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Multiple Measurements

Multiple Signal Realizations

ijAin+Wj, i={1,2,..,L} (1)

where,
B A cCYN viwithM<N

m w2 CN(0,021) Vi
mY=AX+W
L
p(YIX,0%) = [ [ CN(yi; Ax), o3lu).

1=1

m Signal design: x; < CA/(0, X)
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Summary

m Decoupling property: Covariance Estimation and Signal Recovery

m Advantage in exploiting correlation

m Sample Covariance: Samples of O(N) even with N measurements

m Exploit structure in Covariance matrix (Eg. Masked Sample covariance)

x(s) MMV Algorithm ﬁ(s)

X s
(@)

Sparse Covariance P Plug-in =~
x(s) L’{ Estimation P Tn MMSE P h(s)
T
Xims
(b) 1

Figure. (a) Generic MMV algorithm, (b) Decomposition of MMV into Covariance Estimation and
plug-in MMSE estimator

"Haghighatshoar et al, 2019
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Prior models

Generative model for x (Structure of
) ||

m No spatial correlation
m Diagonal covariance matrix

m Few non-zero diagonals: Sparse

Figure. Diagonal Covariance

m Spatial correlation (Intra-vector
correlation)

m Non-diagonal covariance matrix

m Toeplitz, Compound symmetry,
Autoregressive etc

® K x K non-zero sub matrix:
Sparse
m Block sparse structure

Figure. Covariance of sparse signals with
spatial correlation
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Correlation matrices

Correlation vs Covariance matrix
m Diagonal entries of correlation matrices are equal to 1

m Non-diagonal entries specify correlation coefficient
m Does not consider the effect of different variances of each index

Models for Correlation matrix U
m Compound Symmetry or Uniform correlation model
. 1 ifi=j
= Uj= { p i)
m Diversity reception system for uniformly correlated Rayleigh fading channel 2

m Auto-regressive or Exponential correlation model
1 ifi=j
" Uf/:{ pli=il if i # ]
m mmWave Massive MIMO channel with correlated Rayleigh fading 3

2Ranjan K Mallick, 2007
3Samimi, et.al., 2016
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Building covariance matrices

Covariance model
m p(x|v,U) = CN(X; 0, E’Y)

m Hyper-parameter for variance v = [vi, ~2, ... yn}Twith
I' = diag(~)

= Pxy = Cov(x,y)

oxoy

B (25); =7V
1 1
— 3., =T?Ur:?

m ) as hyper-parameter for noise variance o2
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Bayesian inference
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Cost function

m Estimation of hyper-parameters 0 = {~, A}

m Marginalized pdf: p(y|0) = [, p(YIX, A\)p(x|~, U) pdx

1 1 1 _
= p(y|0) = WH exp (—Enyy 1)’)
y

=\l +Ax A"

—1
1-A[Ax=ZT+AHA]AH
where 3, — | AL tA"Al"

m Evidence maximization of §: Maximizing p(y|0)

m Alternatively, minimizing

1 1 _
L(%,U, ) = —log(p(y|0)) = 5 log(IZy]) + 3y 'y
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Expectation-Maximization

m Special case of Majorization Minimization (MM) algorithms
m Local maximum likelihood parameters

m Set of incomplete observed data (y) assumed to be generated from a
specific model
Algorithm
El Consider set of starting parameters.
B Expectation-step: Estimate the variables using the observed data

H Maximization-step: Use complete data (x, y) obtained in E-step to
update parameters or hypothesis

A Check whether values are converging or not
Analytic expression

Onew = 3rg;“3XEx\y,9o,d [log(p(x,Yy]0))]
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E-Step

Posterior distribution
p(xly, 8) = CN(X; o, Xp)

where, 3 = (LAPA + 357" and py = 130AMy.
Expectation step

Q(0oa, 0) = Exiy, 004 [l0g(0(X, ¥10))] =Exjy o, [log(p(X|Y, U))] + Exiy, 054 [log(P(Y[X; A);

=Q1(Oota, v, U) + Q2(0ora, \)

where,
1 1 _
Q1 (6o, 7, V) = ¢ = 50g(|1=]) = 5 T [27‘2,,,‘,] :
_._M Iyl> | mgA"y 1 H
Qe(bo, N) = ¢ — = log(A) — 12 + HO=T — 2ATr[A Azo,d},

