E2 212: Homework - 5

1 Topics

- LU factorization, Triangular factorizations and linear equations
- Hermitian matrices, Rayleigh quotient

2 Problems

- 1. (Applications of LU factorization): Suggest efficient algorithms to solve the following system of equations: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be non-singular.
 - (a) $\mathbf{A}\mathbf{X} = \mathbf{B}$, where \mathbf{X}, \mathbf{B} are $n \times k$.
 - (b) $\mathbf{A}^k \mathbf{x} = \mathbf{b}$. (The idea is to avoid matrix multiplications in computing \mathbf{A}^k explicitly).
- 2. Give an algorithm for computing a non-zero $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{U}\mathbf{x} = 0$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular with $u_{nn} = 0$ and $u_{ii} \neq 0$ for all i = 1, 2, ..., n 1.
- 3. (Matrix forms of elementary row operations) Let \mathbf{x} be such that $\mathbf{x}_k \neq 0$. Write down the matrix \mathbf{M} that when multiplied with \mathbf{x} produces zeros on components [k + 1 : n]. Verify that \mathbf{M} can be written as $\mathbf{M} = \mathbf{I} \mathbf{t} \mathbf{e}_k^T$ and find the value of vector \mathbf{t} . In the above, \mathbf{e}_k is the k^{th} standard basis vector. What would be the form of \mathbf{M}^{-1} ?
- 4. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

Let \mathbf{A}_{11} be $r \times r$ and non-singular. Show that if \mathbf{A}_{11} has an LU factorization without pivoting, then after *r*-steps of Gaussian elimination without pivoting on \mathbf{A} , $\mathbf{A}(r+1:n,r+1:n)$ will contain the Schur's complement of \mathbf{A}_{11} , defined by $\mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$.

- 5. Is the following statement correct: The multipliers for Gaussian elimination of matrix $\mathbf{A}^T \mathbf{A}$ are identical to the multipliers that orthogonalize the columns of \mathbf{A} . Why/ Why not ?
- 6. Show that
 - (a) The inverse of an upper triangular matrix is upper triangular.
 - (b) The product of two lower triangular matrices is lower triangular.
 - (c) The inverse of a unit upper triangular matrix is unit upper triangular.
 - (d) The product of two unit lower triangular matrices is unit lower triangular.
- 7. If **A** is diagonalizable and $f(\cdot)$ is a polynomial, show that $f(\mathbf{A})$ is diagonalizable.
- 8. Show that any 2×2 real symmetric matrix is diagonalizable.
- 9. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is both normal $(\mathbf{A}\mathbf{A}^H = \mathbf{A}^H\mathbf{A})$ and nilpotent $(\mathbf{A}^k = 0, \text{ for some } k)$, show that $\mathbf{A} = 0$.

- 10. Let \mathbf{A}, \mathbf{B} be $n \times n$ Hermitian matrices. Show that \mathbf{A} and \mathbf{B} are similar if and only if they are unitarily similar.
- 11. Let $\mathbf{B} \in \mathbb{C}^{n \times n}$ be skew-hermitian, i.e., $\mathbf{B}^{H} = -\mathbf{B}$. Then,
 - (a) Show that all the eigenvalues of **B** are purely imaginary.
 - (b) Show that the matrix exponential $e^{\mathbf{B}}$ is unitary.
- 12. Let **A** be Hermitian. Show that the rank of **A** is equal to the number of non-zero eigenvalues of **A**. Give an example of non-Hermitian matrix where this is not true.
- 13. Let A be Hermitian and let A be non-singular. Show that:

$$\operatorname{rank}(\mathbf{A}) \geq \frac{[\operatorname{tr} \mathbf{A}]^2}{\operatorname{tr} \mathbf{A}^2}$$

When will the equality be achieved ?

- 14. Prove that if **A** is Hermitian then \mathbf{A}^k is also Hermitian for all $k \ge 1$. If **A** is non-singular as well then \mathbf{A}^{-1} is also Hermitian.
- 15. Prove that all the diagonal elements of a Hermitian matrix lie between the maximum and the minimum eigenvalue, i.e. For a Hermitian $n \times n$ matrix **A** show that: $\lambda_{min} \leq a_{ii} \leq \lambda_{max}$ for all i = 1, 2, ..., n.
- 16. If $\mathbf{A} = [a_{ij}]$ is a positive definite Hermitian symmetric matrix, show that

(a)
$$a_{ii} > 0$$
 for all i ,

(b) $a_{ii}a_{jj} > |a_{ij}|^2$ for all $i \neq j$.