E2 212: Matrix Theory Fall 2019 - Test 1 Solutions

Questions and Answers

1. (Linear independence)

(a) For what ξ are the vectors $\binom{1+\xi}{1-\xi}$ and $\binom{1-\xi}{1+\xi}$ on \mathbb{C}^{2} linearly dependent? (2 points)
Solution: Let $\mathbf{x}_{1}=\binom{1+\xi}{1-\xi}$ and $\mathbf{x}_{2}=\binom{1-\xi}{1+\xi}$. Then, \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent if and only if the only solution to $a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}=\mathbf{0}$ is $a_{1}=a_{2}=0$. Now, $a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}=\mathbf{0}$ implies

$$
\begin{aligned}
& a_{1}+a_{2}+\xi\left(a_{1}-a_{2}\right)=0 \\
& a_{1}+a_{2}+\xi\left(a_{2}-a_{1}\right)=0
\end{aligned}
$$

Subtracting the two equations, we get

$$
2 \xi\left(a_{2}-a_{1}\right)=0
$$

and thus either $\xi=0$ or $a_{1}=a_{2}$. But substituting the latter into the first equation above we get $2 a_{1}=0$, which yields $a_{1}=a_{2}=0$, i.e., \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent. On the other hand, if $\xi=0$, we get $a_{1}+a_{2}=0$ which has nonzero solutions. Thus, the only way \mathbf{x}_{1} and \mathbf{x}_{2} can be linearly dependent is if $\xi=0$.
(b) Show that \mathbf{x}, \mathbf{y} and \mathbf{z} are linearly independent if and only if $\mathbf{x}+\mathbf{y}, \mathbf{y}+\mathbf{z}$ and $\mathbf{z}+\mathbf{x}$ linearly independent. (4 points)
Solution: Suppose \mathbf{x}, \mathbf{y} and \mathbf{z} are linearly independent. Then the only solution to $\alpha \mathbf{x}+\beta \mathbf{y}+\gamma \mathbf{z}=0$ is $\alpha=\beta=\gamma=0$.
Now consider $a(\mathbf{x}+\mathbf{y})+b(\mathbf{y}+\mathbf{z})+c(\mathbf{z}+\mathbf{x})=0$. This can be written as $(a+$ c) $\mathbf{x}+(a+b) \mathbf{y}+(b+c) \mathbf{z}=0$, which implies $a+b=0, a+c=0$ and $b+c=0$.

Subtracting the first two equations and adding it to the third, we get $2 b=0$ or $b=0$. Substituting this, we get $a=c=0$.
Thus $a=b=c=0$ and hence $\mathbf{x}+\mathbf{y}, \mathbf{y}+\mathbf{z}$, and $\mathbf{z}+\mathbf{x}$ are linearly independent.

Contrariwise, if $\mathbf{x}+\mathbf{y}, \mathbf{y}+\mathbf{z}$, and $\mathbf{z}+\mathbf{x}$ are linearly independent, then the only solution to $a(\mathbf{x}+\mathbf{y})+b(\mathbf{y}+\mathbf{z})+c(\mathbf{z}+\mathbf{x})=0$ is $a=b=c=0$.
Now consider $2 \alpha \mathbf{x}+2 \beta \mathbf{y}+2 \gamma \mathbf{z}=0$. This can be written as $(\alpha+\beta-\gamma)(\mathbf{x}+$ $\mathbf{y})+(\beta+\gamma-\alpha)(\mathbf{y}+\mathbf{z})+(\gamma+\alpha-\beta)(\mathbf{z}+\mathbf{x})=0$. This implies $\alpha+\beta-\gamma=0$, $\beta+\gamma-\alpha=0$, and $\gamma+\alpha-\beta=0$. Adding the first two equations yields $\beta=0$. Adding the second and third equations yields $\gamma=0$, and adding the first and third equations yields $\alpha=0$. Thus, the only solution is $\alpha=\beta=\gamma=0$, i.e., \mathbf{x}, \mathbf{y} and \mathbf{z} are linearly independent.

