E9 203: Homework - 3

Assigned on: 26 Feb. 2020, due 09 Mar. 2020

1 Topics

- Uniqueness and uncertainty
- Basic algorithms
- Reweighted algorithms
- Sparse Bayesian learning

2 Problems

1. Given $A \in \mathbb{C}^{m \times N}$ and $\tau>0$, show that the solution of

$$
\min _{\mathbf{z} \in \mathbb{C}^{N}}\|A \mathbf{z}-\mathbf{y}\|_{2}^{2}+\tau\|\mathbf{z}\|_{2}^{2}
$$

is given by

$$
z^{\#}=\left(A^{H} A+\tau \mathbf{I}\right)^{-1} A^{H} \mathbf{y}
$$

2. Given $\mathbf{x} \in \mathbb{R}_{+}^{N}$ with $\mathbf{x}_{1} \geq \mathbf{x}_{2} \geq \cdots \geq \mathbf{x}_{N} \geq 0$, show that for each $1 \leq s \leq N$ and $r>1$

$$
f(\mathbf{x}) \triangleq \sum_{j=s}^{N} \mathbf{x}_{j}^{r}
$$

is a convex function of \mathbf{x}.
3. (Determinant of a Vandermonde Matrix) The Vandermonde matrix associated with $x_{0}, x_{1}, \ldots, x_{N} \in \mathbb{C}$ is defined as

$$
\mathbf{V} \triangleq\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{N} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{N} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & x_{N} & x_{N}^{2} & \cdots & x_{N}^{N}
\end{array}\right]
$$

Show that the determinant of \mathbf{V} equals

$$
\operatorname{det} \mathbf{V}=\prod_{0 \leq k<l \leq N}\left(x_{l}-x_{k}\right)
$$

4. (Foucart and Rauhut, Thm. 2.13) Given $A \in \mathbb{C}^{m \times N}$, the following statements are equivalent:
(a) Every s-sparse vector $\mathbf{x} \in \mathbb{C}^{N}$ is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$, that is, if $A \mathbf{x}=A \mathbf{z}$ and both \mathbf{x} and \mathbf{z} are s-sparse, then $\mathbf{x}=\mathbf{z}$.
(b) The null space $\mathcal{N}(A)$ does not contain any $2 s$-sparse vector other than the zero vector, that is,

$$
\mathcal{N}(A) \cup\left\{\mathbf{z} \in \mathcal{C}^{N}:\|\mathbf{z}\|_{0} \leq 2 s\right\}=\{\mathbf{0}\}
$$

(c) For every $S \in[N]$ with $\operatorname{card}(S) \leq 2 s$, the submatrix A_{S} is injective as a map from \mathbb{C}^{S} to \mathbb{C}^{m}.
(d) Every set of $2 s$ columns of A is linearly independent.
5. (Foucart and Rauhut, Ex. 3.1) Let $q>1$ and let $A \in \mathbb{C}^{m \times N}$ with $m<N$. Prove that there exists a 1 -sparse vector that is not a minimizer of

$$
\min _{\mathbf{z} \in \mathbb{C}^{N}}\|\mathbf{z}\|_{q} \text { subject to } A \mathbf{z}=\mathbf{y}
$$

6. (Foucart and Rauhut, Ex. 3.2) Given $A=\left[\begin{array}{lll}1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right]$, show that the vector $\mathbf{x}=\left[1, e^{i 2 \pi / 3}, e^{i 4 \pi / 3}\right]^{T}$ is the unique solution to

$$
\min _{\mathbf{z} \in \mathbb{C}^{N}}\|\mathbf{z}\|_{1} \text { subject to } A z=A \mathbf{x}
$$

This shows that, in the complex setting, a unique ℓ_{1} minimizer is not necessarily m-sparse, where m is the number or rows of A.

Notation for the remaining problems: $\mathbf{x} \in \mathbb{R}^{N}, \mathbf{y} \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times N}$. x_{i} is the $i^{\text {th }}$ entry of a vector \mathbf{x}.
7. Suppose $g(x)$ is a monotonically increasing, strictly concave function of $x \in \mathbb{R}$ for $x \geq 0$, and that $g(0)$ is bounded. Let $\mathbf{x}=\mathbf{y}-\mathbf{z}$ for some $\mathbf{y} \geq 0, \mathbf{z} \geq 0$, both in \mathbb{R}^{N}. Show that there exists a one-to-one mapping between the local minima of the following two problems, and that the objective functions coincide at the corresponding local minima:

$$
\min _{\mathbf{x}} \sum_{i=1}^{N} g\left(\left|x_{i}\right|\right) \text { s.t. } \mathbf{y}=A \mathbf{x}
$$

and

$$
\min _{\mathbf{y}, \mathbf{z}} \sum_{i=1}^{N}\left(g\left(\left|y_{i}\right|\right)+g\left(\left|z_{i}\right|\right)-g(0)\right) \text { s.t. } \mathbf{y}=[A-A]\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{z}
\end{array}\right], \mathbf{y} \geq 0, \mathbf{z} \geq 0
$$

8. Show that

$$
\lim _{p \rightarrow 0} \frac{1}{p} \sum_{i=1}^{N}\left(\left|x_{i}\right|^{p}-1\right)=\sum_{i=1}^{N} \log x_{i}
$$

9. Show that

$$
\log \left(\left|x_{i}\right|+\epsilon\right) \leq \frac{x_{i}^{2}}{\gamma}+\log \left(\frac{\left(\epsilon^{2}+2 \gamma_{i}\right)^{\frac{1}{2}}+\epsilon}{2}\right)-\frac{\left[\left(\epsilon^{2}+2 \gamma_{i}\right)^{\frac{1}{2}}-\epsilon\right]^{2}}{4 \gamma_{i}}
$$

for all $\epsilon, \gamma_{i}>0$, with equality iff $\gamma_{i}=x_{i}^{2}+\epsilon\left|x_{i}\right|$. Use this to derive an iteratively reweighted ℓ_{2} algorithm for recovery of \mathbf{x} from $\mathbf{y}=A \mathbf{x}+\mathbf{n}$.
10. If $\mathbf{y}=A \mathbf{x}+\mathbf{n}$, where \mathbf{n} is Gaussian with zero mean and covariance matrix $\Sigma_{n} \in \mathbb{R}^{m \times m}, \mathbf{x}$ is Gaussian with zero mean and covariance Γ, derive the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$. What if Σ_{n} is rank deficient?
11. Show that

$$
g_{\mathrm{SBL}}(\mathbf{x}) \triangleq \min _{\gamma \geq 0} \mathbf{x}^{T} \Gamma^{-1} \mathbf{x}+\log \operatorname{det}\left(\sigma^{2} \mathbf{I}+A \Gamma A^{T}\right)
$$

(where $\Gamma=\operatorname{diag}(\gamma)$) is a nondecreasing, concave function of $|\mathbf{x}|=\left[\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N}\right|\right]^{T}$.

