E2 212: Homework - 6

1 Topics

- Variational characterization of eigenvalues

2 Problems

1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, let $\mathbf{x} \in \mathbb{C}^{n}$ be a given nonzero vector, and let $\alpha \triangleq \mathbf{x}^{H} \mathbf{A x} / \mathbf{x}^{H} \mathbf{x}$. Show that there exists at least one eigenvalue of \mathbf{A} in the interval $(-\infty, \alpha]$ and at least one in $[\alpha, \infty)$.
2. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Show that the following three optimization problems all have the same solution:
(a) $\max _{\mathbf{x}^{H}} \mathbf{x}=1 \mathbf{x}^{H} \mathbf{A} \mathbf{x}$
(b) $\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}}$
(c) $\min _{\mathbf{x}^{H}} \mathbf{A} \mathbf{x}=1 \mathbf{x}^{H} \mathbf{x}$
3. Show that, if λ_{i} is any eigenvalue of $\mathbf{A} \in \mathbb{C}^{n \times n}$ (not necessarily Hermitian), then, one has the bounds

$$
\begin{equation*}
\min _{\mathbf{x} \neq 0}\left|\frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}}\right| \leq\left|\lambda_{i}\right| \leq \max _{\mathbf{x} \neq 0}\left|\frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}}\right|, i=1,2, \ldots, n . \tag{1}
\end{equation*}
$$

4. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian and if $\mathbf{x}^{H} \mathbf{A x} \geq 0$ for all \mathbf{x} in a k-dimensional subspace, then prove that \mathbf{A} has at least k nonnegative eigenvalues.
5. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ be two Hermitian matrices. Prove that

$$
\left|\lambda_{k}(\mathbf{A}+\mathbf{B})-\lambda_{k}(\mathbf{A})\right| \leq \rho(\mathbf{B})
$$

for all $k=1,2, \ldots, n$, where $\rho(\mathbf{B})$ is the spectral radius of \mathbf{B}, and where the eigenvalues of \mathbf{A} and $\mathbf{A}+\mathbf{B}$ are arranged, as usual, in increasing order.
6. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ are Hermitian matrices with eigenvalues arranged in increasing order, and if $1 \leq k \leq n$, show that

$$
\lambda_{k}(\mathbf{A}+\mathbf{B}) \leq \min \left\{\lambda_{i}(\mathbf{A})+\lambda_{j}(\mathbf{B}): i+j=k+n\right\}
$$

7. Explain why the Courant-Fischer theorem discussed in class is equivalent to

$$
\lambda_{k}=\min _{\{\mathcal{S}: \operatorname{dim} \mathcal{S}=k\}} \max _{\{\mathbf{x}: 0 \neq \mathbf{x} \in \mathcal{S}\}} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}}
$$

and

$$
\lambda_{k}=\max _{\{\mathcal{S}: \operatorname{dim} \mathcal{S}=n-k+1\}} \min _{\{\mathbf{x}: 0 \neq \mathbf{x} \in \mathcal{S}\}} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}}
$$

where $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a Hermitian matrix with eigenvalues $\lambda_{1} \leq \ldots \leq \lambda_{n}, k \in\{1, \ldots, n\}$ and \mathcal{S} denotes a subspace of \mathbb{C}^{n}.
8. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$. What are the eigenvalues of \mathbf{A} ? What is $\max \left\{\mathbf{x}^{T} \mathbf{A} \mathbf{x} / \mathbf{x}^{T} \mathbf{x}: 0 \neq \mathbf{x} \in \mathbb{R}^{2}\right\}$? Does this contradict the Rayleigh-Ritz theorem?
9. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be Hermitian. Use Weyl's theorem to show that $\lambda_{1}(\mathbf{B}) \leq \lambda_{i}(\mathbf{A}+\mathbf{B})-\lambda_{i}(\mathbf{A}) \leq \lambda_{n}(\mathbf{B})$. Hence, conclude that $\left|\lambda_{i}(\mathbf{A}+\mathbf{B})-\lambda_{i}(\mathbf{A})\right| \leq \rho(\mathbf{B})$ for all $i=1, \ldots, n$. This is an example of a perturbation theorem for the eigenvalues of a Hermitian matrix.
10. Let $\lambda, a \in \mathbb{R}, \mathbf{y} \in \mathbb{C}^{n}$, and $\mathbf{A}=\left[\begin{array}{ll}\lambda \mathbf{I}_{n} & \mathbf{y} \\ \mathbf{y}^{H} & a\end{array}\right] \in \mathbb{C}^{(n+1) \times(n+1)}$. Use the Cauchy interlacing theorem to show that λ is an eigenvalue of \mathbf{A} with multiplicity at least $n-1$. What are the other two eigenvalues?

