E2 212: Homework - 2

1 Topics

- Determinants
- Inner products
- Norms
- Gram-Schmidt

2 Problems

1. Show that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
2. Prove that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
3. Prove that the matrix $A \in \mathbb{R}^{n \times n}$ is singular if and only if $\operatorname{det}(A)=0$.
4. Let $A \in \mathbb{R}^{n \times n}$. Prove that the determinant of B obtained by
(a) interchanging rows i and j is $-\operatorname{det}(A)$.
(b) multiplying row i by $\alpha \neq 0$ is $\alpha \operatorname{det}(A)$.
5. For any real $n \times n$ matrix $A=\left[a_{i j}\right], i, j=1, \ldots, n$ and $a_{i j} \in \mathbb{R}$, prove the following inequality:

$$
(\operatorname{det}(A))^{2} \leq \prod_{i=1}^{n} b_{i i} .
$$

In the above, $b_{i i}$ is the i-th diagonal entry in $A^{T} A$.
6. Show that $\operatorname{det}\left(I+A A^{T}\right)=\operatorname{det}\left(I+A^{T} A\right)$.
7. Let V be an inner product space. Prove that for all $\mathbf{x}, \mathbf{y} \in V$,

$$
\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{x}\|\|\mathrm{y}\|,
$$

where the norm is defined as $\|*\| \triangleq \sqrt{\langle *, *\rangle}$. Equality holds if and only if $\mathbf{y}=\alpha \mathbf{x}$ for $\alpha=\langle\mathbf{x}, \mathbf{y}\rangle /\|\mathbf{x}\|$.
8. Prove the following:
(a) (Minkowski inequality): For every $p>0$

$$
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{1 / p} .
$$

(b) (Holder's inequality) If $p>0$ and $q>0$ are real numbers such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

9. Let V be a finite dimensional vector space. The norm $\|*\|_{A}$ is said to be equivalent to the norm $\|*\|_{B}$ denoted $\|*\|_{A} \sim\|*\|_{B}$ if for all $\mathbf{x} \in V$, there exists $0<K_{1} \leq K_{2}$ such that

$$
K_{1}\|\mathbf{x}\|_{A} \leq\|\mathbf{x}\|_{B} \leq K_{2}\|\mathbf{x}\|_{B}
$$

Show that the relation \sim is an equivalence relation, i.e., prove the following:
(a) $\|*\|_{A} \sim\|*\|_{A}$.
(b) $\|*\|_{A} \sim\|*\|_{B}$, then $\|*\|_{B} \sim\|*\|_{A}$.
(c) If $\|*\|_{A} \sim\|*\|_{B}$ and $\|*\|_{B} \sim\|*\|_{C}$, then $\|*\|_{A} \sim\|*\|_{C}$.
10. Let $(V,\langle *, *\rangle)$ be a linear inner product space of dimension n. For any fixed $\mathbf{x} \in V$, find the dimension of the subspace $W \triangleq\{\mathbf{y} \in V:\langle\mathbf{y}, \mathbf{x}\rangle=0\}$.
11. Show that, if $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\begin{array}{r}
\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1} \leq \sqrt{n}\|\mathbf{x}\|_{2} \\
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty} \\
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}
\end{array}
$$

When is the equality attained?
12. Let $\|\cdot\|$ be a vector norm on \mathbb{R}^{m} and assume $A \in \mathbb{R}^{m \times n}$. Show that if $\operatorname{rank}(A)=n$, then $\|\mathbf{x}\|_{A} \triangleq\|A \mathbf{x}\|$ is a vector norm on \mathbb{R}^{n}.
13. Show that the Frobenius norm, defined by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

and the p-norm, defined by

$$
\|A\|_{p}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|A \mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}}, \quad p \geq 1
$$

are matrix norms.
14. For a real inner product space $(V,\langle.,\rangle$.$) with the norm induced by the inner product \left(\|*\|^{2}=\langle *, *\rangle\right)$, prove that

$$
\langle\mathbf{x}, \mathbf{y}\rangle \leq \frac{\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}}{2}
$$

15. A matrix $A \in \mathbb{C}^{n \times n}$ is said to be normal if $A A^{H}=A^{H} A$. Prove that if A is normal, then Range $(A) \perp$ $\operatorname{Null}(A)$.
16. Apply Gram-Schmidt procedure to obtain an orthonormal set for the following set of vectors:
(a) $\{(-1,0,1),(-1,-1,0),(0,0,1)\} \subseteq \mathbb{R}^{3}$.
(b) $\{(1,-1,1,-1),(5,1,1,1),(2,3,1,-1)\} \subseteq \mathbb{R}^{4}$.
