E2-212 Matrix Theory: Final Exam

05 Dec. 2013

Rules

1. Please write your name and roll number on the first page of your answer book.
2. This exam counts for 50% of your final grade.
3. It is a closed book exam. There is no need for a calculator as the numerical calculations, if any, will be simple. Please leave your cell-phones turned off and in your bag.
4. Please indicate your final answer clearly (for example, by drawing a box around it) and provide justifications. Avoid mixing up answers to different questions, making it hard to evaluate.
5. The points assigned to a problem does not necessarily indicate its difficulty level. Generally, more "basic" questions carry more points.
6. Code of conduct: Cheating is, needless to say, strictly forbidden and will be taken extremely seriously, so don't even think about it. I reserve the right to immediately terminate your exam at any point in time if I suspect you of cheating. So, it is your responsibility to conduct yourself in a manner that is completely above board and beyond suspicion.

Problems

1. (4 points)(Norms) For $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $z \in \mathbb{C}$, the matrix $\mathbf{R}(z) \triangleq(z \mathbf{I}-\mathbf{A})^{-1}$ is called the resolvant of the matrix \mathbf{A}; it is used in spectral estimation. Prove that, if $|z|>\|\mid\| \mathbf{A} \|$ for any induced matrix norm $\|\|\cdot\| \mid$, then

$$
\|\mathbf{R}(z)\| \leqslant \frac{1}{|z|-\|\mathbf{A}\|}
$$

2. (Congruence)
(a) (3 points) Show that any Hermitian symmetric matrix \mathbf{A} is congruent to a real diagonal matrix.
(b) (3 points) Recall that a matrix \mathbf{A} is said to be positive definite if $\mathbf{x}^{H} \mathbf{A x}>0$ for all vectors $\mathbf{x} \neq \mathbf{0}$. If \mathbf{A} is a real symmetric positive definite matrix, show the there exists a real symmetric positive definite matrix \mathbf{B} such that $\mathbf{B}^{2}=\mathbf{A}$.
(c) (2 points) (Polar decomposition) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, show that the symmetric matrix $\mathbf{A} \mathbf{A}^{T}$ is positive definite. Let \mathbf{B} be a positive definite square root of $\mathbf{A} \mathbf{A}^{T}$ as in part (b). Show that $\mathbf{T} \triangleq \mathbf{B}^{-1} \mathbf{A}$ is orthonormal, and hence that $\mathbf{A}=\mathbf{B T}$, where \mathbf{T} is orthonormal and \mathbf{B} is positive definite.
3. (Generalized Eigenvalues)
(a) (2 points) Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$. Let \mathbf{A} be non-singular. Show that the λ satisfying $\mathbf{B x}=\lambda \mathbf{A x}$ are the same as the eigenvalues of $\mathbf{A}^{-1} \mathbf{B}$.
(b) (3 points) Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be Hermitian. Let \mathbf{A} be positive definite. Let

$$
\rho_{\mathbf{A}, \mathbf{B}}(\mathbf{x})=\frac{\mathbf{x}^{H} \mathbf{B} \mathbf{x}}{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}
$$

Let $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$ be the roots of the polynomial $\operatorname{det}(\mathbf{B}-\lambda \mathbf{A})$. Show that $\lambda_{1} \leqslant \rho_{\mathbf{A}, \mathbf{B}}(\mathbf{x}) \leqslant \lambda_{n}$ for all $\mathrm{x} \neq 0$.
4. (3 points) For $\mathbf{A} \in \mathbb{C}^{n \times n}$, prove that $\mathbf{x}^{H} \mathbf{A x}=0$ for all $\mathbf{x} \in \mathbb{C}^{n \times 1}$ implies $\mathbf{A}=0$. Does $\mathbf{x}^{T} \mathbf{A x}=0$ for all $\mathbf{x} \in \mathbb{R}^{n \times 1}$ imply $\mathbf{A}=0$? Why/why not?
5. Consider the matrix

$$
\mathbf{A}_{\epsilon}=\left[\begin{array}{ll}
\frac{1}{1+\epsilon} & \frac{1}{1+\epsilon} \\
\frac{\epsilon^{2}}{1+\epsilon} & \frac{1}{1+\epsilon}
\end{array}\right], \quad \epsilon>0
$$

(a) (2 points) Show that $\lambda_{2}=1$ is a simple eigenvalue of \mathbf{A}_{ϵ}, that $\rho\left(\mathbf{A}_{\epsilon}\right)=\lambda_{2}=1$, and $\left|\lambda_{1}\right|<1$.
(b) (2 points) Show that

$$
\mathbf{x}=\frac{1}{1+\epsilon}\left[\begin{array}{l}
1 \\
\epsilon
\end{array}\right] \text { and } \mathbf{y}=\frac{1+\epsilon}{2 \epsilon}\left[\begin{array}{l}
\epsilon \\
1
\end{array}\right]
$$

are eigenvectors of \mathbf{A}_{ϵ} and $\mathbf{A}_{\epsilon}^{T}$, respectively, corresponding to the eigenvalue $\lambda=1$.
(c) (3 points) Calculate $\mathbf{A}_{\epsilon}^{m}$ explicitly, $m=1,2, \ldots$.
(d) (3 points) Show that

$$
\lim _{m \rightarrow \infty} \mathbf{A}_{\epsilon}^{m}=\frac{1}{2}\left[\begin{array}{cc}
1 & \epsilon^{-1} \\
\epsilon & 1
\end{array}\right]
$$

(e) (2 points) Calculate $\mathbf{x y}^{T}$ and comment.
(f) (2 points) What happens if $\epsilon \rightarrow 0$?
6. (6 points) (Non-negative matrices) Establish the Collatz-Wielandt formula that says that the Perron root (spectral radius) for a $\mathbf{A}>0$ is given by $r=\min _{\mathbf{x} \in \mathcal{P}} g(\mathbf{x})$, where

$$
g(\mathbf{x})=\max _{1 \leqslant i \leqslant n} \frac{[\mathbf{A} \mathbf{x}]_{i}}{x_{i}} \quad \text { and } \quad \mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x}>0\right\}
$$

7. (a) (6 points) Solve the following optimization problem:

$$
\arg \min _{\mathbf{x} \in \mathbb{R}}\|\mathbf{A x}-\mathbf{b}\|_{p}
$$

where $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T} ; \mathbf{b}=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{T}$, with real-valued $b_{1} \geqslant b_{2} \geqslant b_{3} \geqslant 0$, for $p=1,2$ and ∞.
(b) (4 points) Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, with $m \geqslant n$ and $\operatorname{Rank}(\mathbf{A})=n$, and given $\mathbf{b} \in \mathbb{R}^{m}$, solve

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A x}-\mathbf{b}\|_{2} .
$$

Does your solution require \mathbf{A} to be full rank? Why/why not?

