E2 212: Homework - 5

1 Topics

- LU factorization, Triangular factorizations and linear equations
- Hermitian matrices, Rayleigh quotient

2 Problems

1. (Applications of $L U$ factorization): Suggest efficient algorithms to solve the following system of equations: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be non-singular.
(a) $\mathbf{A X}=\mathbf{B}$, where \mathbf{X}, \mathbf{B} are $n \times k$.
(b) $\mathbf{A}^{k} \mathbf{x}=\mathbf{b}$. (The idea is to avoid matrix multiplications in computing \mathbf{A}^{k} explicitly).
2. Give an algorithm for computing a non-zero $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{U x}=0$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular with $u_{n n}=0$ and $u_{i i} \neq 0$ for all $i=1,2, \ldots, n-1$.
3. (Matrix forms of elementary row operations) Let \mathbf{x} be such that $\mathbf{x}_{k} \neq 0$. Write down the matrix \mathbf{M} that when multiplied with \mathbf{x} produces zeros on components $[k+1: n]$. Verify that \mathbf{M} can be written as $\mathbf{M}=\mathbf{I}-\mathbf{t} \mathbf{e}_{k}^{T}$ and find the value of vector \mathbf{t}. In the above, \mathbf{e}_{k} is the $k^{t h}$ standard basis vector. What would be the form of \mathbf{M}^{-1} ?
4. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]
$$

Let \mathbf{A}_{11} be $r \times r$ and non-singular. Show that if \mathbf{A}_{11} has an LU factorization without pivoting, then after r-steps of Gaussian elimination without pivoting on $\mathbf{A}, \mathbf{A}(r+1: n, r+1: n)$ will contain the Schur's complement of \mathbf{A}_{11}, defined by $\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$.
5. Is the following statement correct: The multipliers for Gaussian elimination of matrix $\mathbf{A}^{T} \mathbf{A}$ are identical to the multipliers that orthogonalize the columns of \mathbf{A}. Why/ Why not?
6. Show that
(a) The inverse of an upper triangular matrix is upper triangular.
(b) The product of two lower triangular matrices is lower triangular.
(c) The inverse of a unit upper triangular matrix is unit upper triangular.
(d) The product of two unit lower triangular matrices is unit lower triangular.
7. If \mathbf{A} is diagonalizable and $f(\cdot)$ is a polynomial, show that $f(\mathbf{A})$ is diagonalizable.
8. Show that any 2×2 real symmetric matrix is diagonalizable.
9. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is both normal $\left(\mathbf{A A}^{H}=\mathbf{A}^{H} \mathbf{A}\right)$ and nilpotent $\left(\mathbf{A}^{k}=0\right.$, for some $\left.k\right)$, show that $\mathbf{A}=0$.
10. Let \mathbf{A}, \mathbf{B} be $n \times n$ Hermitian matrices. Show that \mathbf{A} and \mathbf{B} are similar if and only if they are unitarily similar.
11. Let $\mathbf{B} \in \mathbb{C}^{n \times n}$ be skew-hermitian, i.e., $\mathbf{B}^{H}=-\mathbf{B}$. Then,
(a) Show that all the eigenvalues of \mathbf{B} are purely imaginary.
(b) Show that the matrix exponential $e^{\mathbf{B}}$ is unitary.
12. Let \mathbf{A} be Hermitian. Show that the rank of \mathbf{A} is equal to the number of non-zero eigenvalues of \mathbf{A}. Give an example of non-Hermitian matrix where this is not true.
13. Let \mathbf{A} be Hermitian and let \mathbf{A} be non-singular. Show that:

$$
\operatorname{rank}(\mathbf{A}) \geq \frac{[\operatorname{tr} \mathbf{A}]^{2}}{\operatorname{tr} \mathbf{A}^{2}}
$$

When will the equality be achieved?
14. Prove that if \mathbf{A} is Hermitian then \mathbf{A}^{k} is also Hermitian for all $k \geq 1$. If \mathbf{A} is non-singular as well then \mathbf{A}^{-1} is also Hermitian.
15. Prove that all the diagonal elements of a Hermitian matrix lie between the maximum and the minimum eigenvalue, i.e. For a Hermitian $n \times n$ matrix \mathbf{A} show that: $\lambda_{\min } \leq a_{i i} \leq \lambda_{\max }$ for all $i=1,2, \ldots, n$.
16. If $\mathbf{A}=\left[a_{i j}\right]$ is a positive definite Hermitian symmetric matrix, show that
(a) $a_{i i}>0$ for all i,
(b) $a_{i i} a_{j j}>\left|a_{i j}\right|^{2}$ for all $i \neq j$.

