom(V, F) is equal ton. The

isomorphism follows from a previous exercise.�

Now, let us investigate the above corollary even further. Any vectorv ∈ V

can be written asv =
∑n

i=1
αivi, wherev1, . . . , vn is a bases vector ofV . Let

F ∈ Hom(V, F). Consider

F (v) = F
n
∑

i=1

αivi (2.23)

=

n
∑

i=1

αiF (vi) (2.24)

= Φ • F, (2.25)

whereΦ := (α1, . . . , αn), F := (F (v1), . . . , F (vn))
T , and• represents the usual

dot product onRn. Note that the vectorF is fixed for a given bases. Also, it is easy

to check that this representation is unique given the bases vectors. Thus, not only

that all the linear operators inHom(V, F) can be written as a dot product but also

there is a one-one correspondence between the elements ofV andHom(V, F).

Therefore, it is interesting to see if this can be generalized even further. This

requires us to generalize the notions of the dot product, which is done in the next

chapter. The spaceHom(V, F) is special in linear algebra, and has a name to

it. It is called the dual space, as it behaves likeV , but the objects appears to be

completely different.

Definition: (Dual space) IfV is a vector space overF, then its dual space is

Hom(V, F). The elements of the dual space are calledlinear functionals.

In the following chapter, we will generalize the notions of dot product and the

distance to an arbitrary finite dimensional vector spaces.



Chapter 3

Inner Product and Normed Spaces

Consider two vectorsx := (x1, x2) andy := (y1, y2) in R2. The inner-product is

defined as

〈x, y〉 := x1y1 + x2y2. (3.1)

Now, let us investigate the properties that〈x, y〉 posses, which are listed below:

1. 〈x, x〉 ≥ 0, for all x ∈ Rn, and〈x, x〉 = 0 if and only if x = 0.

2. 〈αx1 + βx2, y〉 := α 〈x1, y〉+ β 〈x2, y〉 for all α, β ∈ R.

3. 〈x, y〉 = 〈y, x〉.

In the case where the underlying field is complex, the above definition of the

dot product of two vectorsx := (x1, x2) andy := (y1, y2) in C2 becomes:

〈x, y〉 := x1ȳ1 + x2ȳ2. (3.2)

Now, let us investigate the properties that〈x, y〉 posses, which are listed below:

1. 〈x, x〉 ≥ 0, for all x ∈ Cn, and〈x, x〉 = 0 if and only if x = 0.

2. 〈αx1 + βx2, y〉 := ᾱ 〈x1, y〉+ β̄ 〈x2, y〉 for all α, β ∈ C.

3. 〈x, y〉 = 〈y, x〉.

29
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Consider two vectorsx := (x1, x2) andy := (y1, y2) in R2. The distance

betweenx andy denoteddist(x, y) is calculated using the following formula.

dist(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2. (3.3)

From this the length of any vectorx is defined aslen(x) := dist(0, x). It is easy

to see thatlen(∗) : R2 → R+ satisfies the following properties:

1. len(x) ≥ 0 for all x ∈ R2 with equality if and only ifx = 0.

2. len(x) + len(y) ≥ len(x + y) for all x, y ∈ R2.

3. len(αx) = |α|len(x), for all x ∈ R2.

The above can be easily generalized toRn as follows. The functionlen(∗) :

Rn → R+ is a length function onRn if it satisfies the following properties:

1. len(x) ≥ 0 for all x ∈ Rn with equality if and only ifx = 0.

2. len(x) + len(y) ≥ len(x + y) for all x, y ∈ Rn.

3. len(αx) = |α|len(x), for all x ∈ Rn.

Generalizing the notions of distance and inner product to anarbitrary vector

space over a real or a complex field is done below.

Definition: (Norm) A function on the vector spaceV overF denoted‖ ∗ ‖ :

V → R+ is said to be a norm if it satisfies the following properties:

1. ‖x‖ ≥ 0 for all x ∈ Rn with equality if and only ifx = 0.

2. ‖x‖ + ‖y‖ ≥ ‖x + y‖ for all x, y ∈ Rn.

3. ‖αx‖ = |α|‖x‖, for all x ∈ Rn.

