E2 212: Homework - 4

1 Topics

- Eigenvalues and Eigenvectors
- Schur's theorem
- Unitary equivalence
- Normal matrices
- QR decomposition and Jordan form

2 Problems

- 1. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then, prove the following:
 - (a) tr $\mathbf{A} = \sum_{i=1}^{n} \lambda_i$.

(b) det (**A**) =
$$\prod_{i=1}^{n} \lambda_i$$
.

- 2. Let the eigenvectors and eigenvalues of the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ be \mathbf{v}_i and λ_i such that $\lambda_i \neq \lambda_j$ for all $j \neq i, i = 1, 2, ..., r$. Then, prove that $\mathbf{v}_1, ..., \mathbf{v}_r$ is a linearly independent set.
- 3. Let the subspace $U \subseteq \mathbb{C}^{n \times n}$ be an invariant subspace under the matrix transformation $\mathbf{A} \in \mathbb{C}^{n \times n}$, i.e., $\mathbf{A}\mathbf{u} \subseteq U$ for all $\mathbf{u} \in U$. Then, prove the following
 - (a) There exists a vector $\mathbf{u} \in U$ and $\lambda \in \mathbb{C}$ such that $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$.
 - (b) If $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then $\dim(U) \geq k$.
 - (c) The subspace $U^{\perp} \triangleq \{ \mathbf{v} \in V : \langle \mathbf{u}, \mathbf{v} \rangle = 0$, for all $\mathbf{u} \in U \}$ is also an invariant subspace with respect **A**.
- 4. Let $\sigma(\mathbf{A})$ denote the spectrum of the matrix \mathbf{A} . Show that for a triangular matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ with entries $a_{ij}, \sigma(\mathbf{A}) = \bigcup_{i=1}^{n} \{a_{ii}\}$.
- 5. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ has *n* distinct eigenvalues in \mathbb{C} . Then, prove that there exists an invertible matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix *D* such that

$$\exp\{\mathbf{A}\} = UDU^{-1}.$$

- 6. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\lambda \in \mathbb{C}$. Prove that if $(\mathbf{A} \lambda I_n)^j \mathbf{u} = 0$ for some $j \ge 1$, and $\mathbf{u} \in \mathbb{C}^n$, then $(\mathbf{A} \lambda I_n)^n \mathbf{u} = 0$.
- 7. Let $\lambda_1, \ldots, \lambda_n$ (not necessarily distinct) be the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then,

$$\sum_{i=1}^{n} |\lambda_i|^2 \le \sum_{i,j=1}^{n} |a_{ij}|^2.$$

8. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and $\beta \triangleq \max\{|a_{ij}| : i, j = 1, 2, \dots, n\}$. Then,

$$|\det \mathbf{A}| \leq \beta^n n^{n/2}$$

- 9. Prove that for every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, and for every $\epsilon > 0$, there exists a matrix \mathbf{A}_{ϵ} such that \mathbf{A}_{ϵ} is equivalent to a diagonal matrix, and $\|\mathbf{A} \mathbf{A}_{\epsilon}\|_{F} < \epsilon$. *Hint:* Use Schur's theorem.
- 10. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be given, and suppose \mathbf{A} and \mathbf{B} are simultaneously similar to upper triangular matrices: that is, $\mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ and $\mathbf{S}^{-1}\mathbf{B}\mathbf{S}$ are both upper triangular for some nonsingular \mathbf{S} . Show that every eigenvalue of $\mathbf{A}\mathbf{B} \mathbf{B}\mathbf{A}$ must be zero.
- 11. If $\mathbf{A} \in \mathbb{C}^{n \times n}$, show that rank of \mathbf{A} is not less than the number of nonzero eigenvalues of \mathbf{A} .
- 12. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Show that any matrix that commutes with A also commutes with \mathbf{A}^{-1} .
- 13. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal, and if \mathbf{x} and \mathbf{y} are eigenvectors corresponding to distinct eigenvalues, show that \mathbf{x} and \mathbf{y} are orthogonal.
- 14. Show that a normal matrix is unitary if and only if all its eigenvalues have absolute value 1.
- 15. Show that a given matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal if and only if

$$(\mathbf{A}\mathbf{x})^H(\mathbf{A}\mathbf{y}) = (\mathbf{A}^H\mathbf{x})^H(\mathbf{A}^H\mathbf{y}).$$

- 16. Let n_1, n_2, \ldots, n_k be given positive integers and let $A_j \in M_{n_j}$, $j = 1, 2, \ldots, k$. Show that the direct sum $\mathbf{A}_1 \oplus \ldots \oplus \mathbf{A}_k$ is normal if and only if each \mathbf{A}_j is normal.
- 17. Show that each \mathbf{A}_k produced by the QR algorithm is unitarily equivalent to $\mathbf{A}_0, k = 1, 2, \dots$
- 18. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be given. Define

$$K_{\lambda} \triangleq \{ \mathbf{x} \in \mathbb{C}^n : (\mathbf{A} - \lambda I)^p \mathbf{x} = 0 \text{ for some integer } p > 0 \}.$$

Prove that

- (a) If λ is an eigenvalue of \mathbf{A} , then K_{λ} is a \mathbf{A} -invariant subspace of \mathbb{C}^n , i.e., $\mathbf{A}\mathbf{y} \subseteq K_{\lambda}$ for all $\mathbf{y} \in K_{\lambda}$.
- (b) If λ is an eigenvalue of **A** with multiplicity m, then dim $(K_{\lambda}) \leq m$.
- 19. Find an invertible matrix \mathbf{U} such that $\mathbf{U}^{-1}\mathbf{A}\mathbf{U}$ is in Jordan form when

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -i & 0 & 1 \end{bmatrix}$$

where $i = \sqrt{-1}$.

20. Find the Jordan form of the following matrices

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -4 & 2 \\ -i & 0 & 1 \end{bmatrix}.$$