E2 212 Test 2 Solutions

1. (6 points) Let A and B be real symmetric matrices with A positive definite. Let

$$
\rho_{A, B}(\mathbf{v})=\frac{\mathbf{v}^{H} B \mathbf{v}}{\mathbf{v}^{H} A \mathbf{v}}
$$

Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the roots of the polynomial $\operatorname{det}(B-\lambda A)$. Show that $\lambda_{1} \leq \rho_{A, B}(\mathbf{v}) \leq \lambda_{n}$ for all $\mathbf{v} \neq 0$.

Solution: Since A is positive definite, we know that the roots of $\operatorname{det}(B-\lambda A)=0$ correspond to the eigenvalues of the matrix $A^{-1} B$, because $\operatorname{det}(B-\lambda A)=\operatorname{det}(A) \operatorname{det}\left(A^{-1} B-\right.$ $\lambda I)$. Note that, using the Cholesky factorization, A can be written as $A=D^{H} D$. Define $C \triangleq D^{-H} B D^{-1}$ and $\mathbf{y} \triangleq D \mathbf{v}$. Then,

$$
\rho_{A, B}(\mathbf{v})=\frac{\mathbf{v}^{H} D^{H} D^{-H} B D^{-1} D \mathbf{v}}{\mathbf{v}^{H} D^{H} D \mathbf{v}}=\frac{\mathbf{y}^{H} C \mathbf{y}}{\mathbf{y}^{H} \mathbf{y}} \leq \max _{\mathbf{y}: \mathbf{y}^{H} \mathbf{y}=1} \mathbf{y}^{H} C \mathbf{y}=\lambda_{\max }(C) .
$$

Similarly,

$$
\rho_{A, B}(\mathbf{v})=\frac{\mathbf{y}^{H} C \mathbf{y}}{\mathbf{y}^{H} \mathbf{y}} \geq \min _{\mathbf{y}: \mathbf{y}^{H} \mathbf{y}=1} \mathbf{y}^{H} C \mathbf{y}=\lambda_{\min }(C)
$$

Note that the \mathbf{y} that maximizes/minimizes the right hand side is the eigenvector of C corresponding to its maximum/minimum eigenvalue. Moreover, the eigenvalues of C and the matrix $A^{-1} B$ are the same. This is because $C \mathbf{y}=\lambda \mathbf{y}$ implies $D^{-H} B D^{-1} \mathbf{y}=$ $D^{-H} B D^{-1} D \mathbf{v}=D^{-H} B \mathbf{v}=\lambda D \mathbf{v}$. Premultiplying by D^{-1} and recognizing that λ commutes with D^{-1} as it is a scalar, we get $D^{-1} D^{-H} B \mathbf{v}=A^{-1} B \mathbf{v}=\lambda D^{-1} D \mathbf{v}=\lambda \mathbf{v}$. Thus, $C \mathbf{y}=\lambda \mathbf{y}$ implies $A^{-1} B \mathbf{v}=\lambda \mathbf{v}$, i.e., there is a 1-1 correspondence between eigenvectors of C and $A^{-1} B$, and they have the same eigenvalues. Hence, the result follows.
2. (6 points) Suppose we partition $A \in \mathbf{R}^{n \times n}$ as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where $A_{11} \in \mathbf{R}^{r \times r}$ is non-singular. Then $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$ is called the Schur complement of A_{11} in A. Show that, after r steps of the Gaussian elimination algorithm without pivoting, A_{22} gets overwritten by S.

Solution: Since Gaussian elimination is linear transform, it can be expressed as a matrix operator. Multiply the matrix operators for the first r steps and let G_{r} denote the transformation matrix (after the first r steps). Then, the Gaussian elimination implies

$$
G_{r} A=A^{(r)}
$$

where $A^{(r)}$ is such that the top-left $r \times r$ block is upper triangular. When written in partitioned form,

$$
\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11}^{(r)} & A_{12}^{(r)} \\
0 & A_{22}^{(r)}
\end{array}\right]
$$

where $A_{11}^{(r)}$ is upper triangular. Equating the zero block on the right hand side above with the left hand side, we have

$$
G_{21} A_{11}+G_{22} A_{21}=0
$$

which implies

$$
G_{21}=-G_{22} A_{21} A_{11}^{-1}
$$

Now the Gaussian elimination process results in a lower triangular G matrix, and in particular, we have $G_{12}=0$ and $G_{22}=I$. Thus, we get,

$$
A_{22}^{(r)}=G_{21} A_{12}+G_{22} A_{22}=-A_{21} A_{11}^{-1} A_{12}+A_{22}
$$

3. (6 points) Suppose $\mathbf{x}=A^{-1} b$. Show that if $\mathbf{e}=\mathbf{x}-\hat{\mathbf{x}}$ (the error) and $\mathbf{r}=\mathbf{b}-A \hat{\mathbf{x}}$, then

$$
\frac{\|\mathbf{r}\|}{\|A\|} \leq\|\mathbf{e}\| \leq\left\|A^{-1}\right\|\|\mathbf{r}\| .
$$

