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Abstract

In wireless communication systems, the use of multiple antennas, also known as Multiple-Input

Multiple-Output (MIMO) communications, is now a widely accepted and important technology

for improving their reliability and throughput performance. However, in order to achieve the

performance gains predicted by the theory, the transmitter and receiver need to have accurate

and up-to-date Channel State Information (CSI) to overcome the vagaries of the fading environ-

ment. Traditionally, the CSI is obtained at the receiver by sending a known training sequence

in the forward-link direction. This CSI has to be conveyed to the transmitter via a low-rate,

low latency and noisy feedback channel in the reverse-link direction. This thesis addresses three

key challenges in sending the CSI to the transmitter of a MIMO communication system over

the reverse-link channel, and provides novel solutions to them.

The first issue is that the available CSI at the receiver has to be quantized to a finite number

of bits, sent over a noisy feedback channel, reconstructed at the transmitter, and used by the

transmitter for precoding its data symbols. In particular, the CSI quantization technique has to

be resilient to errors introduced by the noisy reverse-link channel, and it is of interest to design

computationally simple, linear filters to mitigate these errors. The second issue addressed is the

design of low latency and low decoding complexity error correction codes to provide protection

against fading conditions and noise in the reverse-link channel. The third issue is to improve

the resilience of the reverse-link channel to fading.

The solution to the first problem is obtained by proposing two classes of receive filtering

techniques, where the output of the source decoder is passed through a filter designed to reduce

the overall distortion including the effect of the channel noise. This work combines the high

resolution quantization theory and the optimal Minimum Mean Square Error (MMSE) filtering

formulation to analyze, and optimize, the total end-to-end distortion. As a result, analytical

xii
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expressions for the linear receive filters are obtained that minimize the total end-to-end distor-

tion, given the quantization scheme and source (channel state) distribution. The solution to the

second problem is obtained by proposing a new family of error correction codes, termed trellis

coded block codes, where a trellis code and block code are concatenated in order to provide good

coding gain as well as low latency and low complexity decoding. This code construction is made

possible due to the existence of a uniform partitioning of linear block codes. The solution to

the third problem is obtained by proposing three novel transmit precoding methods that are

applicable to time-division-duplex systems, where the channel reciprocity can be exploited in

designing the precoding scheme. The proposed precoding methods convert the Rayleigh fading

MIMO channel into parallel Additive White Gaussian Noise (AWGN) channels with fixed gain,

while satisfying an average transmit power constraint. Moreover, the receiver does not need to

have knowledge of the CSI in order to decode the received data. These precoding methods are

also extended to Rayleigh fading multi-user MIMO channels.

Finally, all the above methods are applied to the problem of designing a low-rate, low-latency

code for the noisy and fading reverse-link channel that is used for sending the CSI. Simulation

results are provided to demonstrate the improvement in the forward-link data rate due to the

proposed methods. Note that, although the three solutions are presented in the context of

CSI feedback in MIMO communications, their development is fairly general in nature, and,

consequently, the solutions are potentially applicable in other communication systems also.
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Table 1: Abbreviations used in this thesis.

Abbreviation Description

3GPP Third generation partnership project

8-PSK 8-ary phase shift keying

downlink Channel between BS and UT, with BS as the transmitter

forward-link Same as downlink

i.i.d. Independent and identically distributed

reverse-link Channel between UT and BS, with UT as the transmitter

uplink Same as reverse-link

AWGN Additive white Gaussian noise

BER Bit error rate

BLAST code Bell labs layered Space-time code

BPSK Binary phase shift keying

BS Base station (eNodeB as in 3GPP and LTE standards)

CC Convolutional code

COVQ Channel optimized VQ

CRC Cyclic redundancy check

CSI Channel state information

CSIR Channel state information at the receiver

CSIT Channel state information at the transmitter

FDD Frequency division duplex

FDMA Frequency division multiple access

Continued on next page
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Table 1 – Continued from previous page

Notation Description

IA Index assignment

LBC Linear binary code

LDPC code Low density parity check code

LLR Log-likelihood Ratio

LTE Long term evolution

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

MLSD Maximum likelihood sequence detector

O-STBC Orthogonal STBC

PAM Pulse amplitude modulation

QAM Quadrature amplitude modulation

QPSK Quadrature phase shift keying

SER Symbol error rate

SISO Single-input single-output

SIMO Single-input multiple-output

SNR Signal to noise ratio (Normalized for energy per bit)

SOVQ Source optimized VQ

SQ Scalar quantization

STC Space-time code

STBC Space-time block code

STTC Space-time trellis code

TCM Trellis coded modulation

TDD Time division duplex

TDMA Time division multiple access

USTC Unitary STC

UT User terminal

VQ Vector quantization
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Table 2: Notation used in this thesis.

