E2 212: Matrix Theory Fall 2019 — Test 2
Solutions

1. (Jordan Form) The following information on a 6 x 6 matrix is given below.

Eigenvalue | Algebraic multiplicity | Geometric multiplicity
2 4 2
-1 2 2
rank(A — 2I) = 4 rank(A +1) =4
rank ((A —2I)%) =3 rank ((A +1I)%) =4
rank ((A — 2I)%) =2
rank (A —2I)*) =2

Find the Jordan form of the matrix. (8 points)

Solution:
For A\ = 2, n — a), = 2. Hence,

k = min(rank(A — 2I)/ = n — ay) = 3

J
Tk,lsz—i-n—a)\
— 3=N3+6-4

= N3:1

Thus, there is a Jordan block J(1) of size 3 x 3.
Te—2 = Np_1 + 2N, +n — ay
= r;=Ny+2N;3+6-4
= N2 = O
Hence, there is no Jordan block of size 2 x 2. Finally,
ay) = N1 + 2N2 + 3N3

= 4=N;+3
= N1:1



2.

Thus, there is one Jordan block J(1) of size 1 x 1.

For A\ = —1, the algebraic multiplicity is 2 and the geometric multiplicity is 2, thus
there are two Jordan blocks in the 2 x 2 submatrix corresponding to this eigen value,
namely, two 1 x 1 blocks J(—1). Putting all this together, we get the Jordan form as

(a)

o O O O
o O O O O

-1
0 -1

SO OO OO

S OO OO N
SO OO NN
S OO NN+ O

For A € C™" prove that if x Ax = 0 for all x € C"*!, then A = 0. (6 points)

Solution:

Consider Schur’s triangularization, A = UTU¥, where T is upper triangular.
Then,

xTAx =0 vxeCN!
=x"UTU"x =0 vxeCV!
= yAiTy =0 Vy=UfxeCV*
Choosing y = e;, we get
e'Te; = 0
Note that, since T is upper triangular,
Now, we choose y = e; + e; with ¢ > j to get
= (e; + €)' T(e; +e;)=0

= tii+tjj+tij+tj,»=0

From (1), (2) and (3), T = 0. Therefore, A = 0.

Show that x”’ Ax = 0 for all x € R"*! does not imply A = 0, even if A is real.
(4 points)

Solution:

-1 0
all x € R?*!, even though A # 0.

Choose A = 0 1] and let x = [z; x5]T. Then, xT Ax = x129 — Tox; = 0 for



3. (Spectral norm of Hermitian matrices)

(a)

Show that, for a Hermitian symmetric matrix A, the spectral norm is equal to its
spectral radius (i.e., its maximum absolute eigenvalue). (5 points)

Solution:

Since A is Hermitian symmetric, it is unitarily diagonalizable, and we can write
A = UDU¥, where U is unitary and D is diagonal.

Hence, the spectral norm [|Al]|, = ||D|||, = maxxj,—1 [Dx]s.

Now, since D is diagonal, |Dx[3 = >", |Ni|*|z® < max; [NPY0 |a? =
max; |\, |*|x[3, and equality is attained when x = e;, where j is the index corre-
sponding to the largest eigenvalue.

Therefore, we have that the spectral norm of A equals max; |A;|, which is nothing
but its spectral radius.

Suppose S, T € C"*" are Hermitian symmetric matrices with (increasing) ordered
eigenvalues {\.(S)}7_;, { \(T)}7_;, respectively. Also, let {A\.(S — T)}}?_; and
{M\e(S + T)}7_, be the ordered eigenvalues of S — T and S + T, respectively.
Then, show that:

Lo A(S) = A(T) < M(S—=T) < M(S) — A (T), k=1,...,n. (5 points)
Solution:
By Weyl’s inequality,

A(S) + AM(T) < M(S+T) < A(S) + M (T). (4)

Replacing T by —T, we get
Me(S) + /\1(—T) A (S +(=T)) < X(S) + A\ (=T)
An(T) = =M (=T)
M(T) = =2 (=T)
Ae(8) = An(T) < (S T)) < M(S) — A(T), (5)
which is the desired result.