H
where X4 :29010, + 16,510,y
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Gamma update

~* = arg max Qi (6oid, )
Y

Optimality condition

10 (|og|r| +log|U| + TF [(r*‘zpr*‘z) zo,d])

2 i

1 1 1 1 1 L .
=— - Tr —5JiPT 2 + T 12PJ,',- 3o | where Jj is single entry matrix
i 2,Yi§ 2715

:2ﬁ —2Tr [J,‘,'Priézold}

=27 — 2 (Pr*% zo,d) p

AR
P v

k=1

k(Xo)ki Vi € [N].
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Fixed point iterations

m Optimality condition has variables dependent on each other
mletg =1/

:>c:K‘11
c

where % is element wise inverse of cand K =P © X 4.

m One iteration leads to reduction in cost function for each EM iteration

-1 1 1)? j
B Chow =K o and update v; = ( ) ) Vi € [N].

G
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Noise variance update

A" = argmax Qx(0oia, \)-
A

Optimality condition

0
0="x
H H o AH T(AMAs,

8 (c— M jog(n) — L 1 HaAy  T(A7A rd))
- o

1
o M+ o\ [VHV —2pggAy + Tr (AHAEo/d)]

.1
=\ = 51 VY - 2ty + T (YA |
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Algorithm

Algorithm 1: Correlated EM
Input: A,Y,U

Initialize: k <+ 0,v + 1, + 0.1
while k < Kmax and pe # pe,, do
DS (%AHA + 2‘71)_1
Mooy = 1XzeoldAHY

Yo = Xy + “Go/d”go/d

Ci = ’Yl: Vi

c+— U 'o Eald)71

2
- 3
N = 3 [HIYIE = 2ubaA7Y + T [A"AS 6] ]
K Kk+1
end
Output: X = p4,~, Support obtained by non-zero entries of ~

1
c
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Effect of correlation

N =100
K =20
M=20
L=100

Row1 : Support
recovery for
uniform model

Row?2 : Support
recovery for
exponential model

Row3 : NMSE
recovery for both
models

Percentage of misdetection

Percentage of misdetection

Nuse
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Effect of number of samples

N =100
K =20
M=20

Row1 : Support
recovery for
uniform model
p=05

m Row2 : Support
recovery for
exponential model
p=0.75

= Row3 : NMSE
recovery for both
models

Percentage of misdetection

Percentage of faise alarm
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Phase transition

= N =100
m L=100 ; -

m Figure 1: Uniform :
model p = 0.5

m Figure 2 : "

Exponential o
model p = 0.75 ..
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03 o2
02 o1
o1 o
(X 02 03 04 05 05 07 08 03

Main Presentation



Main Presentation

L Results

Error in correlation coefficient

RN —
m N=100 SsaL 0
10! E-RDCMP
_ S
m K=20 £ é
m M=20
:‘ 10© E
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10°
m Actual p= 0.5 02 04 06 08 1 0 02 04 06 08 1

Correlation coefficient Correlation coefficient
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Does the EM converge?

Loss function value
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Theory behind the algorithm?

Open Questions
m Why only single iteration of fixed point is useful?

m Does the EM converge to a stationary point? What are the properties?
How do you show convergence?

What happens when exact correlation coefficient is not known?
Can we learn the correlation coefficients from the available data?

How useful is the algorithm for practical scenarios?

What is the computational complexity? Can we make it faster?
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Learning correlation coefficients

m Works only for applications with known U
m Parametric form for U
m Can we learn the parameters from sample covariance of X = ATy?

m Simplify the optimality conditions for U or its parameters as
hyper-parameters
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Where can this be applied?

m Correlated Rayleigh fading in Massive MIMO channels

m Can models with correlation counter fundamental limit created due to
pilot contamination? *

28 GHz Average Spatlal Correlation — V-V, NLOS

[—e— Avg. Measured Spatial Correlatlon I
Exponential Model

Average Correlation Coefficient

g T 1)

é 16 1‘5 2ID 2'5 3'0 B
Physical Separation [# of Wavelengths] 5

4Sanguinetti, et.al., 2019
5Samimi, et.al., 2016
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