2. (Rank)

(a) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$. Then, prove that (6 points)

$$
|\operatorname{rank}(\mathbf{A})-\operatorname{rank}(\mathbf{B})| \leqslant \operatorname{rank}(\mathbf{A}-\mathbf{B})
$$

Solution:

$|\operatorname{rank}(\mathbf{A})-\operatorname{rank}(\mathbf{B})| \leqslant \operatorname{rank}(\mathbf{A}-\mathbf{B})$ is equivalent to

$$
-\operatorname{rank}(\mathbf{A}-\mathbf{B}) \leqslant \operatorname{rank}(\mathbf{A})-\operatorname{rank}(\mathbf{B}) \leqslant \operatorname{rank}(\mathbf{A}-\mathbf{B})
$$

Consider $\mathbf{A}=\mathbf{A}+\mathbf{B}-\mathbf{B}$. Since $\operatorname{rank}(\mathbf{A}+\mathbf{B}) \leqslant \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})$,

$$
\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\mathbf{A}+\mathbf{B}-\mathbf{B}) \leqslant \operatorname{rank}(\mathbf{A}-\mathbf{B})+\operatorname{rank}(\mathbf{B})
$$

Similarly $\mathbf{B}=\mathbf{B}+\mathbf{A}-\mathbf{A}$.

$$
\operatorname{rank}(\mathbf{B}) \leqslant \operatorname{rank}(\mathbf{B}-\mathbf{A})+\operatorname{rank}(\mathbf{A})
$$

But $\operatorname{rank}(\mathbf{B}-\mathbf{A})=\operatorname{rank}(\mathbf{A}-\mathbf{B})$, the inequality follows.
(b) If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{A B}=0$, show that (6 points)

$$
\operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B}) \leqslant n
$$

Solution: Since $\mathbf{A B}=0$, column space of $\mathbf{B}(\mathcal{R}(\mathbf{B}))$ is contained in null space of $\mathbf{A}(\mathcal{N}(\mathbf{A}))$. [Consider any $\mathbf{x} \in \mathcal{R}(\mathbf{B})$, it can be shown that $\mathbf{x} \in \mathcal{N}(\mathbf{A})$]. Thus:

$$
\begin{aligned}
& \mathcal{R}(\mathbf{B}) \subseteq \mathcal{N}(\mathbf{A}) \\
& \Longrightarrow \operatorname{dim}(\mathcal{R}(\mathbf{B})) \leqslant \operatorname{dim}(\mathcal{N}(\mathbf{A})) \\
& \Longrightarrow \operatorname{rank}(\mathbf{B}) \leqslant n-\operatorname{rank}(\mathbf{A}) \\
& \Longrightarrow \operatorname{rank}(\mathbf{B})+\operatorname{rank}(\mathbf{A}) \leqslant n .
\end{aligned}
$$

3. (Skew Symmetric Matrices) Let \mathbf{S} be a skew-symmetric matrix, i.e., $\mathbf{S}=-\mathbf{S}^{H}$.
(a) Prove that the diagonal entries of a complex skew-symmetric matrix are purely imaginary. (2 points)

Solution: Consider

$$
\begin{gathered}
\mathbf{S}=-\mathbf{S}^{H} \\
\mathbf{S}+\mathbf{S}^{H}=0
\end{gathered}
$$

Consider $i^{\text {th }}$ diagonal element of $\mathbf{S}+\mathbf{S}^{H}$,

$$
\begin{aligned}
{\left[\mathbf{S}+\mathbf{S}^{H}\right]_{i i} } & =\mathbf{S}_{i i}+\mathbf{S}_{i i}^{*}=0 \\
& \Longrightarrow \operatorname{Re}\left(\mathbf{S}_{i i}\right)=0 .
\end{aligned}
$$

Therefore the diagonal entries are purely imaginary.
(b) Prove that the eigenvalues of a real skew-symmetric matrix are either 0 or purely imaginary. (4 points)
Solution: We start with the eigenvalue-eigenvector equation:

$$
\begin{aligned}
\mathbf{S} \mathbf{x} & =\lambda \mathbf{x} \\
\mathbf{x}^{H} \mathbf{S} \mathbf{x} & =\lambda \mathbf{x}^{H} \mathbf{x} \\
& =\lambda\|\mathbf{x}\|^{2}
\end{aligned}
$$

Also, we have that

$$
\begin{aligned}
\mathbf{x}^{H}(\mathbf{S x}) & =\left((\mathbf{S} \mathbf{x})^{H} \mathbf{x}\right)^{H} \\
& =\left(\mathbf{x}^{H} \mathbf{S}^{\mathbf{x}}\right)^{H} \\
& =\left(-\mathbf{x}^{H} \mathbf{S} \mathbf{x}\right)^{H} \\
\mathbf{x}^{H}(\mathbf{S x}) & =\left(-\mathbf{x}^{H} \mathbf{S} \mathbf{x}\right)^{H} \Longrightarrow \operatorname{Re}\left(\mathbf{x}^{H} \mathbf{S} \mathbf{x}\right)=0
\end{aligned}
$$

Putting the above together,

$$
\begin{array}{r}
\operatorname{Re}\left(\mathbf{x}^{H} \mathbf{S} \mathbf{x}\right)=\|\mathbf{x}\|^{2} \operatorname{Re}(\lambda)=0 \\
\Longrightarrow \lambda=0 \text { or purely imaginary }
\end{array}
$$

