E2 212: Homework - 4

1 Topics

- Eigenvalues and Eigenvectors
- Schur's theorem
- Unitary equivalence
- Normal matrices
- $Q R$ decomposition and Jordan form

2 Problems

1. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then, prove the following:
(a) $\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} \lambda_{i}$.
(b) $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$.
2. Let the eigenvectors and eigenvalues of the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ be \mathbf{v}_{i} and λ_{i} such that $\lambda_{i} \neq \lambda_{j}$ for all $j \neq i, i=1,2, \ldots, r$. Then, prove that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ is a linearly independent set.
3. Let the subspace $U \subseteq \mathbb{C}^{n \times n}$ be an invariant subspace under the matrix transformation $\mathbf{A} \in \mathbb{C}^{n \times n}$, i.e., $\mathbf{A u} \subseteq U$ for all $\mathbf{u} \in U$. Then, prove the following
(a) There exists a vector $\mathbf{u} \in U$ and $\lambda \in \mathbb{C}$ such that $\mathbf{A u}=\lambda \mathbf{u}$.
(b) If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then $\operatorname{dim}(U) \geq k$.
(c) The subspace $U^{\perp} \triangleq\{\mathbf{v} \in V:\langle\mathbf{u}, \mathbf{v}\rangle=0$, for all $\mathbf{u} \in U\}$ is also an invariant subspace with respect A.
4. Let $\sigma(\mathbf{A})$ denote the spectrum of the matrix \mathbf{A}. Show that for a triangular matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ with entries $a_{i j}, \sigma(\mathbf{A})=\bigcup_{i=1}^{n}\left\{a_{i i}\right\}$.
5. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ has n distinct eigenvalues in \mathbb{C}. Then, prove that there exists an invertible matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix D such that

$$
\exp \{\mathbf{A}\}=U D U^{-1}
$$

6. Let $\mathbf{A} \in \mathbb{C}^{n \times n}, \lambda \in \mathbb{C}$. Prove that if $\left(\mathbf{A}-\lambda I_{n}\right)^{j} \mathbf{u}=0$ for some $j \geq 1$, and $\mathbf{u} \in \mathbb{C}^{n}$, then $\left(\mathbf{A}-\lambda I_{n}\right)^{n} \mathbf{u}=0$.
7. Let $\lambda_{1}, \ldots, \lambda_{n}$ (not necessarily distinct) be the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then,

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}
$$

8. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and $\beta \triangleq \max \left\{\left|a_{i j}\right|: i, j=1,2, \ldots, n\right\}$. Then,

$$
|\operatorname{det} \mathbf{A}| \leq \beta^{n} n^{n / 2}
$$

9. Prove that for every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, and for every $\epsilon>0$, there exists a matrix \mathbf{A}_{ϵ} such that \mathbf{A}_{ϵ} is equivalent to a diagonal matrix, and $\left\|\mathbf{A}-\mathbf{A}_{\epsilon}\right\|_{F}<\epsilon$. Hint: Use Schur's theorem.
10. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be given, and suppose \mathbf{A} and \mathbf{B} are simultaneously similar to upper triangular matrices: that is, $\mathbf{S}^{-1} \mathbf{A S}$ and $\mathbf{S}^{-1} \mathbf{B S}$ are both upper triangular for some nonsingular \mathbf{S}. Show that every eigenvalue of $\mathbf{A B}-\mathbf{B A}$ must be zero.
11. If $\mathbf{A} \in \mathbb{C}^{n \times n}$, show that rank of \mathbf{A} is not less than the number of nonzero eigenvalues of \mathbf{A}.
12. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Show that any matrix that commutes with A also commutes with \mathbf{A}^{-1}.
13. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal, and if \mathbf{x} and \mathbf{y} are eigenvectors corresponding to distinct eigenvalues, show that \mathbf{x} and \mathbf{y} are orthogonal.
14. Show that a normal matrix is unitary if and only if all its eigenvalues have absolute value 1 .
15. Show that a given matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal if and only if

$$
(\mathbf{A} \mathbf{x})^{H}(\mathbf{A} \mathbf{y})=\left(\mathbf{A}^{H} \mathbf{x}\right)^{H}\left(\mathbf{A}^{H} \mathbf{y}\right)
$$

16. Let $n_{1}, n_{2}, \ldots, n_{k}$ be given positive integers and let $A_{j} \in M_{n_{j}}, j=1,2, \ldots, k$. Show that the direct $\operatorname{sum} \mathbf{A}_{1} \oplus \ldots \oplus \mathbf{A}_{k}$ is normal if and only if each \mathbf{A}_{j} is normal.
17. Show that each \mathbf{A}_{k} produced by the $Q R$ algorithm is unitarily equivalent to $\mathbf{A}_{0}, k=1,2, \ldots$.
18. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be given. Define

$$
K_{\lambda} \triangleq\left\{\mathbf{x} \in \mathbb{C}^{n}:(\mathbf{A}-\lambda I)^{p} \mathbf{x}=0 \text { for some integer } p>0\right\}
$$

Prove that
(a) If λ is an eigenvalue of \mathbf{A}, then K_{λ} is a \mathbf{A}-invariant subspace of \mathbb{C}^{n}, i.e., $\mathbf{A} \mathbf{y} \subseteq K_{\lambda}$ for all $\mathbf{y} \in K_{\lambda}$.
(b) If λ is an eigenvalue of \mathbf{A} with multiplicity m, then $\operatorname{dim}\left(K_{\lambda}\right) \leq m$.
19. Find an invertible matrix \mathbf{U} such that $\mathbf{U}^{-1} \mathbf{A} \mathbf{U}$ is in Jordan form when

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & i \\
0 & 2 & 0 \\
-i & 0 & 1
\end{array}\right]
$$

where $i=\sqrt{-1}$.
20. Find the Jordan form of the following matrices

$$
\mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 1 & 3
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & -4 & 2 \\
-i & 0 & 1
\end{array}\right]
$$