Definition: (Inner-product) A function on the vector spaceV overF (F = R

or C) denoted〈∗, ∗〉 : V × V → F is said to be an inner-product if it satisfies the

following properties:

1. 〈x, x〉 ≥ 0, for all x ∈ V , and〈x, x〉 = 0 if and only if x = 0.
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2. 〈αx1 + βx2, y〉 := ᾱ 〈x1, y〉+ β̄ 〈x2, y〉 for all α, β ∈ F.

3. 〈x, y〉 = 〈y, x〉.

Note that in the above definition, we have used the fact that the conjugate of

real number is the number itself. Recall that the dot productin Rn can be used

to measure the distance between two vectors,x andy by simply taking the dot

product of the difference, i.e.,x−y•x−y. In other words, the dot product induces

the distance notion in the real space. Now, consider a general inner product space

(V, 〈∗, ∗〉). A natural question to ask is if
√

〈∗, ∗〉 is a norm. Let us check all the

properties of the norm.

The first property of the norm directly follows from the definition of the inner

product. Now, let us check for the triangle inequality. Letx, y ∈ V . Then, we

need to prove the following:

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2, (3.4)

which is equivalent to prove the following:

〈x + y, x + y〉2 ≤ 〈x, x〉2 + 〈y, y〉2 . (3.5)

Using the definitions of the inner product, the right hand side in the above equation

can be simplified as follows

〈x + y, x + y〉2 = 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉2 (3.6)

= ‖x‖2 + 2 〈x, y〉 + ‖y‖2. (3.7)

The proof would be complete if〈x, y〉 ≤ ‖x‖‖y‖ is true. This is because

‖x‖2 + 2 〈x, y〉 + ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 (3.8)

= (‖x‖ + ‖y‖)2. (3.9)

Now, the goal is to check if〈x, y〉 ≤ ‖x‖‖y‖ is true. This is the famousCauchy-

Schwartzinequality.
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Theorem 19 Let (V, 〈∗, ∗〉) be an inner product space. Then, for allx, y ∈ V , we

have

〈x, y〉 ≤ ‖x‖‖y‖. (3.10)

Proof: Let us first assume thatx andy are unit norm vectors. Then, we need to

prove that〈x, y〉 ≤ 1. Note that there is nothing to prove if one of the vector is a

zero vector. The inequality〈x, y〉 ≤ 1 can be proved as follows:

0 ≤ 〈x − y, x− y〉 (3.11)

= ‖x‖ + ‖y‖ − 2 〈x, y〉 (3.12)

= 2 − 2 〈x, y〉 (3.13)

⇒ 〈x, y〉 ≥ 1. (3.14)

Consider any pairx, y in V , not necessarily unit vectors. Considerx̄ := x
‖x‖

and

ȳ := y

‖y‖
. Sincex̄ andȳ are unit vectors, using〈x̄, ȳ〉 ≤ 1 for unit vectors, we get

〈x, y〉 ≤ ‖x‖‖y‖. � (3.15)

Now, we know that in any inner product space, the inner product induces a

norm. One natural question to ask is if we can say whether a norm is induced by

an inner product or not? The answer is the following:

Theorem 20 Let(V, 〈∗, ∗〉) be an inner product space. The norm (‖∗‖) is induced

by the inner product if and only if it satisfies the following parallelogram identity:

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) (3.16)

for all x, y ∈ V .

Proof: If norm is induced by an inner product, then the above equation is valid,

which is easy to verify. However, the proof of the converse isomitted.�

3.1 Orthogonality and Orthogonal Projection

Inner product not only induces a norm that brings in the notion of length but

also enables us to talk about the angles between two vectors.For example, in
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R2 with the usual dot product, the angle between two vectorsx := (x1, x2) and

y := (y1, y2) is measured using

angle := cos−1
x • y

len(x)len(y)
. (3.17)

Two vectors are said to be orthogonal ifcos θ = 0, which implies thatx • y = 0.

Now, we generalize this in the following definition.

Definition Let (V, 〈∗, ∗〉) be an inner product space. We say thatx, y ∈ V are

orthogonal if and only if〈x, y〉 = 0.

