E2 212: Homework - 3

1 Topics

- Matrix Norms
- Errors in solutions of linear equations and condition numbers
- Eigenvalues and Eigenvectors

2 Problems

Notation: M_{n} denotes an $n \times n$ matrix over a field of complex (or real) numbers, i.e. $\mathbb{C}^{n \times n}\left(\right.$ or $\left.\mathbb{R}^{n \times n}\right)$. Note that "triple-bar" norms $\||\cdot|| |$ denote vector induced matrix norms while "double-bar" norms $\|\cdot\|$ denote vector norms (possibly, on matrices).

1. Show that, for any $\mathbf{A} \in M_{n}$, the series $\sum_{k=0}^{\infty} a_{k} \mathbf{A}^{k}$ converges if there is a matrix norm $\left\|\|\right.$.$\| on M_{n}$ such that the numerical series $\sum_{k=0}^{\infty}\left|a_{k}\right|\|A\|^{k}$ converges. (Hint: What does convergence of a series mean?)
2. If $\mathbf{A}, \mathbf{B} \in M_{n}$, if \mathbf{A} is invertible, and if $\mathbf{A}+\mathbf{B}$ is singular, show that $\|\mathbf{B}\| \geqslant 1 /\left\|\mathbf{A}^{-1}\right\|$ for any matrix norm $\|\|\| \mid$. . Thus there is an intrinsic limit to how well a non-singular matrix can be approximated by a singular one. (Hint: $\mathbf{A}+\mathbf{B}=\mathbf{A}\left(\mathbf{I}+\mathbf{A}^{-1} \mathbf{B}\right)$.)
3. Show that if \mathbf{B} is an idempotent matrix then $\|\mathbf{B}\| \geqslant 1$ for any matrix norm $\|\|$. $\| \|$.
4. Give an example of a vector norm on matrices for which $\|\mathbf{I}\|<1$.
5. Show that:

$$
\|\mathbf{A}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\|\mathbf{A} \mathbf{x}\|_{2}=\max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1}\left|\mathbf{y}^{H} \mathbf{A} \mathbf{x}\right|
$$

6. Prove the following:
(a) $\left\|\|\mathbf{A}\|_{1} \leqslant\right\| \mathbf{A}\left\|_{1} \leqslant n\right\| \mathbf{A} \|_{\infty}$. Here $\left\|\|.\|_{1}\right.$ denotes the operator (matrix) norm induced by l_{1}-vector norm and $\|.\|_{1}$ is the l_{1} vector norm for matrices (sum of absolute values of entries of matrix).
(b) $\|\mathbf{A}\|_{1} \leqslant \sqrt{n}\|\mathbf{A}\|_{2}$
7. Show that $\kappa(\mathbf{A B}) \leqslant \kappa(\mathbf{A}) \kappa(\mathbf{B})$ always, where $\kappa($.$) is the condition number for a given matrix. Is$ $\kappa($.$) a matrix or a vector norm?$
8. Let \mathbf{A} be a unitary matrix. Prove that $\kappa(\mathbf{A})=1$ with respect to the spectral norm.

Hint: You do not need eigenvalues for this problem! Use the following properties of unitary matrices. If \mathbf{A} is unitary matrix, then:
(a) $\mathbf{A} \mathbf{A}^{H}=\mathbf{I}$, i.e., it's hermitian is it's inverse.
(b) $\|\mathbf{A} \mathbf{x}\|_{2}=\left\|\mathbf{A}^{H} \mathbf{x}\right\|_{2}=\|\mathbf{x}\|_{2}$, i.e., it preserves the Euclidean norm.
9. Show that for any square matrix \mathbf{A}, the set $E_{\lambda} \triangleq\left\{\mathbf{v} \in \mathbb{R}^{n}: \mathbf{A v}=\lambda \mathbf{v}\right\}$ for any $\lambda \in \mathbb{R}$, is a subspace.
10. Let \mathbf{A} and \mathbf{B} be $n \times n$ matrices. Show that $\mathbf{A B}$ and $\mathbf{B A}$ have exactly the same eigenvalues.
11. Give a closed-form solution for \mathbf{x} in the system of equations $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is full rank, square and symmetric, in terms of the eigendecomposition of \mathbf{A}.
12. The so-called power method for calculating the largest eigenvalue/vector pair of a square symmetric matrix \mathbf{A} is described as follows:
Initialize: set \mathbf{x}_{0} to an arbitrary value. For $i=1,2,3, \ldots$

$$
\begin{gathered}
\mathbf{z}=\mathbf{A} \mathbf{x}_{i-1} \\
\mathbf{x}_{i}=\frac{\mathbf{z}}{\|\mathbf{z}\|_{2}}
\end{gathered}
$$

As $i \rightarrow \infty, \mathbf{x}_{i}$ converges to the maximum eigenvector.
(a) Prove that the above algorithm converges. Hint: express \mathbf{x}_{0} using the eigenvectors of \mathbf{A} as a basis.
(b) Modify the algorithm to find the smallest eigenvalue/vector.
(c) Explain what happens when the largest eigenvalue is not distinct.
13. Derive an analytical expression for the eigendecomposition of a square symmetric rank-one matrix.

