E2 212: Homework - 3

1 Topics

- Matrix Norms
- Errors in solutions of linear equations and condition numbers
- Eigenvalues and Eigenvectors

2 Problems

Notation: M_n denotes an $n \times n$ matrix over a field of complex (or real) numbers, i.e. $\mathbb{C}^{n \times n}$ (or $\mathbb{R}^{n \times n}$). Note that "triple-bar" norms $\| \cdot \|$ denote vector induced matrix norms while "double-bar" norms $\| \cdot \|$ denote vector norms (possibly, on matrices).

- 1. Show that, for any $\mathbf{A} \in M_n$, the series $\sum_{k=0}^{\infty} a_k \mathbf{A}^k$ converges if there is a matrix norm |||. ||| on M_n such that the numerical series $\sum_{k=0}^{\infty} |a_k| |||A|||^k$ converges. (Hint: What does convergence of a series mean?)
- 2. If $\mathbf{A}, \mathbf{B} \in M_n$, if \mathbf{A} is invertible, and if $\mathbf{A} + \mathbf{B}$ is singular, show that $|||\mathbf{B}||| \ge 1/|||\mathbf{A}^{-1}|||$ for any matrix norm $|||| \cdot |||$. Thus there is an intrinsic limit to how well a non-singular matrix can be approximated by a singular one. (Hint: $\mathbf{A} + \mathbf{B} = \mathbf{A}(\mathbf{I} + \mathbf{A}^{-1}\mathbf{B})$.)
- 3. Show that if **B** is an idempotent matrix then $\|\mathbf{B}\| \ge 1$ for any matrix norm $\|$.
- 4. Give an example of a vector norm on matrices for which $\|\mathbf{I}\| < 1$.
- 5. Show that:

$$\|\|\mathbf{A}\|\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2} = \max_{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1} |\mathbf{y}^{H}\mathbf{A}\mathbf{x}|$$

- 6. Prove the following:
 - (a) |||A|||₁ ≤ ||A||₁ ≤ n |||A|||_∞. Here ||| . |||₁ denotes the operator (matrix) norm induced by l₁-vector norm and || . ||₁ is the l₁ vector norm for matrices (sum of absolute values of entries of matrix).
 (b) |||A|||₁ ≤ √n ||A||₂
- 7. Show that $\kappa(\mathbf{AB}) \leq \kappa(\mathbf{A})\kappa(\mathbf{B})$ always, where $\kappa(.)$ is the condition number for a given matrix. Is $\kappa(.)$ a matrix or a vector norm?
- 8. Let **A** be a unitary matrix. Prove that $\kappa(\mathbf{A}) = 1$ with respect to the spectral norm. Hint: You do not need eigenvalues for this problem! Use the following properties of unitary matrices. If **A** is unitary matrix, then:
 - (a) $\mathbf{A}\mathbf{A}^{H} = \mathbf{I}$, i.e., it's hermitian is it's inverse.
 - (b) $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}^H\mathbf{x}\|_2 = \|\mathbf{x}\|_2$, i.e., it preserves the Euclidean norm.
- 9. Show that for any square matrix \mathbf{A} , the set $E_{\lambda} \triangleq \{\mathbf{v} \in \mathbb{R}^n : \mathbf{A}\mathbf{v} = \lambda\mathbf{v}\}$ for any $\lambda \in \mathbb{R}$, is a subspace.

- 10. Let **A** and **B** be $n \times n$ matrices. Show that **AB** and **BA** have exactly the same eigenvalues.
- 11. Give a closed-form solution for \mathbf{x} in the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is full rank, square and symmetric, in terms of the eigendecomposition of A.
- 12. The so-called power method for calculating the largest eigenvalue/vector pair of a square symmetric matrix \mathbf{A} is described as follows:

Initialize: set \mathbf{x}_0 to an arbitrary value. For $i = 1, 2, 3, \ldots$

$$\mathbf{z} = \mathbf{A}\mathbf{x}_{i-1}$$

 $\mathbf{x}_i = \frac{\mathbf{z}}{\|\mathbf{z}\|_2}$

- As $i \to \infty$, \mathbf{x}_i converges to the maximum eigenvector.
- (a) Prove that the above algorithm converges. *Hint:* express \mathbf{x}_0 using the eigenvectors of \mathbf{A} as a basis.
- (b) Modify the algorithm to find the smallest eigenvalue/vector.
- (c) Explain what happens when the largest eigenvalue is not distinct.
- 13. Derive an analytical expression for the eigendecomposition of a square symmetric rank-one matrix.