Solution:

$$
\begin{aligned}
\|\mathbf{r}\| & =\|\mathbf{b}-A \hat{\mathbf{x}}\|=\|A \mathbf{x}-A \hat{\mathbf{x}}\|=\|A \mathbf{e}\| \\
& \leq\|A\|\|\mathbf{e}\| \\
\Rightarrow \frac{\|\mathbf{r}\|}{\|A\|} & \leq\|\mathbf{e}\| . \\
\|\mathbf{e}\| & =\|\mathbf{x}-\hat{\mathbf{x}}\|=\left\|A^{-1} \mathbf{b}-\hat{\mathbf{x}}\right\|=\left\|A^{-1} \mathbf{r}\right\| \\
& \leq\left\|A^{-1}\right\|\|\mathbf{r}\| \\
\Rightarrow\|\mathbf{e}\| & \leq\left\|A^{-1}\right\|\|\mathbf{r}\| .
\end{aligned}
$$

4. (7 points) Given,

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b}, A \in \mathbb{R}^{n \times n}, 0 \neq \mathbf{b} \in \mathbb{R}^{n} \\
(A+\Delta A) \mathbf{y} & =\mathbf{b}+\Delta \mathbf{b}, \Delta A \in \mathbb{R}^{n \times n}, \Delta \mathbf{b} \in \mathbb{R}^{n}
\end{aligned}
$$

with $\|\Delta A\| \leq \epsilon\|A\|$ and $\|\Delta \mathbf{b}\| \leq \epsilon\|\mathbf{b}\|$. If $\epsilon \kappa(A)=r<1$ then show that $A+\Delta A$ is non-singular and

$$
\frac{\|\mathbf{y}\|}{\|\mathbf{x}\|} \leq \frac{1+r}{1-r} .
$$

Hint: If $F \in \mathbb{R}^{n \times n}$ and $\|F\|<1$ then $I-F$ is non-singular and

$$
\left\|(I-F)^{-1}\right\| \leq \frac{1}{1-\|F\|}
$$

Solution: Since A is non singular, $(A+\Delta A)=A(I-F)$ where $F=-A^{-1} \Delta A$. And $\|F\|=\left\|A^{-1} \Delta A\right\| \leq\left\|A^{-1}\right\|\|\Delta A\| \leq \epsilon\left\|A^{-1}\right\|\|A\|=r<1$. Hence $A+\Delta A$ is non-singular. Also,

$$
\begin{aligned}
\mathbf{y} & =(A+\Delta A)^{-1}(\mathbf{b}+\Delta \mathbf{b}) \\
& =\left(A\left(I+A^{-1} \Delta A\right)\right)^{-1}(\mathbf{b}+\Delta \mathbf{b}) \\
& =\left(I+A^{-1} \Delta A\right)^{-1} A^{-1}(\mathbf{b}+\Delta \mathbf{b}) \\
& =\left(I+A^{-1} \Delta A\right)^{-1}\left(A^{-1} \mathbf{b}+A^{-1} \Delta \mathbf{b}\right) \\
& =\left(I+A^{-1} \Delta A\right)^{-1}\left(\mathbf{x}+A^{-1} \Delta \mathbf{b}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|\mathbf{y}\| & \left.\leq \|\left(I+A^{-1} \Delta A\right)^{-1}\right)\left\|\left\|\left(\mathbf{x}+A^{-1} \Delta \mathbf{b}\right)\right\|\right. \\
& \leq \frac{1}{1-r}\left(\|\mathbf{x}\|+\left\|A^{-1}\right\|\|\Delta \mathbf{b}\|\right) \\
& \leq \frac{1}{1-r}\left(\|\mathbf{x}\|+\epsilon\left\|A^{-1}\right\|\|\mathbf{b}\|\right)
\end{aligned}
$$

Since $\|\mathbf{b}\|=\|A \mathbf{x}\| \leq\|A\|\|\mathbf{x}\|$

$$
\begin{aligned}
\|\mathbf{y}\| & \leq \frac{1}{1-r}\left(\|\mathbf{x}\|+\epsilon\left\|A^{-1}\right\|\|A\|\|\mathbf{x}\|\right) \\
& =\frac{1}{1-r}(\|\mathbf{x}\|+r\|\mathbf{x}\|)=\left(\frac{1+r}{1-r}\right)\|x\|
\end{aligned}
$$

Hence the result follows.