(c) If \mathbf{S} is real-valued, can $(\mathbf{I}-\mathbf{S})$ be singular? Justify your answer. (6 points)

Solution:

Evals of $\mathbf{I}-\mathbf{S}$ are 1- (Evals of $\mathbf{S})$, and \mathbf{S} has zero or purely imaginary eigenvalues. Therefore, the real part of the eigenvalues of $\mathbf{I}-\mathbf{S}$ is always 1, i.e., the eigenvalues can never be zero. Thus, determinant which is product of eigenvalues cannot be zero. Hence, $\mathbf{I}-\mathbf{S}$ is always non-singular.
4. (Inner products) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, consider the usual inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ and the vector norm $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle$.
(a) If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ are a set of orthonormal vectors in \mathbb{R}^{n} and $\mathbf{x} \in \mathbb{R}^{n}$, show that

$$
\sum_{i=1}^{r}\left|\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle\right|^{2} \leqslant\|\mathbf{x}\|^{2}
$$

When will equality be attained? (8 points)
Solution: Consider

$$
\begin{aligned}
0 & \leqslant\left\|\mathbf{x}-\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \mathbf{x}_{i}\right\|^{2} \\
& =\left(\mathbf{x}-\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \mathbf{x}_{i}\right)^{T}\left(\mathbf{x}-\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \mathbf{x}_{i}\right) \\
& =\|\mathbf{x}\|^{2}-\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \mathbf{x}^{T} \mathbf{x}_{i}-\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \mathbf{x}_{i}^{T} \mathbf{x}+\sum_{i, j=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle\left\langle\mathbf{x}, \mathbf{x}_{j}\right\rangle \mathbf{x}_{i}^{T} \mathbf{x}_{j}
\end{aligned}
$$

Since $\left\{\mathbf{x}_{i}\right\}$ are a set of orthonormal vectors, $\sum_{i, j=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle\left\langle\mathbf{x}, \mathbf{x}_{j}\right\rangle \mathbf{x}_{i}^{T} \mathbf{x}_{j}=\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle^{2}$, which is the same as the (negative of) the second and third terms. Thus,

$$
\|\mathbf{x}\|^{2}-\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle^{2} \geqslant 0
$$

and the result is proved. Since $\|\mathbf{y}\|=0$ if and only if $\mathbf{y}=0$, equality is attained when

$$
\mathbf{x}=\sum_{i=1}^{r}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \mathbf{x}_{i} .
$$

In other words, equality is attained when \mathbf{x} lies in $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$.
(b) Show that $\langle\mathbf{x}, \mathbf{y}\rangle \leqslant\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right) / 2$. (6 points)

Solution: Consider $\|\mathbf{x}-\mathbf{y}\|^{2}=\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle$. We have

$$
\begin{aligned}
0 & \leqslant\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle \\
& =(\mathbf{x}-\mathbf{y})^{T}(\mathbf{x}-\mathbf{y}) \\
& =\mathbf{x}^{T} \mathbf{x}+\mathbf{y}^{T} \mathbf{y}-\mathbf{y}^{T} \mathbf{x}-\mathbf{x}^{T} \mathbf{y} \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2\langle\mathbf{x}, \mathbf{y}\rangle
\end{aligned}
$$

The above implies that

$$
\langle\mathbf{x}, \mathbf{y}\rangle \leqslant \frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)
$$

as desired.
5. (Rank 1 matrix norms) Suppose $\mathbf{u} \in \mathbb{R}^{m}$ and $\mathbf{v} \in \mathbb{R}^{n}$, and let $\mathbf{E}=\mathbf{u v}^{T}$. Show that
(a) Frobenius norm: $\|\mathbf{E}\|_{F}=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}$ (2 points)

Solution:

$$
\begin{aligned}
& \|\mathbf{E}\|_{F}=\sqrt{\operatorname{tr}\left(\mathbf{E E}^{\top}\right)}=\sqrt{\operatorname{tr}\left(\mathbf{u v}^{\top} \mathbf{v} \mathbf{u}^{\top}\right)}=\sqrt{\left(\mathbf{u}^{\top} \mathbf{u}\right)\left(\mathbf{v}^{\top} \mathbf{v}\right)}=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2} \\
& \|\mathbf{E}\|_{F}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|u_{i} v_{j}\right|^{2}=\sum_{i=1}^{m}\left|u_{i}\right|^{2} \sum_{j=1}^{n}\left|v_{j}\right|^{2}=\|\mathbf{u}\|_{2}^{2}\|\mathbf{v}\|_{2}^{2}
\end{aligned}
$$

(b) Spectral norm: $\left\|\|\mathbf{E}\|_{2}=\right\| \mathbf{u}\left\|_{2}\right\| \mathbf{v} \|_{2}$ (2 points)

