E2 212: Homework - 9

1 Topics

- Nonnegative Matrices

Note: The problems below are from Horn and Johnson.

2 Problems

1. Show that the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has a spectral radius 1, but that \mathbf{A}^{m} is unbounded as $m \rightarrow \infty$.
2. Consider the matrix

$$
\mathbf{A}_{\epsilon}=\left[\begin{array}{cc}
\frac{1}{1+\epsilon} & \frac{1}{1+\epsilon} \\
\frac{\epsilon^{2}}{1+\epsilon} & \frac{1}{1+\epsilon}
\end{array}\right], \quad \epsilon>0 .
$$

(a) Show that $\lambda_{2}=1$ is a simple eigenvalue of \mathbf{A}_{ϵ}, that $\rho\left(\mathbf{A}_{\epsilon}\right)=\lambda_{2}=1$, and $\left|\lambda_{1}\right|<1$.
(b) Show that

$$
\mathbf{x}=\frac{1}{1+\epsilon}\left[\begin{array}{l}
1 \\
\epsilon
\end{array}\right] \text { and } \mathbf{y}=\frac{1+\epsilon}{2 \epsilon}\left[\begin{array}{l}
\epsilon \\
1
\end{array}\right]
$$

are eigenvectors of \mathbf{A}_{ϵ} and $\mathbf{A}_{\epsilon}^{T}$, respectively, corresponding to the eigenvalue $\lambda=1$.
(c) Calculate $\mathbf{A}_{\epsilon}^{m}$ explicitly, $m=1,2, \ldots$.
(d) Show that

$$
\lim _{m \rightarrow \infty} \mathbf{A}_{\epsilon}^{m}=\frac{1}{2}\left[\begin{array}{cc}
1 & \epsilon^{-1} \\
\epsilon & 1
\end{array}\right] .
$$

(e) Calculate $\mathbf{x y}^{T}$ and comment.
(f) What happens if $\epsilon \rightarrow 0$? Hint: Set $\mathbf{B}_{\epsilon}=(1+\epsilon) \mathbf{A}_{\epsilon}$ and then diagonalize \mathbf{B}.
3. Given an example of a 2×2 matrix \mathbf{A} such that $\mathbf{A} \geq 0$, \mathbf{A} not positive, and $\mathbf{A}^{2}>0$. Show that $\rho(A)>0$ for all such matrices.
4. If $0 \leq \mathbf{A} \leq \mathbf{B} \in \mathbb{C}^{n \times n}$, show that $\rho(A) \leq \rho(B)$. Also show that $\rho(\mathbf{A}) \geq \max _{i=1, \ldots, n} a_{i i}$.
5. If $\mathbf{A} \geq 0$ has a positive eigenvector, show that \mathbf{A} is similar to a non-negative matrix whose row sums are constant. What is this constant?
6. If $\mathbf{A}>0$, and if there is some $\mathbf{x} \in \mathbb{C}^{n}$ such that $\mathbf{x} \geq 0, \mathbf{x} \neq 0$, and $\mathbf{A} x=\lambda \mathbf{x}$, show that \mathbf{x} is a multiple of the Perron vector of \mathbf{A} and that $\lambda=\rho(\mathbf{A})$.
7. If $\mathbf{A}>0$, if \mathbf{x} is the Perron vector of \mathbf{A}, and if \mathbf{z} is the Perron vector of \mathbf{A}^{T}, show that $\mathbf{x}^{T} \mathbf{z}>0$.
8. In the general intercity migration problem discussed in class, when the number of cities n is >2, if all $a_{i j}>0$, what is the asymptotic behavior of the population as the number of days m goes to ∞ ? Justify your answer.
9. Let $0 \leq \mathbf{A} \in \mathbb{C}^{n \times n}, 0 \leq \mathbf{x} \in \mathbb{C}^{n}$, and $\mathbf{x} \neq 0$. If $\mathbf{A x} \geq \alpha \mathbf{x}$ for some $\alpha \in \mathbb{R}$, then show that $\rho(\mathbf{A}) \geq \alpha$.
10. Let $\mathbf{A} \geq 0$. Then show that the following statements are equivalent:
(a) \mathbf{A} is irreducible
(b) $(\mathbf{I}+\mathbf{A})^{n-1}>0$
(c) \mathbf{A}^{T} is irreducible.
11. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of \mathbf{A} (including multiplicities). Then show that $\lambda_{1}+1, \ldots, \lambda_{n}+1$ are the eigenvalues of $\mathbf{I}+\mathbf{A}$ and $\rho(\mathbf{I}+\mathbf{A}) \leq 1+\rho(\mathbf{A})$. Also, show that if $\mathbf{A} \geq 0$, then $\rho(\mathbf{I}+\mathbf{A})=1+\rho(\mathbf{A})$. Finally, explain why the following argument is incorrect: if λ is an eigenvalue of \mathbf{A}, then there is some vector $\mathbf{x} \neq 0$ such that $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}$. But then $(\mathbf{A}+\mathbf{I}) \mathbf{x}=(\lambda+1) \mathbf{x}$, so $\lambda+1$ is an eigenvalue of $\mathbf{A}+\mathbf{I}$.
12. Let $n>1$ be a prime number. Show that if $\mathbf{A} \in \mathbb{C}^{n \times n}$ is nonnegative, irreducible, and nonsingular, either $\rho(\mathbf{A})$ is the only eigenvalue of \mathbf{A} of maximum modulus or all the eigenvalues of \mathbf{A} have maximum modulus.
13. Show that the sets of stochastic and doubly stochastic matrices in $\mathbb{C}^{n \times n}$ are compact convex sets.
14. Show that any 2×2 doubly stochastic matrix is symmetric with equal diagonal entries.
15. If a doubly stochastic matrix \mathbf{A} is reducible, show that \mathbf{A} is actually permutation-similar to a matrix of the form $\left[\begin{array}{cc}\mathbf{A}_{1} & 0 \\ 0 & \mathbf{A}_{2}\end{array}\right]$. What can be said about \mathbf{A}_{1} and \mathbf{A}_{2}.

