E2 212: Matrix Theory Fall 2019 – Test 1 Solutions

Questions and Answers

1. (Linear independence)

(a) For what ξ are the vectors $\begin{pmatrix} 1+\xi\\ 1-\xi \end{pmatrix}$ and $\begin{pmatrix} 1-\xi\\ 1+\xi \end{pmatrix}$ on \mathbb{C}^2 linearly dependent? (2 points)

Solution: Let $\mathbf{x}_1 = \begin{pmatrix} 1+\xi\\ 1-\xi \end{pmatrix}$ and $\mathbf{x}_2 = \begin{pmatrix} 1-\xi\\ 1+\xi \end{pmatrix}$. Then, \mathbf{x}_1 and \mathbf{x}_2 are linearly independent if and only if the only solution to $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 = \mathbf{0}$ is $a_1 = a_2 = 0$. Now, $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 = \mathbf{0}$ implies

$$a_1 + a_2 + \xi(a_1 - a_2) = 0$$

$$a_1 + a_2 + \xi(a_2 - a_1) = 0$$

Subtracting the two equations, we get

$$2\xi(a_2 - a_1) = 0$$

and thus either $\xi = 0$ or $a_1 = a_2$. But substituting the latter into the first equation above we get $2a_1 = 0$, which yields $a_1 = a_2 = 0$, i.e., \mathbf{x}_1 and \mathbf{x}_2 are linearly independent. On the other hand, if $\xi = 0$, we get $a_1 + a_2 = 0$ which has nonzero solutions. Thus, the only way \mathbf{x}_1 and \mathbf{x}_2 can be linearly dependent is if $\xi = 0$.

(b) Show that x, y and z are linearly independent if and only if x + y, y + z and z + x linearly independent. (4 points)
Solution: Suppose x, y and z are linearly independent. Then the only solution to αx + βy + γz = 0 is α = β = γ = 0. Now consider a(x + y) + b(y + z) + c(z + x) = 0. This can be written as (a + c)x + (a + b)y + (b + c)z = 0, which implies a + b = 0, a + c = 0 and b + c = 0. Subtracting the first two equations and adding it to the third, we get 2b = 0 or b = 0. Substituting this, we get a = c = 0. Thus a = b = c = 0 and hence x + y, y + z, and z + x are linearly independent. Contrariwise, if $\mathbf{x} + \mathbf{y}$, $\mathbf{y} + \mathbf{z}$, and $\mathbf{z} + \mathbf{x}$ are linearly independent, then the only solution to $a(\mathbf{x} + \mathbf{y}) + b(\mathbf{y} + \mathbf{z}) + c(\mathbf{z} + \mathbf{x}) = 0$ is a = b = c = 0. Now consider $2\alpha \mathbf{x} + 2\beta \mathbf{y} + 2\gamma \mathbf{z} = 0$. This can be written as $(\alpha + \beta - \gamma)(\mathbf{x} + \mathbf{y}) + (\beta + \gamma - \alpha)(\mathbf{y} + \mathbf{z}) + (\gamma + \alpha - \beta)(\mathbf{z} + \mathbf{x}) = 0$. This implies $\alpha + \beta - \gamma = 0$, $\beta + \gamma - \alpha = 0$, and $\gamma + \alpha - \beta = 0$. Adding the first two equations yields $\beta = 0$. Adding the second and third equations yields $\gamma = 0$, and adding the first and third equations yields $\alpha = 0$. Thus, the only solution is $\alpha = \beta = \gamma = 0$, i.e., \mathbf{x} , \mathbf{y} and \mathbf{z} are linearly independent.

2. (Rank)

(a) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$. Then, prove that (6 points)

$$|\operatorname{rank}(\mathbf{A}) - \operatorname{rank}(\mathbf{B})| \leq \operatorname{rank}(\mathbf{A} - \mathbf{B})$$

Solution:

 $|\operatorname{rank}(\mathbf{A}) - \operatorname{rank}(\mathbf{B})| \leq \operatorname{rank}(\mathbf{A} - \mathbf{B})$ is equivalent to

$$\operatorname{rank}(\mathbf{A} - \mathbf{B}) \leq \operatorname{rank}(\mathbf{A}) - \operatorname{rank}(\mathbf{B}) \leq \operatorname{rank}(\mathbf{A} - \mathbf{B})$$