Symbol Description

Capital italic letters, e.g., M Integers or sets or random variables

Bold small letters, e.g., g Column vectors

Bold capital letters, e.g, G Matrices

gi ith column of G

gij (i, j)th element of G

‖g‖p ℓp norm of g

gT Transpose of g

gH Conjugate transpose of g

GH Conjugate-transpose of G

‖G‖p ℓp induced norm of G

‖G‖F Frobenius norm of G

|G| Determinant of G

tr[G] Trace of matrix G

diag(x1, . . . , xk) Diagonal matrix with x1, . . . , xk as its diagonal elements

0 All zero column vector

1 All ones column vector

{φ} Null set

|X| Cardinality of the set X

⌊x⌋ Largest integer smaller than or equal to x

⌈x⌉ Smallest integer larger than or equal to x

Continued on next page
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Table 2 – Continued from previous page

Notation Description

(x)+ max(0, x)

ℜ{x} Real part of the complex number x

ℑ{x} Imaginary part of the complex number x

F(qp) pth extension of GF(q)

F
n
q An n−dimensional vector space in F(q)

GF(q) Galois field of size q

N Natural numbers 1, 2, 3, . . .

Z Integer numbers . . . ,−2,−1, 0, 1, 2, . . .

R Algebraic field of real numbers

C Algebraic field of complex numbers

Pr(X = x) Probability of the event X = x

fX(x) Probability Density Function (PDF) of X

FX(x) Cumulative Distribution Function (CDF) of X

EX,Y [f ] Expectation of function f(X,Y ) with respect to

the joint distribution of X and Y

N (µ, σ2) Normal distribution with mean µ and variance σ2

CN (µ, σ2) circularly symmetric complex Gaussian distribution

with mean µ and variance σ2

C(n, k, d)p Block code made of n−tuples,

with minimum distance d and cardinality pk

C(n, k) Block code made of n−tuples

and with cardinality 2k in GF(2)

dmin(C) Minimum distance of a code C
WH(c1) The Hamming weight of a code word c1

WE(c1) The Euclidean weight of a code word c1

(c1, c2) Concatenation of two code words c1 and c2

c1 ∗ c2 Element-by-element multiplication of two vectors c1 and c2

DH(c1, c2) The Hamming distance between codewords c1 and c2

Continued on next page
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Table 2 – Continued from previous page

Notation Description

x ≈ y x is approximately equal to y

Xn=̇X Xn is asymptotically equal to X when n → ∞
X , Y + Z X is defined as Y + Z

f1(x)⊗ f2(x) Convolution of two functions f1(x) and f2(x)

H2(x) Binary entropy, defined as −x log2 x− (1− x) log2(1− x)

Q(x) Q-function, defined as 1
2erfc(x/

√
2),

where erfc(x) is the complementary error function



Chapter 1

Introduction

“May I speak the truth of Brahman. May I speak the truth. May it protect me. May it protect

my teacher. Om. Peace peace peace.” -Aitareya Upanishad

1.1 MIMO Communication Systems

In wireless communication systems, the use of multiple antennas, also known as Multiple Input

Multiple Output (MIMO) communications, is now a widely accepted and important technology

for improving their reliability and throughput performance. Following the seminal works of

Telatar [1] and Foschini [2], multiple antennas have not only been extensively studied by the

academia, but also successfully implemented by the industry. Many current day broadband

wireless access systems such as IEEE 802.11n, 3GPP-LTE and LTE-advanced support the use

of multiple antennas to improve the spectral efficiency and resilience to signal fading conditions.

Figure 1.1 shows a simple block diagram of a MIMO communication system with Nt transmit

antennas and Nr receive antennas. One of the key benefits of using multiple antennas is that

the capacity of a multiple antenna link is known to increase linearly with the minimum of the

number of antennas at the transmitter and receiver [1,2]. Hence, multiple antennas can be used

to increase the number of independent signaling dimensions (also known as the multiplexing

gain), and hence, the rate, of the communication link. Another important, and related, feature

of MIMO systems is that the use of multiple antennas can provide diversity benefits, thereby

1
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Figure 1.1: MIMO communication system block diagram.

improving the resilience to fading, since the signal arrives at the different receive antennas

through independent paths. Over the past two decades, an enormous amount of research has

gone into the design, analysis and optimization of MIMO communication systems, and it remains

an active area of research to this day.

