E2 212: Matrix Theory Fall 2019 - Test 2 Solutions

1. (Jordan Form) The following information on a 6×6 matrix is given below.

Eigenvalue	Algebraic multiplicity	Geometric multiplicity
2	4	2
-1	2	2

$$
\begin{array}{lr}
\operatorname{rank}(\mathbf{A}-2 \mathbf{I})=4 & \operatorname{rank}(\mathbf{A}+\mathbf{I})=4 \\
\operatorname{rank}\left((\mathbf{A}-2 \mathbf{I})^{2}\right)=3 & \operatorname{rank}\left((\mathbf{A}+\mathbf{I})^{2}\right)=4 \\
\operatorname{rank}\left((\mathbf{A}-2 \mathbf{I})^{3}\right)=2 & \\
\operatorname{rank}\left((\mathbf{A}-\mathbf{I})^{4}\right)=2 &
\end{array}
$$

Find the Jordan form of the matrix. (8 points)

Solution:

For $\lambda=2, n-a_{\lambda}=2$. Hence,

$$
\begin{aligned}
k & =\min _{j}\left(\operatorname{rank}(\mathbf{A}-2 \mathbf{I})^{j}=n-a_{\lambda}\right)=3 \\
r_{k-1} & =N_{k}+n-a_{\lambda} \\
\Rightarrow \quad 3 & =N_{3}+6-4 \\
\Rightarrow \quad N_{3} & =1
\end{aligned}
$$

Thus, there is a Jordan block $J(1)$ of size 3×3.

$$
\begin{array}{rlrl}
r_{k-2} & =N_{k-1}+2 N_{k}+n-a_{\lambda} \\
\Rightarrow & r_{1} & =N_{2}+2 N_{3}+6-4 \\
\Rightarrow & 4 & =N_{2}+2+2 \\
\Rightarrow \quad N_{2} & =0
\end{array}
$$

Hence, there is no Jordan block of size 2×2. Finally,

$$
\begin{aligned}
a_{\lambda} & =N_{1}+2 N_{2}+3 N_{3} \\
\Rightarrow \quad 4 & =N_{1}+3 \\
\Rightarrow \quad N_{1} & =1
\end{aligned}
$$

Thus, there is one Jordan block $J(1)$ of size 1×1.
For $\lambda=-1$, the algebraic multiplicity is 2 and the geometric multiplicity is 2 , thus there are two Jordan blocks in the 2×2 submatrix corresponding to this eigen value, namely, two 1×1 blocks $J(-1)$. Putting all this together, we get the Jordan form as

$$
J=\left[\begin{array}{cccccc}
2 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right] .
$$

2. (a) For $\mathbf{A} \in \mathbb{C}^{n \times n}$, prove that if $\mathbf{x}^{H} \mathbf{A x}=0$ for all $\mathbf{x} \in \mathbb{C}^{n \times 1}$, then $\mathbf{A}=0$. (6 points) Solution:
Consider Schur's triangularization, $\mathbf{A}=\mathbf{U T U}^{H}$, where \mathbf{T} is upper triangular. Then,

$$
\begin{array}{rll}
\mathbf{x}^{H} \mathbf{A} \mathbf{x}=0 & \forall \mathbf{x} \in \mathbb{C}^{N \times 1} \\
\Rightarrow \mathbf{x}^{H} \mathbf{U T U}^{H} \mathbf{x}=0 & \forall \mathbf{x} \in \mathbb{C}^{N \times 1} \\
\Rightarrow \quad \mathbf{y}^{H} \mathbf{T y}=0 & \forall \mathbf{y}=\mathbf{U}^{H} \mathbf{x} \in \mathbb{C}^{N \times 1} .
\end{array}
$$

Choosing $\mathbf{y}=\mathbf{e}_{i}$, we get

$$
\begin{align*}
\mathbf{e}_{i}^{H} \mathbf{T e}_{i} & =0 \\
\Rightarrow \quad t_{i i} & =0 \quad \forall i \tag{1}
\end{align*}
$$