Consider $\mathbf{A} = \mathbf{A} + \mathbf{B} - \mathbf{B}$. Since $\operatorname{rank}(\mathbf{A} + \mathbf{B}) \leq \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$,

 $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A} + \mathbf{B} - \mathbf{B}) \leq \operatorname{rank}(\mathbf{A} - \mathbf{B}) + \operatorname{rank}(\mathbf{B})$

Similarly $\mathbf{B} = \mathbf{B} + \mathbf{A} - \mathbf{A}$.

$$\operatorname{rank}(\mathbf{B}) \leq \operatorname{rank}(\mathbf{B} - \mathbf{A}) + \operatorname{rank}(\mathbf{A})$$

But $rank(\mathbf{B} - \mathbf{A}) = rank(\mathbf{A} - \mathbf{B})$, the inequality follows.

(b) If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{AB} = 0$, show that (6 points)

 $\operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B}) \leq n$

Solution: Since AB = 0, column space of $B(\mathcal{R}(B))$ is contained in null space of $A(\mathcal{N}(A))$. [Consider any $\mathbf{x} \in \mathcal{R}(B)$, it can be shown that $\mathbf{x} \in \mathcal{N}(A)$]. Thus:

$$\mathcal{R}(\mathbf{B}) \subseteq \mathcal{N}(\mathbf{A})$$
$$\implies \dim(\mathcal{R}(\mathbf{B})) \leqslant \dim(\mathcal{N}(\mathbf{A}))$$
$$\implies \operatorname{rank}(\mathbf{B}) \leqslant n - \operatorname{rank}(\mathbf{A})$$
$$\implies \operatorname{rank}(\mathbf{B}) + \operatorname{rank}(\mathbf{A}) \leqslant n$$

3. (Skew Symmetric Matrices) Let S be a skew-symmetric matrix, i.e., $\mathbf{S} = -\mathbf{S}^{H}$.

(a) Prove that the diagonal entries of a complex skew-symmetric matrix are purely imaginary. (2 points)

Solution: Consider

$$\mathbf{S} = -\mathbf{S}^H$$
$$\mathbf{S} + \mathbf{S}^H = 0$$

Consider i^{th} diagonal element of $\mathbf{S} + \mathbf{S}^H$,

$$[\mathbf{S} + \mathbf{S}^{H}]_{ii} = \mathbf{S}_{ii} + \mathbf{S}_{ii}^{*} = 0$$
$$\implies \operatorname{Re}(\mathbf{S}_{ii}) = 0.$$

Therefore the diagonal entries are purely imaginary.

(b) Prove that the eigenvalues of a real skew-symmetric matrix are either 0 or purely imaginary. (4 points)

Solution: We start with the eigenvalue-eigenvector equation:

$$\begin{aligned} \mathbf{S}\mathbf{x} &= \lambda \mathbf{x} \\ \mathbf{x}^H \mathbf{S}\mathbf{x} &= \lambda \mathbf{x}^H \mathbf{x} \\ &= \lambda \|\mathbf{x}\|^2 \end{aligned}$$

Also, we have that

$$\begin{aligned} \mathbf{x}^{H}(\mathbf{S}\mathbf{x}) &= ((\mathbf{S}\mathbf{x})^{H}\mathbf{x})^{H} \\ &= (\mathbf{x}^{H}\mathbf{S}^{\mathbf{x}})^{H} \\ &= (-\mathbf{x}^{H}\mathbf{S}\mathbf{x})^{H} \\ \mathbf{x}^{H}(\mathbf{S}\mathbf{x}) &= (-\mathbf{x}^{H}\mathbf{S}\mathbf{x})^{H} \implies \operatorname{Re}(\mathbf{x}^{H}\mathbf{S}\mathbf{x}) = 0 \end{aligned}$$

Putting the above together,

$$\operatorname{Re}(\mathbf{x}^{H}\mathbf{S}\mathbf{x}) = \|\mathbf{x}\|^{2}\operatorname{Re}(\lambda) = 0$$
$$\implies \lambda = 0 \text{ or purely imaginary.}$$

(c) If S is real-valued, can (I - S) be singular? Justify your answer. (6 points) Solution:

Evals of $\mathbf{I} - \mathbf{S}$ are $1 - (\text{Evals of } \mathbf{S})$, and \mathbf{S} has zero or purely imaginary eigenvalues. Therefore, the real part of the eigenvalues of $\mathbf{I} - \mathbf{S}$ is always 1, i.e., the eigenvalues can never be zero. Thus, determinant which is product of eigenvalues cannot be zero. Hence, $\mathbf{I} - \mathbf{S}$ is always non-singular.

