
E2 212: Matrix Theory (Fall 2010)
Solutions to Test - 1

1. Let X = [x1,x2, . . . ,xn] ∈ Rm×n be a tall matrix. Let S , R(X), and let P be an
orthogonal projector onto S.

(a) If X is full rank, show that P can be written as P = X(XTX)−1XT . What is
‖P‖2? (4 points)

(b) Suitably modify P when X is not full rank. Hint: Let Q be an orthonormal basis
for R(X). (4 points)

(c) Let X be full rank and let B be a square matrix such that BTB = XTX. What
special property does the matrix XB−1 possess? Using this, what can you say
about the matrix P = X(XTX)−1XT ? (4 points)

(d) Show that the rank of P is equal to its trace. (4 points)

(e) What are the singular values of P? (4 points)

Solution

(a) Recall that by definition, a matrix P ∈ Rm×m is a projector onto S if (a)
R(P ) = S, (b) P 2 = P and (c) P T = P . Since X has full column rank,
(XTX)−1XTy spans Rm, and hence, R(P ) = S. The other two properties are
trivial to verify. Also, ‖P‖2 = 1 because its eigenvalues are all 1 or 0, so the
largest eigenvalue is 1.

(b) It is simple to verify that QQT is the required projection. It satisfies the three
properties required. Alternatively, if Xsub is the matrix constructed from the
largest possible subset of linearly independent columns of X (think Gram-Schmidt
procedure), then the matrix P = Xsub(X

T
subXsub)

−1XT
sub is the required projector.

(c) (XB−1)TXB−1 = I, hence XB−1 contains orthonormal columns. Moreover,
its columns span X since B−1 is full rank. By (b), this implies that P =



XB−1(XB−1)T = X(XTX)−1XT is a projector onto R(X).

(d) There are multiple ways of solving this. One way is to write P = QQT where Q
has orthonormal columns. Then, rank(P ) = the number of linearly independent
columns = trace(P ), since the latter equals trace(QTQ) = trace(Ir), where r is
the rank (and the number of columns) of Q.

(e) The singular values are 1 and 0. (They are the same as the eigenvalues since
P 2 = P .)

2. Let A and B be n× n matrices that commute: AB = BA. If λ is an eigenvalue of A,
let Vλ be the subspace of all eigenvectors corresponding to this eigenvalue.

(a) Prove that the eigenspace Vλ is an invariant subspace of the matrix B, i.e., show
that ∀v ∈ Vλ, Bv ∈ Vλ. (4 points)

(b) Show that ∃v ∈ Vλ, such that v is an eigenvector of B. (12 points)

Solution

(a) Let v be an eigenvector of A, i.e., BAv = ABv = λBv, where λ is an eigenvalue
of A. Therefore, Bv is an eigenvector of A. Thus, ∀v ∈ Vλ, Bv ∈ Vλ.

(b) See “Matrix Analysis” by Horn and Johnson, page no. 51, lemma 1.3.17.

3. Let A be a n × n matrix and z be a vector with the property that Ak−1z 6= 0 but
Akz = 0. Show that z, Az, . . . , Ak−1z are linearly independent. (8 points)

Solution
We need to prove that α1z + α2Az2 + . . . + αkA

k−1z = 0 ⇒ αi = 0, i = 1, . . . , k.
Consider, α1z + α2Az2 + . . .+ αkA

k−1z = 0. Applying Ak−1 on it, we get

Ak−1
[
α1z + α2Az + . . .+ αk−1A

k−2z
]

= 0⇒ α1A
k−1z = 0⇒ α1 = 0.

Setting α1 = 0 and multiplying the equation by Ak−2, we can show that α2 = 0. Con-
tinuing this way, we get, α1 = α2 = . . . αk−1 = 0.

4. There are no square matrices A, B with the property that AB − BA = I. Prove or
give counterexample. (8 points)

Solution
Let us assume such matrices of size N ×N exist. Taking trace on both sides and using



the fact Trace(AB) = Trace(BA), we get, 0 on the right hand side and N on the left
hand side, which is contradiction.

5. What is wrong with this argument for the proof of the Cayley-Hamilton theorem?
“Since pA(t) = det(tI − A), pA(A) = det(AI − A) = 0. Therefore, pA(A) = 0”. (4
points)

Solution
One has to write out the polynomial and then substitute for t.

6. Consider the Householder reflection

Hx = I − 2
xxT

xTx
,

x ∈ Rn.