It is known that a significant improvement in the capacity of a MIMO communication link

is possible when the Channel State Information (CSI) is available at both the transmitter and

receiver [1]. When the channel undergoes frequency non-selective fading, as in, for example,

narrow-band communication systems, the CSI consists of a complex-valued matrix H ∈ C
Nr×Nt ,

whose (i, j)th entry contains the channel gain from the jth transmit antenna to the ith receive

antenna, and where Nr and Nt represent the number of antennas at the receiver and transmitter,

respectively. The CSI can be estimated at the receiver by sending a known training sequence

from the transmitter. To acquire CSI at the transmitter, one has to either send a training

sequence in the reverse direction, which is possible in Time Division Duplex (TDD) systems, or

send quantized CSI on a low-rate feedback channel from the receiver to the transmitter, which is

applicable to both TDD and Frequency Division Duplex (FDD) systems. Both reverse channel

training and quantized feedback options are supported in many standards, for example, in the

IEEE 802.11n standard [3]. The low-rate reverse-link feedback channel needs to be designed
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Figure 1.2: Block diagram of the low-rate CSI feedback channel.

with care, as the performance of the MIMO link depends critically on the accurate and timely

availability of the CSI at the transmitter. Consequently, the problem of CSI feedback has

been studied in detail in recent years (see, for example, [4] for an excellent survey of related

literature). The design of the low-rate feedback channel and proposing schemes for improving

its reliability and resilience to noise and fading impairments is the focus of this thesis. Figure 1.2

shows a block diagram of the feedback channel for conveying the CSI from the receiver to the

transmitter. Designing the feedback channel involves specifying each of the operations in the

diagram to obtain as high a quality of received CSI at the base station transmitter as possible.

We start with a brief overview of the existing MIMO CSI feedback schemes, and discuss their

relative merits and shortcomings.

1.1.1 CSI Feedback in MIMO Systems

In this subsection, we discuss some of the design issues associated with conveying the CSI from

the receiver to the transmitter over a low-rate feedback channel that have been addressed in

recent literature. The feedback channel design is essentially a problem of communication link

design, where the goal is to reconstruct the CSI at the transmitter with as high fidelity and

as low latency as possible. The CSI can itself be considered to be a random source that needs

to be source-encoded, or quantized, to a finite number of bits prior to transmission. Popular

techniques used to compress the CSI include scalar/vector quantization based approaches [4–6]

and Grassmannian manifold based approaches [7]. The quantization-based approach has found
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widespread acceptance in the industry also, and has made its way into present-day communica-

tions standards such as the 3GPP [8], LTE-A [9, 10], IEEE 802.11n [3]. We now briefly review

the codebook based feedback methods supported in these standards.

1.1.1.1 IEEE 802.11n

The IEEE 802.11n standard is an Orthogonal Frequency Division Multiplexing (OFDM) stan-

dard, wherein the channel state consists of the channel matrix corresponding to each subcarrier,

and there are 108 such subcarriers. Thus, quantization methods need to be penurious with the

number of bits allocated for representing the channel matrix on each subcarrier, since the total

feedback overhead is the product of the bits used per subcarrier and the number of subcarriers.

In the IEEE 802.11n, three different explicit feedback methods are supported:

(a) CSI matrix feedback method: In this method, the receiver quantizes the maximum absolute

real or imaginary part of the entries of the channel matrix in each subcarrier using 3 bits.

Then, the other entries in the channel matrix are normalized by the largest in magnitude

entry and the resulting normalized values are quantized using 4 to 8 bits per real and

imaginary part of the entry.

(b) Non-compressed beamforming matrix feedback method: In this case, the receiver first com-

putes a precoding matrix with orthonormal columns, and then sends a 2 to 8 bit quantized

version of the precoding matrix. The quantization is based on a codebook consisting of

candidate precoding matrices specified by the standard.

(c) Compressed beamforming matrix feedback method: In this case, the receiver sends quan-

tized Givens rotation angles that are used to represent the orthogonal precoding matrix

corresponding to the current channel state.

Of the three, the CSI matrix feedback method is the most straightforward approach, as it allows

the transmitter to construct the precoding matrix based on its received quantized CSI, but it

requires a larger data overhead compared to the other two methods. The latter methods are

more efficient in terms of the feedback overhead, but are directly tied to the specific precoding

scheme employed by the transmitter.
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1.1.1.2 IEEE 802.16e/WiMax

This is also an OFDM based standard. The standard provides several codebooks for 2, 3 and

4 transmit antennas. Precoding matrices using 3 bits per codebook entry are constructed using

Grassmannian codebooks. For higher number of transmit antennas, 6 bit codebooks are used,

which are obtained using a generator vector that is multiplied by Householder reflection matrices

and a diagonal matrix, to save the memory space required for storing the codebooks.

1.1.1.3 3GPP-LTE

The 3GPP LTE is also an OFDM-based standard, which supports codebook based CSI feedback

with 2 or 4 transmit antennas. In the 2 transmit antenna case, a codebook with 3 precoding

matrices and 2 antenna selection vectors is supported. With 4 transmit antennas, a 4 bit

codebook is supported for 1 to 4 spatial streams. The number of spatial streams dictate the

number of orthogonal columns in the precoding matrix. To reduce storage space, the codebook

entries of various spatial streams are designed to have nested structure, with the codebook for

larger number of spatial streams including the codebook with lower number of spatial streams.