Note that, since \mathbf{T} is upper triangular,

$$
\begin{equation*}
t_{j i}=0 \quad \forall i>j \tag{2}
\end{equation*}
$$

Now, we choose $\mathbf{y}=\mathbf{e}_{i}+\mathbf{e}_{j}$ with $i>j$ to get

$$
\begin{align*}
\Rightarrow \quad\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)^{H} \mathbf{T}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) & =0 \\
\Rightarrow \quad t_{i i}+t_{j j}+t_{i j}+t_{j i} & =0 \\
\Rightarrow \quad t_{i j} & =0 . \tag{3}
\end{align*}
$$

From (1), (2) and (3), $\mathbf{T}=\mathbf{0}$. Therefore, $\mathbf{A}=\mathbf{0}$.
(b) Show that $\mathbf{x}^{T} \mathbf{A x}=0$ for all $\mathbf{x} \in \mathbb{R}^{n \times 1}$ does not imply $\mathbf{A}=\mathbf{0}$, even if \mathbf{A} is real. (4 points)

Solution:

Choose $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$. Then, $\mathbf{x}^{T} \mathbf{A} \mathbf{x}=x_{1} x_{2}-x_{2} x_{1}=0$ for all $\mathbf{x} \in \mathbb{R}^{2 \times 1}$, even though $\mathbf{A} \neq \mathbf{0}$.

3. (Spectral norm of Hermitian matrices)

(a) Show that, for a Hermitian symmetric matrix \mathbf{A}, the spectral norm is equal to its spectral radius (i.e., its maximum absolute eigenvalue). (5 points)

Solution:

Since A is Hermitian symmetric, it is unitarily diagonalizable, and we can write $\mathbf{A}=\mathbf{U D U}^{H}$, where \mathbf{U} is unitary and \mathbf{D} is diagonal.
Hence, the spectral norm $\left\|\|\mathbf{A}\|_{2}=\right\| \mathbf{D}\left\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\right\| \mathbf{D x} \|_{2}$.
Now, since \mathbf{D} is diagonal, $\|\mathbf{D} \mathbf{x}\|_{2}^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\left|x_{i}\right|^{2} \leqslant \max _{j}\left|\lambda_{j}\right|^{2} \sum_{i=1}^{n}\left|x_{i}\right|^{2}=$ $\max _{j}\left|\lambda_{j}\right|^{2}\|\mathbf{x}\|_{2}^{2}$, and equality is attained when $\mathbf{x}=\mathbf{e}_{j}$, where j is the index corresponding to the largest eigenvalue.
Therefore, we have that the spectral norm of \mathbf{A} equals $\max _{j}\left|\lambda_{j}\right|$, which is nothing but its spectral radius.
(b) Suppose $\mathbf{S}, \mathbf{T} \in \mathbb{C}^{n \times n}$ are Hermitian symmetric matrices with (increasing) ordered eigenvalues $\left\{\lambda_{k}(\mathbf{S})\right\}_{k=1}^{n},\left\{\lambda_{k}(\mathbf{T})\right\}_{k=1}^{n}$, respectively. Also, let $\left\{\lambda_{k}(\mathbf{S}-\mathbf{T})\right\}_{k=1}^{n}$ and $\left\{\lambda_{k}(\mathbf{S}+\mathbf{T})\right\}_{k=1}^{n}$ be the ordered eigenvalues of $\mathbf{S}-\mathbf{T}$ and $\mathbf{S}+\mathbf{T}$, respectively. Then, show that:
i. $\lambda_{k}(\mathbf{S})-\lambda_{n}(\mathbf{T}) \leqslant \lambda_{k}(\mathbf{S}-\mathbf{T}) \leqslant \lambda_{k}(\mathbf{S})-\lambda_{1}(\mathbf{T}), k=1, \ldots, n$. (5 points)

Solution:
By Weyl's inequality,

$$
\begin{equation*}
\lambda_{k}(\mathbf{S})+\lambda_{1}(\mathbf{T}) \leqslant \lambda_{k}(\mathbf{S}+\mathbf{T}) \leqslant \lambda_{k}(\mathbf{S})+\lambda_{n}(\mathbf{T}) \tag{4}
\end{equation*}
$$

