A communication efficient scheme for
decentralized estimation of jointly sparse
signals

Saurabh Khanna,
Signal Processing for Communication, ECE, IISc

Contents

> Decentralized joint sparse signal recovery

> Problem statement and prior work

» Proposed algorithm
» Fusion based Sparse Bayesian Learning

» Simulation results

Decentralized joint sparse signal recovery

> Network of L sensor nodes &

é | @

> Single/Multi hop communication links between
nodes

e

» Measurement model at /1" node:

. . . . X| X2 X3 « o o X
Y D; Xj W; z ¥
H m + Jointly sparse
“ .. vectors
m X 1 mXxn m X 1
local ST oo .
measurement AWGN noise
measurements matrix
(m<n)

o > Xi,X2...X; are jointly
unknown Sparse

sparse vector
> Goal:
» Decentralized estimation of x4, X> ... X, at their respective nodes

» Exploit joint sparsity to reduce no. of local measurements

Reduce the amount of internode communication

v

Internode communication restricted to single hop neighborhood

v

Why decentralized algorithm ?

» Robust to nodal failures, no concept of fusion center

> Energy efficient to implement (think wireless networks)

> Attains centralized solution despite of computations/communications restricted to

local neighborhoods

Prior work

Comparison of various decentralized algorithms

Decentralized Computational| Performance Per node, per iteration
algorithm complexity communication cost
DCOMP FhAkK *k o(nlL)

DCSP Fokdok * O(KL)

DRL-1 * rork o(nL)

CB-DSBL *k kA AK o(nL)

FB-DSBL flelel okl O(kLlog n)

> Algorithms not included in the comparison:

1. DCS-AMP (involves direct exchange of signal coefficients between nodes)
2. Turbo BCS (-do-)

3. Decentralized SA-BMP (restricted to ring topology)

Quick recap of SBL

» SBL stands for Sparse Bayesian Learning [Wipf and Rao, 2004]

> Problem: Recover unknown sparse vector x from its noisy, underdetermined,
linear measurements y
y=®x+w

v

Impose a sparsity inducing signal prior, x ~ N'(0,T")
T = diag(~1, 2, - - - v.) model the variance of entries of x
If T is known, from LMMSE theory, Xpyap ~ N (i, 2)

vy

1
S=T-ro’ (UZI,,, + <1>r<1>T) T
n=c2xaTy

» ML estimate v = arg max log p(y|+) obtained via EM algorithm
YER]

Estep: Q(y|y¥) = Eyjy,~k 109 p(Y, X|7)]
Mstep: ~"*" = arg max Q(v|v*)
Yy

Hard and soft support estimates

»> At node j, we define:

1. Hard support estimate b;:
€{0,1}", binary vector representing current support estimate

2. Soft support estimate g;:

) if by (/) = 1 .
g’('){oj ifb;(i):o » 1=i<n

> b; = support(g;)

Proposed algorithm

»> FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning

At node j,

> Step-1 Run SBL iteration to update local hyperparameters ~;

> Step-2 Generate hard support estimate b; using current estimate of ~;

> Step-3 Generate soft support estimate g; and broadcast it to single hop
neighbors in AV

> Step-4 Use soft support estimate 9y ,j’ € N, received from neighboring
nodes to update local ~;

| 4

Repeat steps 1 to 4, until convergence

FB-DSBL

»> FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning
At node j,

> Step-1 Run SBL iteration to update local hyperparameters ~;
> Step-2 Generate hard support estimate b; using current estimate of ~;

> Step-3 Generate soft support estimate g; and broadcast it to single hop
neighbors in AV

> Step-4 Use soft support estimate 9y ,j’ € N, received from neighboring
nodes to update local ~;

> Repeat steps 1 to 4, until convergence

Generation of hard support estimate b;

> At fh node, for index i, (1 < i < n), we define following two hypothesis
HO : Xj(l) =0

Hq:X(i) #0
or equivalently,

Ho 1 vj(i) =0

Hy () >0

where ~; denotes the local variance parameters

> At node j, for index i € [n], a log likelihood ratio test (LLRT) is setup as:

Decide H1 if
p(yj: H1)

|Og > .Y .
p(yji Ho) =

Generation of hard support estimate b;

» Perindex LLRT:

Decide #H1 if
/\/'(y, 0,02Im + ®;T)
>0
/\/(y,, 0,02lm + &;TX @)
where ;T @ => (k)¢ kd)/ B

k#i
> After simplification, we get

1 2
k T
(i’jl(o Im-‘r‘I’I—‘j,@j) yj)

1
k T
o], (oFn+ @K 0]) @y

T (.2 k T\ !
29,,,.+|og(1+q>.(I+, Ef @]) q>/-),->

where i
) = ater) e,

Generation of hard support estimate b;
» Per index LLRT:
Decide H1 if
_ 2
CACTER R I

i
T 2 Tk T
o] (oFtn + @ Tf 2]y

. 1 , -1
> g(\vf(i)- <‘Yk(’) +of; (U/-zlm + qn,-rﬁ,&]) <I>,-,,->
i

T (. 2 ek &T) 1
26; j+log (1+q>j’,(oj I+, T @]) <1>/-,,-)

where k(i) =
g(\’yl ()) q>j7:i (Ulzlm*q’jf‘;(,iq)f)ﬂq)fvi

> Some observations:
> Under Hy, the test metric is standard chi-squared distributed (DOF = 1)
Denominator in LHS is a normalization factor
Note that test metric in LHS does not depend on ~;(/)
g(\¥f(7)) is independent of ~/ (/)
Overall, the LLRT threshold is inversely proportional to -;(/)

vV vyYyy

Generation of hard support estimate b;

> Hard support estimate b; is generated by performing individual LLRTs for each
index i € [n]:

Decide H1 if

(¢](oPIm + 2, T;2])y))?

