# E2 212: Homework - 7 

## 1 Topics

## - Congruent matrices

- Geršgorin disc theorem
- Perturbation of eigenvalues


## 2 Problems

1. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ are Hermitian matrices with all the eigenvalues of $\mathbf{A}-\mathbf{B}$ being nonnegative, then prove that $\lambda_{i}(\mathbf{A}) \geq \lambda_{i}(\mathbf{B})$ for all $i=1,2, \ldots, n$, where the eigenvalues of both matrices are arranged in increasing order, as usual.
2. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Show that $\mathbf{A}$ is congruent to the identity matrix if and only if all the eigenvalues of $\mathbf{A}$ are positive.
3. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ be Hermitian matrices and assume that $\mathbf{A}$ is positive definite. Then prove that
(a) There exists a non singular matrix $\mathbf{S} \in \mathbb{C}^{n \times n}$ and a real diagonal $\mathbf{D}$ such that $\mathbf{S}^{H} \mathbf{A S}=\mathbf{I}$, and $\mathbf{S}^{H} \mathbf{B S}=\mathbf{D}$.
(b) The diagonal entries of $\mathbf{D}$ are the eigenvalues of $\mathbf{A}^{-1} \mathbf{B}$, and the columns of $\mathbf{S}$ are the eigenvectors of $\mathbf{A}^{-1} \mathbf{B}$ corresponding to these eigenvalues.
4. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ have entries $a_{i j}=1$ for all $i \neq j$, and $a_{i i}=n$ for each $i$. Show that $\mathbf{A}$ is invertible.
5. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and the Geršgorin discs for the rows of $\mathbf{A}$ are mutually disjoint, then, show that all of the eigenvalues of $\mathbf{A}$ must be real.
6. Consider the following iterative algorithm for solving the $n$-by- $n$ system of linear equations $\mathbf{A x}=\mathbf{y}$, where $\mathbf{A}$ and $\mathbf{y}$ are given:

- Define $\mathbf{B}=I-\mathbf{A}$ and rewrite the system as $\mathbf{x}=\mathbf{B x}+\mathbf{y}$.
- Choose an initial approximation $\mathbf{x}^{(0)}$ to the solution in any way you wish.
- For $m=0,1,2, \ldots$ calculate $\mathbf{x}^{(m+1)}=\mathbf{B} \mathbf{x}^{(m)}+y$.
(a) Denote by $\epsilon^{(m)}=\mathbf{x}^{(m)}-\mathbf{x}$ the error in the $m$ th approximation to the solution, and show that

$$
\epsilon^{(m)}=\mathbf{B}^{m}\left(\mathbf{x}^{(0)}-\mathbf{x}\right) .
$$

(b) Conclude that if $\rho(I-\mathbf{A})<1$, then this algorithm works in the sense that $\mathbf{x}^{(m)} \rightarrow \mathbf{x}$ as $m \rightarrow \infty$ regardless of the choice of the initial approximation $\mathbf{x}^{(0)}$.
(c) Use Geršgorin theorem to give a simple explicit condition on $\mathbf{A}$ that is sufficient for this algorithm to work.
7. Without computing the eigenvalues, decide how many are positive, negative and zero for the following matrix ? Why ?

$$
\mathbf{A}=\left(\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 2 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & n-1 \\
1 & \ldots & n-1 & n
\end{array}\right)
$$

8. Suppose that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a real matrix whose $n$ Geršgorin discs are all mutually disjoint. Show that all the eigenvalues of $\mathbf{A}$ are real.
9. Suppose that $\mathbf{A}$ is idempotent $\left(\mathbf{A}^{2}=\mathbf{A}\right)$, but $\mathbf{A} \neq I$. Show that $\mathbf{A}$ cannot be strictly diagonally dominant.
10. Let $\mathbf{A}=\left[a_{i j}\right]$ be a $n \times n$ matrix. Show that

$$
\rho(\mathbf{A}) \leq \min _{p_{1}, p_{2}, \ldots, p_{n}>0} \max _{1 \leq i \leq n} \frac{1}{p_{i}} \sum_{j=1}^{n} p_{j}\left|a_{i j}\right| .
$$

Hint: Since the eigenvalues do not change under similarity transformations, we can tighten the Geršgorin regions by considering similarity transformations.
11. If $\mathbf{A} \in \mathbb{C}^{n \times n}$, and $\rho(\mathbf{A})$ represents the spectral radius of $\mathbf{A}$. Using Geršgorin theorem, prove that
(a) $\rho(\mathbf{A}) \leq \max _{1<i<n} \sum_{j=1}^{n}\left|a_{i j}\right|$
(b) $\rho(\mathbf{A}) \leq \max _{1<j<n} \sum_{i=1}^{n}\left|a_{i j}\right|$
12. Let $\lambda$ be a simple eigenvalue (eigenvalue with algebraic multiplicity 1) of an $n \times n$ matrix $\mathbf{A}$. Let $s(\lambda)=\left|\mathbf{y}^{H} \mathbf{x}\right|$ where $\mathbf{A x}=\lambda \mathbf{x}$ and $\mathbf{y}^{H} \mathbf{A}=\lambda \mathbf{y}^{H}$ and $\mathbf{x}$ and $\mathbf{y}$ have unit Euclidean norm. Prove the following:
(a) $S(\lambda) \leq 1$.
(b) $S(\lambda) \neq 0$.