4. (Inner products) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, consider the usual inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$ and the vector norm $\|\mathbf{x}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle$.

(a) If $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r\}$ are a set of orthonormal vectors in \mathbb{R}^n and $\mathbf{x} \in \mathbb{R}^n$, show that

$$\sum_{i=1}^r |\langle \mathbf{x}, \mathbf{x}_i \rangle|^2 \leqslant ||\mathbf{x}||^2.$$

When will equality be attained? (8 points) **Solution:** Consider

$$0 \leq \|\mathbf{x} - \sum_{i=1}^{r} \langle \mathbf{x}, \mathbf{x}_i \rangle \mathbf{x}_i \|^2$$

= $\left(\mathbf{x} - \sum_{i=1}^{r} \langle \mathbf{x}, \mathbf{x}_i \rangle \mathbf{x}_i \right)^T \left(\mathbf{x} - \sum_{i=1}^{r} \langle \mathbf{x}, \mathbf{x}_i \rangle \mathbf{x}_i \right)$
= $\|\mathbf{x}\|^2 - \sum_{i=1}^{r} \langle \mathbf{x}, \mathbf{x}_i \rangle \mathbf{x}^T \mathbf{x}_i - \sum_{i=1}^{r} \langle \mathbf{x}, \mathbf{x}_i \rangle \mathbf{x}_i^T \mathbf{x} + \sum_{i,j=1}^{r} \langle \mathbf{x}, \mathbf{x}_i \rangle \langle \mathbf{x}, \mathbf{x}_j \rangle \mathbf{x}_i^T \mathbf{x}_j$

Since $\{\mathbf{x}_i\}$ are a set of orthonormal vectors, $\sum_{i,j=1}^r \langle \mathbf{x}, \mathbf{x}_i \rangle \langle \mathbf{x}, \mathbf{x}_j \rangle \mathbf{x}_i^T \mathbf{x}_j = \sum_{i=1}^r \langle \mathbf{x}, \mathbf{x}_i \rangle^2$, which is the same as the (negative of) the second and third terms. Thus,

$$\|\mathbf{x}\|^2 - \sum_{i=1}^r \langle \mathbf{x}, \mathbf{x}_i \rangle^2 \ge 0,$$

and the result is proved. Since $\|\mathbf{y}\| = 0$ if and only if $\mathbf{y} = 0$, equality is attained when

$$\mathbf{x} = \sum_{i=1}^r \langle \mathbf{x}, \mathbf{x}_i \rangle \mathbf{x}_i.$$

In other words, equality is attained when \mathbf{x} lies in span $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r\}$.

(b) Show that $\langle \mathbf{x}, \mathbf{y} \rangle \leq (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)/2$. (6 points) Solution: Consider $\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$. We have

$$0 \leq \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

= $(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})$
= $\mathbf{x}^T \mathbf{x} + \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{x} - \mathbf{x}^T \mathbf{y}$
= $\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle$

The above implies that

$$\langle \mathbf{x}, \mathbf{y} \rangle \leqslant \frac{1}{2} \left(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 \right)$$

as desired.

5. (Rank 1 matrix norms) Suppose $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$, and let $\mathbf{E} = \mathbf{u}\mathbf{v}^T$. Show that

(a) Frobenius norm: $\|\mathbf{E}\|_F = \|\mathbf{u}\|_2 \|\mathbf{v}\|_2$ (2 points) Solution:

$$\begin{aligned} \|\mathbf{E}\|_{F} &= \sqrt{\operatorname{tr}\left(\mathbf{E}\mathbf{E}^{\top}\right)} = \sqrt{\operatorname{tr}\left(\mathbf{u}\mathbf{v}^{\top}\mathbf{v}\mathbf{u}^{\top}\right)} = \sqrt{\left(\mathbf{u}^{\top}\mathbf{u}\right)\left(\mathbf{v}^{\top}\mathbf{v}\right)} = \|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2} \\ \|\mathbf{E}\|_{F}^{2} &= \sum_{i=1}^{m} \sum_{j=1}^{n} |u_{i}v_{j}|^{2} = \sum_{i=1}^{m} |u_{i}|^{2} \sum_{j=1}^{n} |v_{j}|^{2} = \|\mathbf{u}\|_{2}^{2} \|\mathbf{v}\|_{2}^{2} \end{aligned}$$

