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Decentralized joint sparse signal recovery
I Network of L sensor nodes

I Single/Multi hop communication links between
nodes

I Measurement model at j th node:

m× n

(m � n)

yj Φj xj wj

n× 1

m× 1m× 1
local

measurements
AWGN noisemeasurement

matrix

unknown
sparse vector

Jointly sparse
vectors

x1 x2 xLx3

I x1,x2 . . . xL are jointly
sparse

I Goal:
I Decentralized estimation of x1, x2 . . . xL at their respective nodes

I Exploit joint sparsity to reduce no. of local measurements

I Reduce the amount of internode communication

I Internode communication restricted to single hop neighborhood



Why decentralized algorithm ?

I Robust to nodal failures, no concept of fusion center

I Energy efficient to implement (think wireless networks)

I Attains centralized solution despite of computations/communications restricted to

local neighborhoods



Prior work

Comparison of various decentralized algorithms

Decentralized
algorithm

Computational
complexity

Performance Per node, per iteration
communication cost

DCOMP bbbbb bb O(nL)

DCSP bbbb b O(kL)

DRL-1 b bbb O(nL)

CB-DSBL bb bbbbb O(nL)

FB-DSBL bbb bbbb O(kL log n)

I Algorithms not included in the comparison:
1. DCS-AMP (involves direct exchange of signal coefficients between nodes)
2. Turbo BCS (–do–)
3. Decentralized SA-BMP (restricted to ring topology)



Quick recap of SBL
I SBL stands for Sparse Bayesian Learning [Wipf and Rao, 2004]

I Problem: Recover unknown sparse vector x from its noisy, underdetermined,
linear measurements y

y = Φx + w

I Impose a sparsity inducing signal prior, x ∼ N (0,Γ)
I Γ = diag(γ1,γ2, . . .γL) model the variance of entries of x
I If Γ is known, from LMMSE theory, x̂MAP ∼ N (µ,Σ)

Σ = Γ− ΓΦT
(
σ2Im +ΦΓΦT

)−1
ΦΓ

µ = σ−2ΣΦT y

I ML estimate γML = arg max
γ∈Rn

+

log p(y|γ) obtained via EM algorithm

E step: Q(γ|γk ) = Ex|y,γk [log p(y, x|γ)]

M step: γk+1 = arg max
γ

Q(γ|γk )



Hard and soft support estimates

I At node j , we define:

1. Hard support estimate bj :
∈{0,1}n, binary vector representing current support estimate

2. Soft support estimate gj :

gj (i) ,

{
γj (i) if bj (i) = 1
0 if bj (i) = 0

, 1 ≤ i ≤ n

I bj = support(gj )



Proposed algorithm

I FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning

At node j ,

I Step-1 Run SBL iteration to update local hyperparameters γj

I Step-2 Generate hard support estimate bj using current estimate of γj

I Step-3 Generate soft support estimate gj and broadcast it to single hop
neighbors in Nj

I Step-4 Use soft support estimate gj′ , j
′ ∈ Nj , received from neighboring

nodes to update local γj

I Repeat steps 1 to 4, until convergence
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Generation of hard support estimate bj

I At j th node, for index i , (1 ≤ i ≤ n), we define following two hypothesis

H0 : xj (i) = 0

H1 : xj (i) 6= 0

or equivalently,
H0 : γj (i) = 0

H1 : γj (i) > 0

where γj denotes the local variance parameters

I At node j , for index i ∈ [n], a log likelihood ratio test (LLRT) is setup as:

Decide H1 if

log
p(yj ;H1)

p(yj ;H0)
≥ θj,i



Generation of hard support estimate bj

I Per index LLRT:

Decide H1 if

log
N (yj ; 0, σ2

j Im +ΦjΓ
k
j Φj )

N (yj ; 0, σ2
j Im +Φj Γ̃

k
j,iΦj )

≥ θj,i

where Φj Γ̃jΦ
T
j =

∑
k 6=i

γj (k)φj,kφ
T
j,k

I After simplification, we get

(
ΦT

j,i

(
σ2

j Im +Φj Γ̃
k
j,iΦ

T
j

)−1
yj

)2

ΦT
j,i

(
σ2

j Im +Φj Γ̃
k
j,iΦ

T
j

)−1
Φj,i

≥ g(\γk
j (i))·

(
1

γk
j (i)

+ΦT
j,i

(
σ2

j Im +Φj Γ̃
k
j,iΦ

T
j

)−1
Φj,i

)

where g(\γk
j (i)) =

2θj,i+log
(

1+ΦT
j,i

(
σ2

j Im+Φj Γ̃
k
j,iΦ

T
j

)−1
Φj,i

)
ΦT

j,i

(
σ2

j Im+Φj Γ̃
k
j,iΦ

T
j

)−1
Φj,i



Generation of hard support estimate bj

I Per index LLRT:

Decide H1 if

(
ΦT

j,i

(
σ2

j Im +Φj Γ̃
k
j,iΦ

T
j

)−1
yj

)2

ΦT
j,i

(
σ2

j Im +Φj Γ̃
k
j,iΦ

T
j

)−1
Φj,i

≥ g(\γk
j (i))·

(
1

γk
j (i)

+ΦT
j,i

(
σ2

j Im +Φj Γ̃
k
j,iΦ

T
j
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Φj,i

)

where g(\γk
j (i)) =

2θj,i+log
(

1+ΦT
j,i

(
σ2

j Im+Φj Γ̃
k
j,iΦ

T
j

)−1
Φj,i

)
ΦT
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(
σ2
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k
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T
j

)−1
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.