. A (T) = AM(T) =2 M(S+T)+ M(S—=T) = M\(S), k=1,...,n. (5 points)

Solution:
Using upper bounds of (4) and (5),

AR(S + T) + Ae(S — T) < 20(S) + A(T) = My (T)
= M(S+T) + M(S=T) = 2M(S) < M\ (T) — M (T).
iii. [|S — T2 = max; |\ (S) — Ni(T)|. Hint: Use part (a). (5 points)
Solution:
Writing S = T + (S — T) and using Weyl’s inequality, we have
M(T) + Ai(S = T) < Me(S) < Au(T) + An(S — T)
M(S —=T) < M(S) = M(T) <\ (S—T) (6)

There are three cases to be considered:



(Case a) A\(S —T),\.(S —T) are both negative.
In this case, max; |A\;(S — T)| = |\ (S — T)|. Using the lower bound of
(6), we get
[AR(S) = A(T)] < A (S = T))

(Case b) A1(S —T), A\, (S —T) are both positive.
In this case, max; |\;(S — T)| = |A\,(S — T)|. Using the upper bound of
(6), we get
[AR(S) = Ak(T)] < [An(S = T)|

(Case ¢) Ai1(S —T) is negative A\, (S — T) is positive.
In this case, if |A\ (S —T)| > |A\.(S—T)|, (case a) follows, otherwise (case
b) follows.

Combining the three cases, for all k£, we have
[Ak(S) = Ak(T)| < max |Ai(S — T,
and the right hand side is precisely the spectral norm of S — T, and thus

max [Ay(S = T)| < IS =T,

4. (LDMT factorization) Show that the product of the pivots obtained during Gaussian
elimination (LU factorization) of a matrix is equal to the product of its eigenvalues.
(6 points)

Solution:

det(A) = det(LDMT)
= det(L) x det(D) x det(M")
=1xdet(D) x 1

i=1

7j=1

where k; are the pivot elements. The same applies to the factorization A = LU;
det(L) = 1 since L is a unit lower triangular matrix, and det(U) is the product of the
pivot elements since U is upper triangular with the pivot elements along its diagonal.



5. Let A, B € C™*™ be given, and suppose A and B are simultaneously similar to upper
triangular matrices: that is, ST'AS and S™'BS are both upper triangular for some
nonsingular S. Show that every eigenvalue of AB — BA must be zero. (8 points)

Solution:

Since A and B are simultaneously similar to upper triangular matrices, define T =
S7!AS and R = S'BS, where T and R are upper triangular. Then, STS™! = A
and SRS~! = B. Thus, AB = STRS! and BA = SRTS ..

Define C = AB — BA = S(TR — RT)S™!

Thus, C and (TR — RT) are similar. This implies that the eigenvalues of C are
the same as those of TR — RT. Now, TR — RT is upper triangular, and hence its
eigenvalues are its diagonal elements.

(TR)” = T(Z, )R(, Z)

n
= Dt
j=1

= t;ry;  [the other elements of the sum are zero as they are upper triangular|

(RT);; = R(4,:)T(:,4)

n
= DTt
j=1

= rity;  [the other elements of the sum are zero as they are upper triangular|

Since all the diagonal entries are equal to zero, the eigenvalues are also zero.

6. Let \,ae R, y e C", and A = ;\’% Z e Cr+Dx(+1) " Use the Cauchy interlacing

theorem to show that A is an eigenvalue of A with multiplicity at least n — 1. What
are the other two eigenvalues? (8 points)

Solution:
The matrix M, has n repeated eigenvalues equal to A. Therefore, by the Cauchy
interlacing theorem, the eigenvalues (A1, Ag, ..., Ay41) of A satisfy the inequalities \; <

A< A <A< <A <A< A
:>>\2:/\3::)\n:>\

Therefore, A is eigenvalue of A with multiplicity at least n — 1.

To find the value of A\; and A, .1, we use the trace and determinant of A



Trace(A) = n\ +a
=M+ +(n—DA=nA+a
=M+ =A+a (7)

Similarly, using

det(A) = det ( _A{z; yD

Using Schur’s complement,
[\ 0
= det "
( 0 a- %yHInYD

1
= MA AT = N a — 3y"y)

= M = ad —y'ly (8)
From (7) and (8), we form the quadratic equation

a\ —yH
DYV At
An+1

= )\iﬂ — A+ a)rq1 + (aX — yHy) =0.

Solving,
A a /(A +a)?—4da) + 4yfy
)\n+1: 2
_)\+ai\/()\—a)2+4yHy
a 2
- 2 7]
:>>\1:()\+a)+\/()\2 a)? + 4y y

It is clear that the “+” yields A\,;; and “—” yields A;. An alternative, perhaps simpler
way to obtain the same solution for A\; and A, is to use the fact that the squared
Frobenius norm of the matrix A is the sum of the squares of its eigenvalues.