Replacing \mathbf{T} by $\mathbf{- T}$, we get

$$
\begin{align*}
\lambda_{k}(\mathbf{S})+\lambda_{1}(-\mathbf{T}) & \leqslant \lambda_{k}(\mathbf{S}+(-\mathbf{T})) \leqslant \lambda_{k}(\mathbf{S})+\lambda_{n}(-\mathbf{T}) \\
\lambda_{n}(\mathbf{T}) & =-\lambda_{1}(-\mathbf{T}) \\
\lambda_{1}(\mathbf{T}) & =-\lambda_{n}(-\mathbf{T}) \\
\lambda_{k}(\mathbf{S})-\lambda_{n}(\mathbf{T}) & \left.\leqslant \lambda_{k}(\mathbf{S}-\mathbf{T})\right) \leqslant \lambda_{k}(\mathbf{S})-\lambda_{1}(\mathbf{T}), \tag{5}
\end{align*}
$$

which is the desired result.
ii. $\lambda_{n}(\mathbf{T})-\lambda_{1}(\mathbf{T}) \geqslant \lambda_{k}(\mathbf{S}+\mathbf{T})+\lambda_{k}(\mathbf{S}-\mathbf{T})-\lambda_{k}(\mathbf{S}), k=1, \ldots, n$. (5 points)

Solution:

Using upper bounds of (4) and (5),

$$
\begin{aligned}
\lambda_{k}(\mathbf{S}+\mathbf{T})+\lambda_{k}(\mathbf{S}-\mathbf{T}) & \leqslant 2 \lambda_{k}(\mathbf{S})+\lambda_{n}(\mathbf{T})-\lambda_{1}(\mathbf{T}) \\
\Rightarrow \lambda_{k}(\mathbf{S}+\mathbf{T})+\lambda_{k}(\mathbf{S}-\mathbf{T})-2 \lambda_{k}(\mathbf{S}) & \leqslant \lambda_{n}(\mathbf{T})-\lambda_{1}(\mathbf{T}) .
\end{aligned}
$$

iii. $\left\|\left|\mathbf{S}-\mathbf{T} \|_{2} \geqslant \max _{i}\right| \lambda_{i}(\mathbf{S})-\lambda_{i}(\mathbf{T}) \mid\right.$. Hint: Use part (a). (5 points)

Solution:

Writing $\mathbf{S}=\mathbf{T}+(\mathbf{S}-\mathbf{T})$ and using Weyl's inequality, we have

$$
\begin{array}{r}
\lambda_{k}(\mathbf{T})+\lambda_{1}(\mathbf{S}-\mathbf{T}) \leqslant \lambda_{k}(\mathbf{S}) \leqslant \lambda_{k}(\mathbf{T})+\lambda_{n}(\mathbf{S}-\mathbf{T}) \\
\lambda_{1}(\mathbf{S}-\mathbf{T}) \leqslant \lambda_{k}(\mathbf{S})-\lambda_{k}(\mathbf{T}) \leqslant \lambda_{n}(\mathbf{S}-\mathbf{T}) \tag{6}
\end{array}
$$

There are three cases to be considered:
(Case a) $\lambda_{1}(\mathbf{S}-\mathbf{T}), \lambda_{n}(\mathbf{S}-\mathbf{T})$ are both negative.
In this case, $\max _{i}\left|\lambda_{i}(\mathbf{S}-\mathbf{T})\right|=\left|\lambda_{1}(\mathbf{S}-\mathbf{T})\right|$. Using the lower bound of (6), we get

$$
\left|\lambda_{k}(\mathbf{S})-\lambda_{k}(\mathbf{T})\right| \leqslant\left|\lambda_{1}(\mathbf{S}-\mathbf{T})\right|
$$

(Case b) $\lambda_{1}(\mathbf{S}-\mathbf{T}), \lambda_{n}(\mathbf{S}-\mathbf{T})$ are both positive.
In this case, $\max _{i}\left|\lambda_{i}(\mathbf{S}-\mathbf{T})\right|=\left|\lambda_{n}(\mathbf{S}-\mathbf{T})\right|$. Using the upper bound of (6), we get

$$
\left|\lambda_{k}(\mathbf{S})-\lambda_{k}(\mathbf{T})\right| \leqslant\left|\lambda_{n}(\mathbf{S}-\mathbf{T})\right|
$$

(Case c) $\lambda_{1}(\mathbf{S}-\mathbf{T})$ is negative $\lambda_{n}(\mathbf{S}-\mathbf{T})$ is positive.
In this case, if $\left|\lambda_{1}(\mathbf{S}-\mathbf{T})\right|>\left|\lambda_{n}(\mathbf{S}-\mathbf{T})\right|$, (case a) follows, otherwise (case b) follows.

