E2 212: Homework - 9

1 Topics

• Nonnegative Matrices

Note: The problems below are from Horn and Johnson.

2 Problems

- 1. Show that the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has a spectral radius 1, but that \mathbf{A}^m is unbounded as $m \to \infty$.
- 2. Consider the matrix

$$\mathbf{A}_{\epsilon} = \begin{bmatrix} \frac{1}{1+\epsilon} & \frac{1}{1+\epsilon} \\ \frac{\epsilon^2}{1+\epsilon} & \frac{1}{1+\epsilon} \end{bmatrix}, \quad \epsilon > 0.$$

- (a) Show that $\lambda_2 = 1$ is a simple eigenvalue of \mathbf{A}_{ϵ} , that $\rho(\mathbf{A}_{\epsilon}) = \lambda_2 = 1$, and $|\lambda_1| < 1$.
- (b) Show that

$$\mathbf{x} = \frac{1}{1+\epsilon} \begin{bmatrix} 1\\ \epsilon \end{bmatrix}$$
 and $\mathbf{y} = \frac{1+\epsilon}{2\epsilon} \begin{bmatrix} \epsilon\\ 1 \end{bmatrix}$

are eigenvectors of \mathbf{A}_{ϵ} and $\mathbf{A}_{\epsilon}^{T}$, respectively, corresponding to the eigenvalue $\lambda = 1$.

- (c) Calculate $\mathbf{A}_{\epsilon}^{m}$ explicitly, $m = 1, 2, \dots$
- (d) Show that

$$\lim_{m \to \infty} \mathbf{A}_{\epsilon}^{m} = \frac{1}{2} \begin{bmatrix} 1 & \epsilon^{-1} \\ \epsilon & 1 \end{bmatrix}.$$

- (e) Calculate $\mathbf{x}\mathbf{y}^T$ and comment.
- (f) What happens if $\epsilon \to 0$? Hint: Set $\mathbf{B}_{\epsilon} = (1 + \epsilon) \mathbf{A}_{\epsilon}$ and then diagonalize \mathbf{B} .
- 3. Given an example of a 2 × 2 matrix **A** such that $\mathbf{A} \ge 0$, **A** not positive, and $\mathbf{A}^2 > 0$. Show that $\rho(A) > 0$ for all such matrices.
- 4. If $0 \leq \mathbf{A} \leq \mathbf{B} \in \mathbb{C}^{n \times n}$, show that $\rho(A) \leq \rho(B)$. Also show that $\rho(\mathbf{A}) \geq \max_{i=1,\dots,n} a_{ii}$.
- 5. If $\mathbf{A} \ge 0$ has a positive eigenvector, show that \mathbf{A} is similar to a non-negative matrix whose row sums are constant. What is this constant?
- 6. If $\mathbf{A} > 0$, and if there is some $\mathbf{x} \in \mathbb{C}^n$ such that $\mathbf{x} \ge 0, \mathbf{x} \ne 0$, and $\mathbf{A}x = \lambda \mathbf{x}$, show that \mathbf{x} is a multiple of the Perron vector of \mathbf{A} and that $\lambda = \rho(\mathbf{A})$.
- 7. If $\mathbf{A} > 0$, if \mathbf{x} is the Perron vector of \mathbf{A} , and if \mathbf{z} is the Perron vector of \mathbf{A}^T , show that $\mathbf{x}^T \mathbf{z} > 0$.

- 8. In the general intercity migration problem discussed in class, when the number of cities n is > 2, if all $a_{ij} > 0$, what is the asymptotic behavior of the population as the number of days m goes to ∞ ? Justify your answer.
- 9. Let $0 \leq \mathbf{A} \in \mathbb{C}^{n \times n}$, $0 \leq \mathbf{x} \in \mathbb{C}^n$, and $\mathbf{x} \neq 0$. If $\mathbf{A}\mathbf{x} \geq \alpha \mathbf{x}$ for some $\alpha \in \mathbb{R}$, then show that $\rho(\mathbf{A}) \geq \alpha$.
- 10. Let $\mathbf{A} \geq 0$. Then show that the following statements are equivalent:
 - (a) **A** is irreducible
 - (b) $(\mathbf{I} + \mathbf{A})^{n-1} > 0$
 - (c) \mathbf{A}^T is irreducible.
- 11. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of \mathbf{A} (including multiplicities). Then show that $\lambda_1 + 1, \ldots, \lambda_n + 1$ are the eigenvalues of $\mathbf{I} + \mathbf{A}$ and $\rho(\mathbf{I} + \mathbf{A}) \leq 1 + \rho(\mathbf{A})$. Also, show that if $\mathbf{A} \geq 0$, then $\rho(\mathbf{I} + \mathbf{A}) = 1 + \rho(\mathbf{A})$. Finally, explain why the following argument is incorrect: if λ is an eigenvalue of \mathbf{A} , then there is some vector $\mathbf{x} \neq 0$ such that $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. But then $(\mathbf{A} + \mathbf{I})\mathbf{x} = (\lambda + 1)\mathbf{x}$, so $\lambda + 1$ is an eigenvalue of $\mathbf{A} + \mathbf{I}$.
- 12. Let n > 1 be a prime number. Show that if $\mathbf{A} \in \mathbb{C}^{n \times n}$ is nonnegative, irreducible, and nonsingular, either $\rho(\mathbf{A})$ is the only eigenvalue of \mathbf{A} of maximum modulus or all the eigenvalues of \mathbf{A} have maximum modulus.
- 13. Show that the sets of stochastic and doubly stochastic matrices in $\mathbb{C}^{n \times n}$ are compact convex sets.
- 14. Show that any 2×2 doubly stochastic matrix is symmetric with equal diagonal entries.
- 15. If a doubly stochastic matrix **A** is reducible, show that **A** is actually permutation-similar to a matrix of the form $\begin{bmatrix} \mathbf{A}_1 & 0\\ 0 & \mathbf{A}_2 \end{bmatrix}$. What can be said about \mathbf{A}_1 and \mathbf{A}_2 .