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E9 203: Homework - 6

Assigned on: 19 Apr. 2015, due 30 Apr. 2015; answer any 10 questions.

Topics

Subgaussian random variables

Concentration of measure

JL Lemma

LASSO, uniqueness

Strong convexity, implication to unconstrained convex optimization

Compressible signals

Notation: “Triple-bar” norms || - || denote (vector norm) induced matrix norms while “double-bar” norms
| - || denote vector norms (possibly, on matrices). For example, || Al|2 is the same as |A |22 we used in class.

Also,
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|Al2 or |A|F is the matrix Frobenius norm.

Problems

. Subgaussian moments. A random variable X is said to be subgaussian distributed if 3 a constant ¢ > 0

st. Vs > 0,E{esX} < ¢°’. Show that 3 a universal constant K s.t. if X is subgaussian, for every
qe Z+a

(E{X]")7 < K /eq.
Subgaussian moments — converse. Let X be a zero-mean random variable s.t. 3¢ > 0 satisfying

1

(E{X]"}) 7 < Veq
for every positive integer ¢q. Show that X is subgaussian, i.e., for any s > 0,

E{esX} < \/561/666652/2

Let Xy,..., X, be independent random variables, taking values from [0,1]. Let m = ES,,, where
Sp =37 | X;. Show that, for any ¢ > m,

P{S, >t} < (T)t <n_m>nt.

Hint. Use Chernoff’s bounding method.




. Use the previous result to show that
t
P{S, >t} < (—) el=m,

and for all € > 0,
P{S, = m(1 +€)} < e ™),

where h(u) = (1 4+ u)log(l + u) — u for u > 0. Finally,

P{S, <m(l—e)} <e ™2

. (J-L Lemma) Given ¢ > 0 and N € Zy. Let m € Z4 be such that m > O (bf—ZN) For every set, P of
N points in R™, there exists a mapping, 1 : R®™ — R", such that V u,v € P:

(1= )lu—vf3 < [ (u) = (©)[5 < 1+ e)|u—v|3

. (Completing a small step in the proof that Gaussian matrices satisfying RIP) Show that

7‘11+5/X/§<«/1+5

1-6/14
and
A1 =0/V2—=6V1+6/14=1-0
for § > 0.

. (Also a small step in the proof that Gaussian matrices satisfy RIP) Let A € R™*" with A;; ~ N'(0, L)
and i.i.d. Show that

me?
Pr{|Ax[3 < (1 - 9)|x[3} < exp (_ﬁ>

. (Concentration of measure inequality for strictly sub-Gaussian matrices) Recall that we say X is
ssub(c?) if X is zero mean, E(X?) = ¢?, and E {e*¥} < e’s*/2y s € R. Suppose A € R™*" with Aj;
being i.i.d. and ssub(#). Let Y = Ax for some x € R". Then, for any € > 0, show that

E{IYIT} = Ix[3

me?
Pr{||Y[3 ~ |xI3] > e|x|3} < 2exp ( i ) |

: 2
with k* = Wg(m.

. First, using results we showed in class, establish the following theorem:

Theorem 1 Let s be such that dss + 3045 < 2. Then, for any xo with Ty = supp(xop), and |To| < s,
and any perturbation e with |e| < e, the solution x* to

P :min x|y s. . [Ax—y[2<e€
X

obeys
[x* —x0[2 < Cse

where the constant Cs can be chosen such that it depends only on d4s.



(a) Extend the above theorem to the case where e is Gaussian distributed with mean 0 and variance

o2. You will now have a probability of failure: the procedure will fail whenever |e| > ¢. Comment

on the trade-off between the number of measurements m and the noise variance 2.

(b) Extend the theorem to the case where A has i.i.d. Gaussian entries with mean 0 and variance
1/m. Again, you will now have a probability of failure associated with the procedure.
(c) What if A has i.i.d. N(0,1/m) entries and e is i.i.d. N(0,0?) distributed? Comment on your

result.

(d) (Bonus question) Find the above results in the literature.

10. Consider the observation model: y = X* + w, where where X € R™*" y € R™ and m <« n. w e R™
is the zero mean additive observation noise. Consider the unconstrained form of LASSO estimator:

: 1 2
win {5ty = X913 + A3l } 1)

(a) Show that there exists at least one solution of (1). Why is this solution not unique?
(Hint: Instead of unconstrained form, use the equivalent constrained forms.)

(b) (Uniqueness of LASSO solution.) Prove the following:

i. A vector # € R is an optimal solution for (1) iff there exists a sub-gradient vector, z € ] 8],
such that

iXTX(B — %) — L xTw 4 Amz = 0. (2)
m m

ii. Suppose that z satisfies the strict dual feasibility condition |z;| < 1 for all j ¢ S(3), where
S(.) denotes the support function. Then, show that any optimal solution 5 to the LASSO
satisfies §; = 0 for all j ¢ S(5).

(Hint: Use the KKT conditions for optimality of a convex program. Also use the definition
of sub-differential of ¢;-norm function.)

iii. Under the conditions of part(b), if the k x k matrix Xg(B)XS(B) is invertible, then f is the
unique optimal solution of (1).

11. (Implications of strong convexity on unconstrained convex optimization problems.) Consider an un-
constrained convex optimization problem:

m}in f(x) (3)

where f: R™ — R is a convex function. We further assume that f(x) is strongly convex, i.e., 3 m >0
such that V2f(x) > mI. (Here, A > B implies A — B is positive semi-definite.) Prove

(a) For any x,y in dom(f) we have:
m
Fy) = f) + V) (v = %) + Ty =[5 (4)
(b) Use the above inequality to show:
1
760 = f6*) < 5197013 5)
where x* is the optimal solution.

(Hint: In the above equation, choose even a smaller RHS by using a value of y that minimizes
the RHS. Note that the RHS is quadratic in y with x fixed.)



12.

13.

14.

(c) Further, prove that

= x*l2 < [Vl (6)

(Hint: Use the first equation with y = x* and then use Cauchy-Schwarz inequality.)

Note: this means that under strong convexity conditions, closeness of the objective function to the
optimal value implies the closeness of the solution vector to the optimal solution. For LASSO pro-
gram, in the under-determined setting, this leads us to impose restricted strong convexity and restricted
eigenvalue properties on the measurement matriz.

Consider the overdetermined LLASSO, i.e., m > n and also consider the case when we have orthonormal
X. Show that the solution for:

. 1
i {31y — X613 + ALl | )
is given by:
9 = sign(A9) (1355~ X)* ©

where BLS is the least squares solution for y = Xg.

Show that, for every signal y € R™ and every positive integer ¢, we have

1
ly = yill2 < Q—ﬁl\ylh, 9)

where y; is the signal in R™ that is formed by restricting y to its ¢ largest-magnitude entries.
(Hint: A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, “One sketch for all: Fast algorithms for
compressed sensing”, Proc. 39th ACM Symp. Theory of Computing, Jun. 2007.)

A signal x € RY is said to be p-compressible with magnitude R if the sorted components of the signal
decay at the rate
|z < R-i" VP fori=1,2,3,... (10)

When p = 1, this implies |x[;1 < R(1 +log N). When p a~ 0, this implies that x is very nearly sparse.

Show that compressible signals can be approximated by sparse signals as follows:

Ix —x,1 < —L—Rs""P
1-p

Ix - xs]2 < QLRslﬂfl/P_
-p

(Hint: Write each norm as a sum and then approximate the sum with an integral.)



