E9 203: Homework - 2

Assigned on: 31 Jan. 2020

Topic

• Experiments in sparse signal recovery¹

Problems

Consider the tone signal example we discussed in class:

$$y(t) = \sum_{i=1}^{k} a_k \sin(2\pi f_k t + \theta_k), \quad t \in [0, 1].$$

Sample the signal at 512 samples per second to get the samples $y[k] = y(kT_s), k = 0, 1, ..., 511$, where $T_s = 1/512s$. Let **y** denote a column vector containing the N = 512 samples.

Write a Matlab script that lets you pick m, the number of measurements, k, the number of sinusoidal components, $f_i, i = 1, 2, ..., k$, and $\theta_i, i = 1, 2, ..., k$. Sample the sum of the sinusoids as mentioned above. Apply a Hanning window on the samples, i.e., multiply each of the 512 samples by a length-512 Hanning window. Multiply the windowed samples with a random measurement matrix $B \in \mathbb{R}^{m \times N}$, to get the $m \times 1$ observation vector. Use the ℓ_1 magic (or any other) program to "recover" the frequency-domain sparse vector \mathbf{Y} , and compute the corresponding time-domain signal \mathbf{y} from the recovered frequency domain signal.

- 1. For k = 1, generate plots showing the original signal and the recovered signal, in both time and frequency domain, for different cases:
 - (a) $m = 10, f = 100, a = 1, \theta = 0.$
 - (b) $m = 40, f = 100, a = 1, \theta = 0.$
 - (c) $m = 40, f = 300, a = 1, \theta = 0.$

Important: Comment on your results.

- 2. What is the role of the Hanning window in the problem?
- 3. Vary k = 1, 2, ... Choose different frequencies, phases and all amplitudes = 1. Explicitly report the values of frequencies and phases you choose. For each k, consider different values of m, run the recovery algorithm 100 times. Call a recovery *successful* if the mean square error between the original signal and the recovered signal is below a threshold, say 10^{-3} . Find the smallest m at which you get a successful recovery at least 90 times. Plot $100 \times k/N$ (the percentage sparsity) on the y-axis and the $100 \times m/N$ (the percentage number of measurements) on the x-axis. Repeat for successful recovery at least 40 times, 60 times, 80 times, and all 100 times, and plot the result on the same graph. This is called a *phase transition diagram*. Can you guess why?

 $^{^1\}mathrm{This}$ homework is based on: Shlomo Engelberg, "Compressive Sensing", IEEE Instrumentation and Measurement Magazine, Feb. 2012.

- 4. What happens to the phase transition diagram as the different frequencies that constitute the tones move closer to one-another?
- 5. Repeat the above part with highly scaled amplitudes (highly unequal to each other). Explicitly report how you chose the amplitudes. What do you observe?
- 6. Plot the run time (sec) as a function of N for different values of k, with m chosen such that the recovery is successful all 100 times.