= > Q_1 a)?
o] (2In+ @10)¢ [Q7 ()]

Tiiyj) =

> o =P(b;(i) = 1|Ho) for all j, i

FB-DSBL

»> FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning
At node j,

> Step-1 Run SBL iteration to update local hyperparameters ~;
> Step-2 Generate hard support estimate b; using current estimate of ~;

> Step-3 Generate soft support estimate g; and broadcast it to single hop
neighbors in \V;

> Step-4 Use soft support estimate 9y ,j’ € N, received from neighboring
nodes to update local ~;

> Repeat steps 1 to 4, until convergence

Messages exchanged by nodes

» Structure of message exchanged between the nodes

Fixed | Noofon | B T T
length zero entries | o . e o o v
in non zero non zero non zero
header 8i entry ing; | entry in g; entry in g
\—
¢ bits logn bits logn + ¢ logn + ¢ logn + ¢y
bits bits bits

> Variable length code used to encode g;

> O(klog n) bits required on average to encode the location and magnitude of non
zero entries of soft support estimate g;

Message size

0.5

_ —A— Rademacher signal, k/n = 0.1
g —©— Rademacher signal, k/n = 0.2
» 0.4f —A— Gaussian signal, k/n = 0.1 .
g —©— Gaussian signal, k/n = 0.2
°©
& 0.3r |
[$]
[e]
5 D
= >
c
g 0.?€
°
5
g o p—A—A—A—A—A—A—A
T A A A A A A A A

o i i i i i i
50 100 150 200 250 300 350 400
n

» SNR=20dB, n=50,m/n=0.25, L =10 nodes, trials = 50, « = 10—*

FB-DSBL

»> FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning
At node j,

> Step-1 Run SBL iteration to update local hyperparameters ~;
> Step-2 Generate hard support estimate b; using current estimate of ~;

> Step-3 Generate soft support estimate g; and broadcast it to single hop
neighbors in AV

» Step-4 Use soft support estimate gy j/ € N, received from neighboring
nodes to update local ;

> Repeat steps 1 to 4, until convergence

Fusion of hard support estimates

Neighboring node 1 Neighboring node 2 Neighboring node 3

i i i

i i i

v v v
Soft support estimate gi/»/s (I T T T T T '] Wl M TTTTTTTIE A TT T rrm]
Hard support estimate by o/ LT T T T [I W] l:.:l:l:l:l;[l:l:-:l B EEEE N N

S~ | .7
~<. v -

Fusion using >4~
elementwise
majority rule

Hard support estimate b5™

» Fuse hard support estimates from neighboring nodes to generate extrinsic hard
support bf"t
s W

bfx‘(i) =
0 otherwise

where A = {j' € Nj b, (i) = 1},

Updating + using extrinsic information

> If bj‘?“(i) = 1, update hyperparameter v as a weighted average:

%)+ > by (Dgy (i)
j'eN

T+ > bs(0)

jen;

i) =

Updating + using extrinsic information

> |If b;?"t(i) = 1, shrink hyperparameter ~; ().

> Shrinkage of ~;(/):
> results in a drop in probability of false detection (of zero coefficient at /)
» also results in a drop in probability of detection (of non zero coefficient at /)

» must be commensurate with the extrinsic belief in detecting a zero at it"
index

Updating + using extrinsic information

> |If b;?"t(i) = 1, shrink hyperparameter ~; ().

> Shrinkage of ~;(/):
> results in a drop in probability of false detection (of zero coefficient at /)
» also results in a drop in probability of detection (of non zero coefficient at /)

» must be commensurate with the extrinsic belief in detecting a zero at it"
index

> Extrinsic belief of finding a zero at /" index o P(b®!(/) = 1|#o)

[N
BOP() = 1[Ho) = 3

|
k==~

mY] ok (1 — o) Ni—Kl

Updating + using extrinsic information

> Proposed solution: Shrink ~(i) such that:
Pea(LLRT at index i) = Pra(detectorZ)

where Z = AND(b(i), b¢*'(i))

Updating + using extrinsic information

> Proposed solution: Shrink ~(i) such that:
Pea(LLRT at index i) = Pra(detectorZ)

where Z = AND(b(i), b¢*'(i))

Pea(detectorz) = P(b;(i) = 1,b$(i) = 1|Ho)
= P(bj(i) = 1|Ho) - P(bF'(i) = 1|Ho)
= a-P(bf(i) = 1|Ho) (<o)

