
E9 203: Homework - 6

Assigned on: 19 Apr. 2015, due 30 Apr. 2015; answer any 10 questions.

1 Topics

• Subgaussian random variables

• Concentration of measure

• JL Lemma

• LASSO, uniqueness

• Strong convexity, implication to unconstrained convex optimization

• Compressible signals

Notation: “Triple-bar” norms ~ ¨ ~ denote (vector norm) induced matrix norms while “double-bar” norms
} ¨ } denote vector norms (possibly, on matrices). For example, ~A~2 is the same as }A}2Ñ2 we used in class.
Also, }A}2 or }A}F is the matrix Frobenius norm.

2 Problems

1. Subgaussian moments. A random variable X is said to be subgaussian distributed if D a constant c ą 0
s.t. @ s ą 0,EtesXu ď ecs

2

. Show that D a universal constant K s.t. if X is subgaussian, for every
q P Z`,

pEt|X |quq
1

q ď K
?
cq.

2. Subgaussian moments – converse. Let X be a zero-mean random variable s.t. D c ą 0 satisfying

pEt|X |quq
1

q ď ?
cq

for every positive integer q. Show that X is subgaussian, i.e., for any s ą 0,

EtesXu ď
?
2e1{6eces

2{2

3. Let X1, . . . , Xn be independent random variables, taking values from r0, 1s. Let m fi ESn, where
Sn fi

řn

i“1Xi. Show that, for any t ě m,

PtSn ě tu ď
´m

t

¯t
ˆ

n´m

n´ t

˙n´t

.

Hint. Use Chernoff’s bounding method.



4. Use the previous result to show that

PtSn ě tu ď
´m

t

¯t

et´m,

and for all ǫ ą 0,
PtSn ě mp1 ` ǫqu ď e´mhpǫq,

where hpuq fi p1 ` uq logp1 ` uq ´ u for u ą 0. Finally,

PtSn ď mp1 ´ ǫqu ď e´mǫ2{2.

5. (J-L Lemma) Given ǫ ą 0 and N P Z`. Let m P Z` be such that m ě O
´

logN
ǫ2

¯

. For every set, P of

N points in R
n, there exists a mapping, ψ : Rn Ñ R

m, such that @ u, v P P :

p1 ´ ǫq}u´ v}22 ď }ψpuq ´ ψpvq}22 ď p1 ` ǫq}u´ v}22

6. (Completing a small step in the proof that Gaussian matrices satisfying RIP) Show that

b

1 ` δ{
?
2

1 ´ δ{14 ď
?
1 ` δ

and
b

1 ´ δ{
?
2 ´ δ

?
1 ` δ{14 ě

?
1 ´ δ

for δ ą 0.

7. (Also a small step in the proof that Gaussian matrices satisfy RIP) Let A P R
mˆn, with Aij „ N p0, 1

m
q

and i.i.d. Show that

Pr
 

}Ax}22 ď p1 ´ ǫq}x}22
(

ď exp

ˆ

´mǫ2

12

˙

8. (Concentration of measure inequality for strictly sub-Gaussian matrices) Recall that we say X is

ssubpc2q if X is zero mean, EpX2q “ c2, and E
 

esX
(

ď ec
2s2{2 @ s P R. Suppose A P R

mˆn, with Aij

being i.i.d. and ssub
`

1
m

˘

. Let Y “ Ax for some x P R
n. Then, for any ǫ ą 0, show that

E
 

}Y }21
(

“ }x}22

Pr
 ˇ

ˇ}Y }22 ´ }x}22
ˇ

ˇ ě ǫ}x}22
(

ď 2 exp

ˆ

´mǫ2

k˚

˙

,

with k˚ “ 2
1´logp2q .

9. First, using results we showed in class, establish the following theorem:

Theorem 1 Let s be such that δ3s ` 3δ4s ă 2. Then, for any x0 with T0 fi supppx0q, and |T0| ď s,

and any perturbation e with }e} ď ǫ, the solution x˚ to

Pǫ
1 : min

x

}x}1 s. t. }Ax ´ y}2 ď ǫ

obeys

}x˚ ´ x0}2 ď Csǫ

where the constant Cs can be chosen such that it depends only on δ4s.



(a) Extend the above theorem to the case where e is Gaussian distributed with mean 0 and variance
σ2. You will now have a probability of failure: the procedure will fail whenever }e} ą ǫ. Comment
on the trade-off between the number of measurements m and the noise variance σ2.