I Some observations:
I Under H0, the test metric is standard chi-squared distributed (DOF = 1)
I Denominator in LHS is a normalization factor
I Note that test metric in LHS does not depend on γj (i)
I g(\γk

j (i)) is independent of γk
j (i)

I Overall, the LLRT threshold is inversely proportional to γj (i)



Generation of hard support estimate bj

I Hard support estimate bj is generated by performing individual LLRTs for each
index i ∈ [n]:

Decide H1 if

Tj,i (yj ) =
(φT

j,i (σ
2
j Im +Φj Γ̃jΦ

T
j )
−1yj )

2

φT
j,i (σ

2
j Im +Φj Γ̃jΦ

T
j )
−1φj,i

≥ [Q−1(α)]2

I α = P(bj (i) = 1|H0) for all j, i



FB-DSBL

I FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning

At node j ,

I Step-1 Run SBL iteration to update local hyperparameters γj

I Step-2 Generate hard support estimate bj using current estimate of γj

I Step-3 Generate soft support estimate gj and broadcast it to single hop
neighbors in Nj

I Step-4 Use soft support estimate gj′ , j
′ ∈ Nj , received from neighboring

nodes to update local γj

I Repeat steps 1 to 4, until convergence



Messages exchanged by nodes

I Structure of message exchanged between the nodes

Fixed
length
header

No. of non
zero entries

in gj

Index and
value of 1th

non zero
entry in gj

Index and
value of 2nd

non zero
entry in gj

Index and
value of last
non zero

entry in gj

c1 bits log n bits log n+ c2
bits

log n+ c2
bits

log n+ c2
bits

I Variable length code used to encode gj

I O(k log n) bits required on average to encode the location and magnitude of non
zero entries of soft support estimate gj



Message size
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FB-DSBL

I FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning

At node j ,

I Step-1 Run SBL iteration to update local hyperparameters γj

I Step-2 Generate hard support estimate bj using current estimate of γj

I Step-3 Generate soft support estimate gj and broadcast it to single hop
neighbors in Nj

I Step-4 Use soft support estimate gj′ , j
′ ∈ Nj , received from neighboring

nodes to update local γj

I Repeat steps 1 to 4, until convergence



Fusion of hard support estimates

Fusion using
elementwise
majority rule

Neighboring node 1 Neighboring node 2 Neighboring node 3

Soft support estimate g1/2/3

Hard support estimate b1/2/3

Hard support estimate bext
j

I Fuse hard support estimates from neighboring nodes to generate extrinsic hard
support bext

j

bext
j (i) ,

1 if |Aj
i | ≥

|Nj |
2

0 otherwise

where Aj
i = {j

′ ∈ Nj : bj′ (i) = 1}.



Updating γ using extrinsic information

I If bext
j (i) = 1, update hyperparameter γ as a weighted average:

γnew
j (i) =

γj (i) +
∑

j′∈Nj

bj′ (i)gj′ (i)

1 +
∑

j′∈Nj

bj′ (i)



Updating γ using extrinsic information

I If bext
j (i) = 1, shrink hyperparameter γj (i).

I Shrinkage of γj (i):

I results in a drop in probability of false detection (of zero coefficient at i)

I also results in a drop in probability of detection (of non zero coefficient at i)

I must be commensurate with the extrinsic belief in detecting a zero at i th

index

I Extrinsic belief of finding a zero at i th index ∝ P(bext
j (i) = 1|H0)

P(bext
j (i) = 1|H0) =

|Nj |∑
k=
|Nj |

2

(|Nj |
k

)
αk (1− α)|Nj−k|
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Updating γ using extrinsic information

I Proposed solution: Shrink γ(i) such that:

PFA(LLRT at index i) = PFA(detectorZ)

where Z = AND(bj (i),bext
j (i))

PFA(detectorZ) = P(bj (i) = 1,bext
j (i) = 1|H0)

= P(bj (i) = 1|H0) · P(bext
j (i) = 1|H0)

= α · P(bext
j (i) = 1|H0) (< α)

I Backpropagating the new PFA(LLRT) to obtain corresponding new threshold θnew
j,i

θnew
j,i =

(
Q−1

(
PFA(detectorZ)

2

))2
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Updating γ using extrinsic information
I Old and new LLRT thresholds for node j and i th index,

θold
j,i =

(
Q−1 (0.5α)

)2

θnew
j,i =

(
Q−1 (0.5PFA(detectorZ))

)2

I Then, we can write

η ,

(
Q−1(0.5PFA(detectorZ))

Q−1(0.5α)

)2
=

g(\γk,new
j (i))·

 1
γ

k,new
j (i)

+ΦT
j,i

(
σ2

j Im+Φj Γ̃
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to get the update rule

γnew
j (i) =
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η + (η − 1)γk
j (i)(φ
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2
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∑
k 6=i

γj (k)φj,kφ
T
j,k
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MSE performance (Rademacher source)
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Support aware LMMSE
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I n = 50, m = 15, 10% sparsity, L = 10 nodes, trials = 200, α = 10−4



MSE performance (Gaussian source)
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Support recovery
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Phase transition characteristics
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Communication cost
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Number of iterations
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