Solution:

$$
\|\mathbf{E}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\|\mathbf{E x}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\left\|\mathbf{u} \mathbf{v}^{\top} \mathbf{x}\right\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\|\mathbf{u}\|_{2}\left|\mathbf{v}^{\top} \mathbf{x}\right|=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}
$$

(c) Maximum row sum norm: $\left\|\|\mathbf{E}\|_{\infty}=\right\| \mathbf{u}\left\|_{\infty}\right\| \mathbf{v} \|_{1}$ (2 points)

Solution:

$$
\begin{aligned}
\|\mathbf{E}\|_{\infty} & =\max _{\|\mathbf{x}\|_{\infty}=1}\|\mathbf{E x}\|_{\infty}=\max _{\|\mathbf{x}\|_{\infty}=1}\left\|\mathbf{u} \mathbf{v}^{\top} \mathbf{x}\right\|_{\infty}=\max _{\|\mathbf{x}\|_{\infty}=1}\|\mathbf{u}\|_{\infty}\left|\mathbf{v}^{\top} \mathbf{x}\right| \\
& =\|\mathbf{u}\|_{\infty} \max _{\|\mathbf{x}\|_{\infty}=1}\left|\mathbf{v}^{\top} \mathbf{x}\right|=\|\mathbf{u}\|_{\infty}\|\mathbf{v}\|_{1}
\end{aligned}
$$

where the last equality holds since it is the definition of dual norm of the ℓ_{∞} norm which is the ℓ_{1} norm.
6. A 4×4 matrix \mathbf{B} has eigenvalues $0,1,3,5$.
(a) What is the rank of \mathbf{B} ? (2 points)

Solution:

\mathbf{B} has 4 distinct eigenvalues $\Longrightarrow \mathbf{B}$ is diagonalizable, i.e., it is similar to diagonal matrix containing its eigenvalues on its diagonal. Since exactly one of the eigenvalues is 0 , the diagonal matrix has rank $=3$; and since the rank of a matrix is similarity-invariant, the matrix \mathbf{B} also has rank 3 .
(b) What is the determinant of $\mathbf{B}^{T} \mathbf{B}$? (2 points)

Solution:
$\operatorname{det}\left(\mathbf{B}^{T} \mathbf{B}\right)=|\operatorname{det}(\mathbf{B})|^{2}=(0 \times 1 \times 3 \times 5)^{2}=0$
(c) Calculate the eigenvalues of $\left(\mathbf{B}^{2}+5 \mathbf{I}\right)^{-1}$ (2 points)

Solution:

Eigenvalues of \mathbf{B}^{2} are squares of eigenvalues of \mathbf{B} which are $0,1,9,25$.
Eigenvalues of $\mathbf{B}^{2}+5 \mathbf{I}$ are $\left(5+\right.$ eigenvalues of $\left.\mathbf{B}^{2}\right)$ which are $5,6,14,30$.
Eigenvalues of $\left(\mathbf{B}^{2}+5 \mathbf{I}\right)^{-1}$ are inverses of eigenvalues of $\left(\mathbf{B}^{2}+5 \mathbf{I}\right)$ which are $\frac{1}{5}, \frac{1}{6}, \frac{1}{14}$ and $\frac{1}{30}$.
(d) If another 4×4 matrix \mathbf{C} has eigenvalues $1,2,3,6$, find the eigenvalues of the 8×8 matrix (4 points)

$$
\mathbf{D}=\left[\begin{array}{cc}
\mathrm{B} & \mathrm{C} \\
\mathbf{0} & \mathrm{I}
\end{array}\right]
$$

where \mathbf{I} is the 4×4 identity matrix and $\mathbf{0}$ is the 4×4 all zero matrix.
Solution: Let $\mathbf{D}=\left[\begin{array}{cc}\mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{I}\end{array}\right]$, and consider $\operatorname{det}(\mathbf{D}-\lambda \mathbf{I})=0$. In the expansion of the determinant, all the entries of \mathbf{C} are multiplied by zero. Hence, it has no effect on the eigenvalues of \mathbf{D}. Therefore, the eigenvalues of \mathbf{D} are eigenvalues of \mathbf{B} and \mathbf{I} which is $0,1,3,5,1,1,1,1$.

Alternative solution: $\operatorname{det}(\mathbf{D}-\lambda \mathbf{I})=\operatorname{det}\left(\mathbf{B}-\lambda_{B} \mathbf{I}\right) \operatorname{det}\left(\mathbf{I}-\lambda_{I} \mathbf{I}\right)$ (Since the matrix \mathbf{D} is block upper triangular). Hence, the eigenvalues of \mathbf{D} are eigenvalues of \mathbf{B} and I put together.