Combining the three cases, for all k, we have

$$
\left|\lambda_{k}(\mathbf{S})-\lambda_{k}(\mathbf{T})\right| \leqslant \max _{i}\left|\lambda_{i}(\mathbf{S}-\mathbf{T})\right|,
$$

and the right hand side is precisely the spectral norm of $\mathbf{S}-\mathbf{T}$, and thus

$$
\max _{k}\left|\lambda_{k}(\mathbf{S}-\mathbf{T})\right| \leqslant\|\mid \mathbf{S}-\mathbf{T}\|_{2} .
$$

4. ($\mathbf{L D M}^{T}$ factorization) Show that the product of the pivots obtained during Gaussian elimination (LU factorization) of a matrix is equal to the product of its eigenvalues. (6 points)

Solution:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =\operatorname{det}\left(\mathbf{L} \mathbf{D M}^{T}\right) \\
& =\operatorname{det}(\mathbf{L}) \times \operatorname{det}(\mathbf{D}) \times \operatorname{det}\left(\mathbf{M}^{T}\right) \\
& =1 \times \operatorname{det}(\mathbf{D}) \times 1 \\
\Rightarrow \prod_{i=1}^{n} \lambda_{i} & =\prod_{j=1}^{n} k_{j}
\end{aligned}
$$

where k_{j} are the pivot elements. The same applies to the factorization $\mathbf{A}=\mathbf{L U}$; $\operatorname{det}(\mathbf{L})=1$ since \mathbf{L} is a unit lower triangular matrix, and $\operatorname{det}(\mathbf{U})$ is the product of the pivot elements since \mathbf{U} is upper triangular with the pivot elements along its diagonal.
5. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be given, and suppose \mathbf{A} and \mathbf{B} are simultaneously similar to upper triangular matrices: that is, $\mathbf{S}^{-1} \mathbf{A S}$ and $\mathbf{S}^{-1} \mathbf{B S}$ are both upper triangular for some nonsingular \mathbf{S}. Show that every eigenvalue of $\mathbf{A B}-\mathbf{B A}$ must be zero. (8 points)

Solution:

Since \mathbf{A} and \mathbf{B} are simultaneously similar to upper triangular matrices, define $\mathbf{T}=$ $\mathbf{S}^{-1} \mathbf{A S}$ and $\mathbf{R}=\mathbf{S}^{-1} \mathbf{B S}$, where \mathbf{T} and \mathbf{R} are upper triangular. Then, $\mathbf{S T S}^{-1}=\mathbf{A}$ and $\mathbf{S R S}^{-1}=\mathbf{B}$. Thus, $\mathbf{A B}=\mathbf{S T R S}^{-1}$ and $\mathbf{B A}=\mathbf{S R T S}^{-1}$.
Define $\mathbf{C}=\mathbf{A B}-\mathbf{B A}=\mathbf{S}(\mathbf{T R}-\mathbf{R T}) \mathbf{S}^{-1}$
Thus, \mathbf{C} and ($\mathbf{T R}-\mathbf{R T}$) are similar. This implies that the eigenvalues of \mathbf{C} are the same as those of $\mathbf{T R}-\mathbf{R T}$. Now, $\mathbf{T R}-\mathbf{R T}$ is upper triangular, and hence its eigenvalues are its diagonal elements.

$$
\begin{aligned}
(\mathbf{T R})_{i i} & =\mathbf{T}(i,:) \mathbf{R}(:, i) \\
& =\sum_{j=1}^{n} t_{i j} r_{j i} \\
& =t_{i i} r_{i i} \quad[\text { the other elements of the sum are zero as they are upper triangular }] \\
(\mathbf{R T})_{i i} & =\mathbf{R}(i,:) \mathbf{T}(:, i) \\
& =\sum_{j=1}^{n} r_{i j} t_{j i} \\
& =r_{i i} t_{i i} \quad[\text { the other elements of the sum are zero as they are upper triangular }]
\end{aligned}
$$