Updating + using extrinsic information

> Proposed solution: Shrink ~(i) such that:
Pea(LLRT at index i) = Pra(detectorZ)

where Z = AND(by(7), b¢.(1))

Pea(detectorz) = P(b;(i) = 1,b$(i) = 1|Ho)
= P(b;(i) = 1|Ho) - P(bF'(i) = 1[Ho)
= a-P(bf(i) = 1|Ho) (<o)

> Backpropagating the new Pga(LLRT) to obtain corresponding new threshold 0;“,?‘”

. Pea(detector2) \ \ 2
1 (Pra
o = (Q (f))

Updating + using extrinsic information

» Old and new LLRT thresholds for node j and ith index,
2
69 = (9—1 (o.sa))

2
oo — (Q*1 (0.5PFA(detectorZ)))

Updating + using extrinsic information

» Old and new LLRT thresholds for node j and ith index,
2
69 = (9—1 (0.5a)>

2
oo — (Q*1 (O.5PFA(detectorZ)))

» Then, we can write

k,new ; 1 T 2 —1
g(\'Yj (M) (7_"&,,%,(’_) +‘1>j (|m+‘1>/ 7, ,‘i‘j) ‘i‘j’,‘)
J

s Q"(O.SPFA(detectorZ)) 2 _
n= 0-1(0.5q) =

p —1
g(\vjk(/)).<7;(i)+¢[(oPlm+ ;K @7) @,y,-)
i

Updating + using extrinsic information

» Old and new LLRT thresholds for node j and ith index,
2
69 = (9—1 (0.5a)>

2
oo — (Q*1 (O.5PFA(detectorZ)))

» Then, we can write

K, ; 2 —1
o\ "9W<f>>-(k,n‘79w(,)+q’ (Himre T @] @u)

a [©71(0.5Pg(detector 2)) 2 _ ! Wi
n= 0-1(0.5q) = Py ;
()

—1
&] (o?ln+@, K o] .
—ylk(i)+ i (m+) P

5

to get the update rule

¥y (i)

(i) = : F
! 1+ (0 = D) (i)(@] (oPIm + B T*2)1 ¢y ;)

where (I:'/f‘j@]— = Z‘Yi(k)d)j,k(bj?:k
k#i

MSE performance (Rademacher source)

o
s
L
]
s
el
(0]
N
©
E —6— Support aware LMMSE
2 -@®-FB-DSBL
_20 CB-DSBL
—7— DRL-1
—% DCSP
-25| —6—DCOMP
5 10 1

5 20 25 30
SNR (dB)

> n=50,m =15, 10% sparsity, L = 10 nodes, trials = 200, o = 104

MSE performance (Gaussian source)

~
T~
~

Normalized MSE (dB)
|

>
—©— Support aware LMMSE
-15F| - @ - FB-DSBL 7
CB-DSBL
=/ DRL-1 ‘.ﬁ
_20}| =% DCSP 'QQ\ .
—$— DCOMP e
PN
[V
_o5 i i i i T
5 10 15 20 25 30

> n=50,m =15, 10% sparsity, L = 10 nodes, trials = 200, o = 104

Support recovery

0.8f
0.6f —@— FB-DSBL
CB-DSBL
—#— DCSP
0.4f —$—DCOMP |

Probability of exact support recovery
o
N

i

M 02 03 04 05 06 07
Measurement rate per node (m/n)

> n =50, 10% sparsity, L = 10 nodes, SNR = 15 dB, trials = 400, o = 10—*

Phase transition characteristics

05 0.6
—@— FB-DSBL
—e—FB-DSBL s CB-DSBL
04 CB-DSBL| 0.5F | ——pcomp s
—$—DCOMP —V-DRL1
s —— DRL-1 S 04l Lm0 7
€ ol [—#=Dcsp , 2
2 2
S . ; 0.3f
? 3
502 5
& &oz2r
0.1 ol
- . . . 3 ’ . . .
(o] 0.2 06 0.1 0.2 0.6

0.3 0.4 0.3 0.4
Measurement Rate (M/N) Measurement Rate (M/N)

> n =50, 10% sparsity, L = 10 nodes, SNR = 15 dB, trials = 400, o = 10—*

Communication cost

et s ~@- FB_DSBL
o LA CB-DSBL

107; = ; —¥-DCSP

‘ —&— DCOMP

: I e

5 10 15 20 25 30 35 40

Number of nodes (L)

Total number of messages exchanged

> n=50,k=>5m=10, SNR = 20 dB, trials = 100, « = 104

Number of iterations

160 ‘

- @®- FB-DSBL
140} CB-DSBL| |

—¥- DCSP

—O— DCOMP
1201 —=7—DRL-1 |7
100 —V 4 W V v—VY

80Y :

60 1

ad? ~]

~
~

Average number of iterations

20t .-""---0---.---'.----0-"3

S R St S S

5 10 20 25 30 35 40
Number of nodes (L)

> n=50k=5 m=10, SNR =20 dB, trials = 100, o = 10—*