(a) Show that Hxx = −x and if y ∈ Rn×1 is such that yTx = xTy = 0, then Hxy = y.
(4 points)

(b) Show that Hx is symmetric and orthogonal. What is the trace of Hx? (4 points)

(c) Given linearly independent vectors y, z ∈ Rn×1, find x as a linear combination of
y and z such that Hxy ∈ span(z). (8 points)

Solution

(a)

Hxx = x− 2
x(xTx)

xTx
= −x

(b)

HT
x = (I − 2

xxT

xTx
)T = I − 2

(xxT )T

xTx

= I − 2
xxT

xTx
= Hx

HT
xHx = (I − 2

xxT

xTx
)T (I − 2

xxT

xTx
)

= I − 2
xxT

xTx
− 2

xxT

xTx
+ 4

(xxT )(xxT )

(xTx)2

= I

Also, tr(Hx) = n−2 is easy to show since the eigenvalues are +1 (with multiplicity
n−1) and−1 (with multiplicity 1), and the trace equals the sum of the eigenvalues.



(c) Let x = ay + bz

Hxy = y − 2
(ay + bz)(ay + bz)T

(ay + bz)T (ay + bz)
y

= y − 2
a2(yTy)y + ab(zTy)z + ab(zTy)y + b2(zTy)z

a2yTy + 2abyTz + b2zTz

=

(
1− 2

a2(yTy) + ab(zTy)

a2yTy + 2abyTz + b2zTz

)
y − 2

(
ab(zTy)z + b2(zTy)

a2yTy + 2abyTz + b2zT

)
z

For this vector to lie in span(z), the coefficient of y must be zero. Thus we get,

−a2yTy + b2zTz = 0

One of the possible solution is a = 1 and b = ‖y‖2
‖z‖2 .

7. Let A ∈ Rm×n with m ≥ n, y ∈ Rn, define

Ã =

[
A
yT

]
.

Show that σn(Ã) ≥ σn(A) and σ1(Ã) ≤
√
‖A‖22 + ‖y‖22. (12 points)

Solution
First, note that ÃT Ã = ATA + yyT . Also, σ2

n(A) = λmin(ATA), σ2
n(Ã) = λmin(ÃT Ã).

Now,

λmin(ÃT Ã) = min
‖x‖=1

xT ÃT Ãx

= min
‖x‖=1

xTATAx +
∣∣xTy∣∣2

≥ min
‖x‖=1

xTATAx = λmin(ATA),

where the last inequality is because the term
∣∣xTy∣∣ is always non-negative. Thus,

σn(Ã) ≥ σn(A). To show the second part,

σ2
1(Ã) = max

‖x‖=1

[
xTATAx +

∣∣xTy∣∣2]
≤

[
max
‖x‖=1

xTATAx

]
+

[
max
‖x‖=1

∣∣xTy∣∣2] = ‖A‖22 + ‖y‖22,

Thus, σ2
1(Ã) ≤ ‖A‖22 + ‖y‖22, which proves the required result.

8. (a) Show that any square matrix which commutes with a diagonal matrix, whose all
diagonal entries are different, is diagonal. (4 points)

(b) Two matrices are called simultaneously diagonalizable, if they are diagonalized
by the same matrix. Show that simultaneously diagonalizable matrices commute.
(4 points)



(c) If two matrices commute and one of them is similar to a diagonal matrix with all
the diagonal entries different, show that they are simultaneously diagonalizable.
(8 points)

Solution

(a) Let A = [aij] be a square matrix which commutes with diagonal matrix D =
diag(d1, . . . , dn), i.e, AD = DA. Consider (i,j)th element of left hand side and
right hand side.

n∑
l=1

aildlj =
n∑
l=1

dilalj

=⇒ aijdjj = diiaij

Since all the diagonal entries of D are different, it follows that aij = 0 for i 6= j.
Hence A is a diagonal matrix.

(b) Let A and B be two simultaneously diagonalizable matrices. Let SAS−1 = D1

and SBS−1 = D2, D1 and D2 diagonal matrices. Since diagonal matrices always
commute,

AB = S−1D1SS
−1D2S = S−1D1D2S

= S−1D2D1S = S−1D2SS
−1D1S

= BA

(c) Let AB = BA and SAS−1 = D1, D1 a diagonal matrix.

AB = BA

=⇒ S−1D1SB = BS−1D1S

=⇒ D1SBS
−1 = SBS−1D1

SBS−1 commutes with a diagonal matrix with all diagonal entries different. Thus
SBS−1 is also diagonal.