(b) Extend the theorem to the case where A has i.i.d. Gaussian entries with mean 0 and variance
1{m. Again, you will now have a probability of failure associated with the procedure.

(c) What if A has i.i.d. N p0, 1{mq entries and e is i.i.d. N p0, σ2q distributed? Comment on your
result.

(d) (Bonus question) Find the above results in the literature.

10. Consider the observation model: y “ Xβ˚ ` w, where where X P R
mˆn, y P R

m and m ! n. w P R
m

is the zero mean additive observation noise. Consider the unconstrained form of LASSO estimator:

min
βPRn

"

1

2m
}y ´ Xβ}22 ` λm}β}1

*

(1)

(a) Show that there exists at least one solution of (1). Why is this solution not unique?
(Hint: Instead of unconstrained form, use the equivalent constrained forms.)

(b) (Uniqueness of LASSO solution.) Prove the following:

i. A vector β̂ P R
n is an optimal solution for (1) iff there exists a sub-gradient vector, ẑ P B}β̂}1

such that

1

m
XTXpβ̂ ´ β˚q ´ 1

m
XTw ` λmẑ “ 0. (2)

ii. Suppose that ẑ satisfies the strict dual feasibility condition |ẑj | ă 1 for all j R Spβ̂q, where
Sp.q denotes the support function. Then, show that any optimal solution β̃ to the LASSO

satisfies β̃j “ 0 for all j R Spβ̂q.
(Hint: Use the KKT conditions for optimality of a convex program. Also use the definition
of sub-differential of ℓ1-norm function.)

iii. Under the conditions of part(b), if the k ˆ k matrix XT

Spβ̂q
X

Spβ̂q is invertible, then β̂ is the

unique optimal solution of (1).

11. (Implications of strong convexity on unconstrained convex optimization problems.) Consider an un-
constrained convex optimization problem:

min
x

fpxq (3)

where f : Rn Ñ R is a convex function. We further assume that fpxq is strongly convex, i.e., D m ą 0
such that ∇2fpxq ľ mI. (Here, A ľ B implies A ´ B is positive semi-definite.) Prove

(a) For any x,y in dompfq we have:

fpyq ě fpxq ` ∇fpxqT py ´ xq ` m

2
}y ´ x}22. (4)

(b) Use the above inequality to show:

fpxq ´ fpx˚q ď 1

2m
}∇fpxq}22. (5)

where x˚ is the optimal solution.
(Hint: In the above equation, choose even a smaller RHS by using a value of y that minimizes
the RHS. Note that the RHS is quadratic in y with x fixed.)



(c) Further, prove that

}x ´ x˚}2 ď 2

m
}∇fpxq}2. (6)

(Hint: Use the first equation with y “ x˚ and then use Cauchy-Schwarz inequality.)

Note: this means that under strong convexity conditions, closeness of the objective function to the

optimal value implies the closeness of the solution vector to the optimal solution. For LASSO pro-

gram, in the under-determined setting, this leads us to impose restricted strong convexity and restricted

eigenvalue properties on the measurement matrix.

12. Consider the overdetermined LASSO, i.e., m ą n and also consider the case when we have orthonormal
X. Show that the solution for:

min
βPRn

"

1

2
}y ´ Xβ}22 ` λ}β}1

*

(7)

is given by:

βlasso
j “ signpβ̂LS

j qp|β̂LS
j | ´ λq` (8)

where β̂LS is the least squares solution for y “ Xβ.

13. Show that, for every signal y P R
n and every positive integer t, we have

}y ´ yt}2 ď 1

2
?
t
}y}1, (9)

where yt is the signal in R
n that is formed by restricting y to its t largest-magnitude entries.

(Hint: A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, “One sketch for all: Fast algorithms for
compressed sensing”, Proc. 39th ACM Symp. Theory of Computing, Jun. 2007.)

14. A signal x P R
N is said to be p-compressible with magnitude R if the sorted components of the signal

decay at the rate
|x|piq ď R ¨ i´1{p, for i “ 1, 2, 3, . . . (10)

When p “ 1, this implies }x}1 ď Rp1 ` logNq. When p « 0, this implies that x is very nearly sparse.
Show that compressible signals can be approximated by sparse signals as follows:

}x ´ xs}1 ď p

1 ´ p
Rs1´1{p

}x ´ xs}2 ď
c

p

2 ´ p
Rs1{2´1{p.

(Hint: Write each norm as a sum and then approximate the sum with an integral.)