$$
\Rightarrow(\mathbf{T R}-\mathbf{R T})_{i i}=0
$$

Since all the diagonal entries are equal to zero, the eigenvalues are also zero.
6. Let $\lambda, a \in \mathbb{R}, \mathbf{y} \in \mathbb{C}^{n}$, and $\mathbf{A}=\left[\begin{array}{cc}\lambda \mathbf{I}_{n} & \mathbf{y} \\ \mathbf{y}^{H} & a\end{array}\right] \in \mathbb{C}^{(n+1) \times(n+1)}$. Use the Cauchy interlacing theorem to show that λ is an eigenvalue of \mathbf{A} with multiplicity at least $n-1$. What are the other two eigenvalues? (8 points)

Solution:

The matrix $\lambda \mathbf{I}_{n}$ has n repeated eigenvalues equal to λ. Therefore, by the Cauchy interlacing theorem, the eigenvalues $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}\right)$ of \mathbf{A} satisfy the inequalities $\lambda_{1} \leqslant$ $\lambda \leqslant \lambda_{2} \leqslant \lambda \leqslant \ldots \leqslant \lambda_{n} \leqslant \lambda \leqslant \lambda_{n+1}$

$$
\Rightarrow \lambda_{2}=\lambda_{3}=\ldots=\lambda_{n}=\lambda
$$

Therefore, λ is eigenvalue of \mathbf{A} with multiplicity at least $n-1$.

To find the value of λ_{1} and λ_{n+1}, we use the trace and determinant of \mathbf{A}

$$
\begin{align*}
\operatorname{Trace}(\mathbf{A}) & =n \lambda+a \\
\Rightarrow \lambda_{1}+\lambda_{n+1}+(n-1) \lambda & =n \lambda+a \\
\Rightarrow \lambda_{1}+\lambda_{n+1} & =\lambda+a \tag{7}
\end{align*}
$$

Similarly, using

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\left[\begin{array}{ll}
\lambda \mathbf{I}_{n} & \mathbf{y} \\
\mathbf{y}^{H} & a
\end{array}\right]\right)
$$

Using Schur's complement,

$$
\begin{align*}
& =\operatorname{det}\left(\left[\begin{array}{cc}
\lambda \mathbf{I}_{n} & \mathbf{0} \\
\mathbf{0} & a-\frac{1}{\lambda} \mathbf{y}^{H} \mathbf{I}_{n} \mathbf{y}
\end{array}\right]\right) \\
\Rightarrow \lambda_{1} \lambda_{n+1} \lambda^{n-1} & =\lambda^{n}\left(a-\frac{1}{\lambda} \mathbf{y}^{H} \mathbf{y}\right) \\
\Rightarrow \lambda_{1} \lambda_{n+1} & =a \lambda-\mathbf{y}^{H} \mathbf{y} \tag{8}
\end{align*}
$$

From (7) and (8), we form the quadratic equation

$$
\begin{aligned}
\frac{a \lambda-\mathbf{y}^{H} \mathbf{y}}{\lambda_{n+1}}+\lambda_{n+1} & =\lambda+a \\
\Rightarrow \lambda_{n+1}^{2}-(\lambda+a) \lambda_{n+1}+\left(a \lambda-\mathbf{y}^{H} \mathbf{y}\right) & =0
\end{aligned}
$$

Solving,

$$
\begin{aligned}
\lambda_{n+1} & =\frac{\lambda+a \pm \sqrt{(\lambda+a)^{2}-4 a \lambda+4 \mathbf{y}^{H} \mathbf{y}}}{2} \\
& =\frac{\lambda+a \pm \sqrt{(\lambda-a)^{2}+4 \mathbf{y}^{H} \mathbf{y}}}{2} \\
\Rightarrow \lambda_{1} & =\frac{(\lambda+a) \mp \sqrt{(\lambda-a)^{2}+4 \mathbf{y}^{H} \mathbf{y}}}{2} .
\end{aligned}
$$

It is clear that the "+" yields λ_{n+1} and "-" yields λ_{1}. An alternative, perhaps simpler way to obtain the same solution for λ_{1} and λ_{n+1} is to use the fact that the squared Frobenius norm of the matrix \mathbf{A} is the sum of the squares of its eigenvalues.