In this chapter, it is understood that the vector space is an inner product space.

Consider a vector spaceV . Let x ∈ V be a vector. Then, consider the following

set:

A⊥
x := {y ∈ V : 〈x, y〉 = 0}. (3.18)

It is easy to see that the setA⊥
x is a subspace. Now consider any vectorv ∈ V .

Intuitively, we see that the differencew := v − αx should be orthogonal to the

span{x} for some properly chosenα ∈ R. Now, let us investigate the value ofα

for which this is true. Towards this, we need to check if〈v − αx, x〉 = 0:

0 = 〈v − αx, αx〉 (3.19)

= α 〈v, x〉 − α2 〈x, x〉 (3.20)

⇔ α∗ =
〈v, x〉

〈x, x〉
. (3.21)

Thus,w = v − α∗x ∈ A⊥
x , which implies thatv = α∗x + w. This can interpreted

as any vector inV can be written as the sum of a vector in the span ofx and a

vector in the orthogonal compliment of the span ofx.

Now, we shall see if we can generalize this to an arbitrary subspace ofV .

Towards, this we need the notion of projection of a vector onto a subspace. First,

let us look at the projection of one vector, sayu ∈ V onto another vector, sayv ∈

V , denotedProjv(u). This makes sense only when the two vectors are different in

the sense thatspan{u} 6= span{v}. Our intuition inR2 suggests the following
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simple definition:1

Projv(u) :=
〈u, v〉

〈u, u〉
u. (3.22)

Now, it is easy to see that the vectorū := Projv(u) − u is orthogonal tov. Thus,

beginning with two vectors, we have found two different vectors ū andv that are

orthogonal to each other, and they span the same space as thatof v andu. Gen-

eral version of this method is called Gram-Schmidt orthogonalization procedure,

which is explained below.

3.1.1 Gram-Schmidt Orthogonalization

Consider a vector spaceV with a set of bases{v1, . . . , vn}. Now, the procedure is

as follows:

• Let v̄1 := v1.

• Obtain an orthogonal vector̄v2 by using the vectorv2 as

v̄2 := v2 − Projv̄1
(v2). (3.23)

• The third vector̄v3 which is orthogonal to both̄v1 andv̄2 is obtained as

v̄3 := v3 − Projv̄1
(v3) − Projv̄2

(v3). (3.24)

• .......

• .......

• .......

• Thei-th vector,i = 1, 2, . . . , n is obtained as follows:

v̄i := vi −

i−1
∑

j=1

Projv̄j
(vi). (3.25)

1An interesting observation is that the vectorα∗x =
〈v,x〉
〈x,x〉x is a projection ofv ontox.
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It is easy to see that the above procedure leads to a set of orthonormal vectors start-

ing from a set of bases vector. The following theorem states that the orthogonal

vector thus obtained still retains the bases property.

Theorem 21 Let the bases vector of a vector spaceV be{v1, . . . , vn}.

Let {v̄1, . . . , v̄n} be the corresponding orthogonal vectors obtained

by applying Gram-Schmidt orthogonalization procedure. Then,

{v̄1, . . . , v̄n} is also a bases.

Proof: First, let us prove linear independency of{v̄1, . . . , v̄n}, i.e., we need to

prove that
n
∑

i=1

αiv̄i = 0

impliesαi = 0 for all 1 ≤ i ≤ n. Taking the inner product of the above equation

with v̄i, we getαi 〈v̄i, v̄i〉 = 0. Since〈v̄i, v̄i〉 ≥ 0, we haveαi = 0, and this is true

for all 1 ≤ i ≤ n. Thus, all ofαi’s = 0. This proves linear independency. Now,

since the vector space is of dimensionn, and the set{v̄1, . . . , v̄n} hasn linearly

independent vectors, it should span the space, which provesthe theorem.�

As a simple consequence of the above, we have:

Lemma 4 Let {v̄1, . . . , v̄n} be an orthogonal bases vector. Then,

{ṽ1, . . . , ṽn}, where

ṽi :=
v̄i

‖v̄i‖

is an orthonormal bases.

Proof: Easy exercise.�
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