E2 212: Homework - 2

1 Topics

- Determinants
- Inner products
- Norms
- Gram-Schmidt

2 Problems

- 1. Show that det(AB) = det(A) det(B).
- 2. Prove that $det(A) = det(A^T)$.
- 3. Prove that the matrix $A \in \mathbb{R}^{n \times n}$ is singular if and only if $\det(A) = 0$.
- 4. Let $A \in \mathbb{R}^{n \times n}$. Prove that the determinant of B obtained by
 - (a) interchanging rows i and j is $-\det(A)$.
 - (b) multiplying row i by $\alpha \neq 0$ is $\alpha \det(A)$.
- 5. For any real $n \times n$ matrix $A = [a_{ij}], i, j = 1, ..., n$ and $a_{ij} \in \mathbb{R}$, prove the following inequality:

$$(\det(A))^2 \le \prod_{i=1}^n b_{ii}$$

In the above, b_{ii} is the *i*-th diagonal entry in $A^T A$.

- 6. Show that $\det(I + AA^T) = \det(I + A^TA)$.
- 7. Let V be an inner product space. Prove that for all $\mathbf{x}, \mathbf{y} \in V$,

$$\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\| \|\mathbf{y}\|,$$

where the norm is defined as $\| * \| \triangleq \sqrt{\langle *, * \rangle}$. Equality holds if and only if $\mathbf{y} = \alpha \mathbf{x}$ for $\alpha = \langle \mathbf{x}, \mathbf{y} \rangle / \| \mathbf{x} \|$. 8. Prove the following:

(a) (Minkowski inequality): For every p > 0

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}.$$

(b) (Holder's inequality) If p > 0 and q > 0 are real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}$$

9. Let V be a finite dimensional vector space. The norm $||*||_A$ is said to be equivalent to the norm $||*||_B$ denoted $||*||_A \sim ||*||_B$ if for all $\mathbf{x} \in V$, there exists $0 < K_1 \leq K_2$ such that

$$K_1 \|\mathbf{x}\|_A \le \|\mathbf{x}\|_B \le K_2 \|\mathbf{x}\|_B.$$

Show that the relation \sim is an equivalence relation, i.e., prove the following:

- (a) $\|*\|_A \sim \|*\|_A$.
- (b) $\| * \|_A \sim \| * \|_B$, then $\| * \|_B \sim \| * \|_A$.
- (c) If $\|*\|_A \sim \|*\|_B$ and $\|*\|_B \sim \|*\|_C$, then $\|*\|_A \sim \|*\|_C$.
- 10. Let $(V, \langle *, * \rangle)$ be a linear inner product space of dimension n. For any fixed $\mathbf{x} \in V$, find the dimension of the subspace $W \triangleq \{\mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle = 0\}$.
- 11. Show that, if $\mathbf{x} \in \mathbb{R}^n$,

$$\begin{aligned} \|\mathbf{x}\|_{2} &\leq \|\mathbf{x}\|_{1} \leq \sqrt{n} \|\mathbf{x}\|_{2} \\ \|\mathbf{x}\|_{\infty} &\leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty} \\ \|\mathbf{x}\|_{\infty} &\leq \|\mathbf{x}\|_{1} \leq n \|\mathbf{x}\|_{\infty} \end{aligned}$$

When is the equality attained?

- 12. Let $\|\cdot\|$ be a vector norm on \mathbb{R}^m and assume $A \in \mathbb{R}^{m \times n}$. Show that if $\operatorname{rank}(A) = n$, then $\|\mathbf{x}\|_A \triangleq \|A\mathbf{x}\|$ is a vector norm on \mathbb{R}^n .
- 13. Show that the Frobenius norm, defined by

$$||A||_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2},$$

and the p-norm, defined by

$$||A||_p = \max_{\mathbf{x}\neq\mathbf{0}} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p}, \quad p \ge 1$$

are matrix norms.

14. For a real inner product space $(V, \langle ., . \rangle)$ with the norm induced by the inner product $(|| * ||^2 = \langle *, * \rangle)$, prove that

$$\langle \mathbf{x}, \mathbf{y}
angle \le rac{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2}{2}$$

- 15. A matrix $A \in \mathbb{C}^{n \times n}$ is said to be normal if $AA^H = A^H A$. Prove that if A is normal, then $\text{Range}(A) \perp \text{Null}(A)$.
- 16. Apply Gram-Schmidt procedure to obtain an orthonormal set for the following set of vectors:
 - (a) $\{(-1,0,1), (-1,-1,0), (0,0,1)\} \subseteq \mathbb{R}^3$.
 - (b) $\{(1, -1, 1, -1), (5, 1, 1, 1), (2, 3, 1, -1)\} \subseteq \mathbb{R}^4$.