(b) Spectral norm: $\|\|\mathbf{E}\|\|_2 = \|\mathbf{u}\|_2 \|\mathbf{v}\|_2$ (2 points) Solution:

$$\|\mathbf{E}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{E}\mathbf{x}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{u}\mathbf{v}^{\top}\mathbf{x}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{u}\|_{2} \|\mathbf{v}^{\top}\mathbf{x}\| = \|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2}$$

(c) Maximum row sum norm: $\|\|\mathbf{E}\|\|_{\infty} = \|\mathbf{u}\|_{\infty} \|\mathbf{v}\|_{1}$ (2 points) Solution:

$$\begin{aligned} \|\mathbf{E}\|_{\infty} &= \max_{\|\mathbf{x}\|_{\infty}=1} \|\mathbf{E}\mathbf{x}\|_{\infty} = \max_{\|\mathbf{x}\|_{\infty}=1} \|\mathbf{u}\mathbf{v}^{\top}\mathbf{x}\|_{\infty} = \max_{\|\mathbf{x}\|_{\infty}=1} \|\mathbf{u}\|_{\infty} |\mathbf{v}^{\top}\mathbf{x}| \\ &= \|\mathbf{u}\|_{\infty} \max_{\|\mathbf{x}\|_{\infty}=1} |\mathbf{v}^{\top}\mathbf{x}| = \|\mathbf{u}\|_{\infty} \|\mathbf{v}\|_{1} \end{aligned}$$

where the last equality holds since it is the definition of dual norm of the ℓ_{∞} norm which is the ℓ_1 norm.

- 6. A 4×4 matrix **B** has eigenvalues 0, 1, 3, 5.
 - (a) What is the rank of \mathbf{B} ? (2 points)

Solution:

B has 4 distinct eigenvalues \implies **B** is diagonalizable, i.e., it is similar to diagonal matrix containing its eigenvalues on its diagonal. Since exactly one of the eigenvalues is 0, the diagonal matrix has rank = 3; and since the rank of a matrix is similarity-invariant, the matrix **B** also has rank 3.

(b) What is the determinant of $\mathbf{B}^T \mathbf{B}$? (2 points)

Solution:

$$\det(\mathbf{B}^T\mathbf{B}) = |\det(\mathbf{B})|^2 = (0 \times 1 \times 3 \times 5)^2 = 0$$

(c) Calculate the eigenvalues of $(\mathbf{B}^2 + 5\mathbf{I})^{-1}$ (2 points)

Solution:

Eigenvalues of \mathbf{B}^2 are squares of eigenvalues of \mathbf{B} which are 0, 1, 9, 25. Eigenvalues of $\mathbf{B}^2 + 5\mathbf{I}$ are $(5 + \text{eigenvalues of } \mathbf{B}^2)$ which are 5, 6, 14, 30. Eigenvalues of $(\mathbf{B}^2 + 5\mathbf{I})^{-1}$ are inverses of eigenvalues of $(\mathbf{B}^2 + 5\mathbf{I})$ which are $\frac{1}{5}, \frac{1}{6}, \frac{1}{14}$ and $\frac{1}{30}$. (d) If another 4×4 matrix **C** has eigenvalues 1, 2, 3, 6, find the eigenvalues of the 8×8 matrix (4 points)

$$\mathbf{D} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

where **I** is the 4 × 4 identity matrix and **0** is the 4 × 4 all zero matrix. **Solution:** Let $\mathbf{D} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$, and consider det $(\mathbf{D} - \lambda \mathbf{I}) = 0$. In the expansion of the determinant, all the entries of **C** are multiplied by zero. Hence, it has no effect on the eigenvalues of **D**. Therefore, the eigenvalues of **D** are eigenvalues of **B** and **I** which is 0, 1, 3, 5, 1, 1, 1, 1.

Alternative solution: $det(\mathbf{D} - \lambda \mathbf{I}) = det(\mathbf{B} - \lambda_B \mathbf{I})det(\mathbf{I} - \lambda_I \mathbf{I})$ (Since the matrix **D** is block upper triangular). Hence, the eigenvalues of **D** are eigenvalues of **B** and **I** put together.