The codebooks are used by the base station to adapt the rank of the precoding matrix based on

the link quality. This standard also supports CSI feedback for multi-user MIMO precoding. An

issue with multi-user precoding is that with the limited number of feedback bits, the quantization

error creates multi-user interference, which limits the performance especially at high Signal to

Noise Ratio (SNR). Hence, the codebook size need to be increased with the SNR. However,

designing and practically implementing large codebooks remains a challenge in terms of storage

and encoder complexity.

We now discuss several important aspects of MIMO CSI feedback link design.

1.1.2 Source Coding for Noisy Channels

In the MIMO feedback channel, the CSI can be considered as a random source that needs

to be compressed/quantized at the user terminal, transmitted over a noisy feedback link, and

recovered at the base station, with as low a distortion as possible. This, in turn, can be viewed

as a problem of source compression for noisy channels. In particular, when the state of the

reverse-link channel is independent of that of the forward-link (for example, in FDD systems),

the source encoder is generally unaware of the channel error rate at the time of encoding. This
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necessitates the study of source coding schemes for noisy channels.

In a typical Vector Quantization (VQ) based source compression system, given a source

instantiation, the source encoder looks for the vector in a codebook of vectors that is closest to

the source instantiation.1 The encoder outputs the index of the closest vector, which is then sent

to a source decoder over a noisy channel. Due to possible channel errors, the codeword index

could be received in error. A conventional source decoder picks the codeword corresponding

to the received index as the estimate of the source instantiation. However, due to the channel

induced index errors, the overall distortion incurred at the receiver with such a source optimized

VQ (SOVQ) approach can be considerably higher than the distortion purely due to the source

compression (i.e., for error free channels) [11, 12].

In the literature, one of the two approaches have been used to mitigate the effect of the noisy

channel: optimum Index Assignment (IA) [13–15], and Channel Optimized VQ (COVQ) [16,17].

The former involves mapping codewords to transmit indices such that the most probable error

events result in codewords which are close to the codeword corresponding to the correct index.

In COVQ, the distortion metric is changed to be the expected distortion after accounting for

possible index errors. The codebook is optimized to minimize this expected distortion, resulting

in a channel-optimized set of codewords and encoding regions. It is also possible to use IA and

COVQ simultaneously to obtain robustness.

It is well-known that optimum index assignment is an NP complete problem and, conse-

quently, sub-optimal methods for IA have been proposed [11, 12, 15, 17–20]. IA and COVQ

are techniques that are designed for discrete memoryless channels. Their natural extension for

continuous channels (such as additive white Gaussian noise (AWGN) channel) has also been

explored, and is termed as Soft-Decision VQ (SDVQ). Here, a soft-metric (such as the Log-

Likelihood Ratio (LLR)) is used to estimate the source instantiation, and the expected distortion

(after averaging over the noise statistics) is used to define a new set of encoding regions [21,22] at

the transmitter. However, these methods cannot be used in the case of the MIMO reverse-link

channel, as both the methods require the knowledge of the channel statistics to be available

to the encoder in order to be implementable. This is not possible, especially in FDD systems,

where the forward and reverse channels are independent.

1The notion of “closest vector” will be defined more precisely later in the thesis.
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Table 1.1: Examples of transmission schemes for MIMO channels, where CSIR refers to the

availability of the perfect CSI at the receiver and CSIT refers to the availability of the perfect

CSI at the transmitter.

CSIT, no CSIR CSIT, CSIR

Zero-forcing

Vector perturbation

O-STBC and QR-based

precoding (see Chapter 4)

BLAST code

STBC

STTC

Spatial multiplexing

no CSIT, no CSIR no CSIT, CSIR

USTC

Linear dispersion codes

STBC

BLAST code

STTC

1.1.3 Channel Coding for MIMO CSI Feedback

Note that the reverse-link channel is also a MIMO fading channel. This naturally raises the

question of what technique, or techniques, can offer the best performance for conveying the

CSI back to the transmitter. Typically, it is of interest to consider coding and transmission

schemes that offer as high a diversity order as possible. The specific scheme used depends on

the availability of the state of the reverse-link channel at the transmitter and receiver. The main

techniques employed in the literature under different assumptions on the availability of the CSI

at the transmitter (user terminal) and receiver (base station) are listed in Table 1.1. Further

challenges in the design of diversity transmission schemes for the MIMO reverse-link channel

will be discussed in the next section.

Note that the MIMO reverse-link channel is typically a fixed-rate channel, i.e., the channel

is quantized using a given, fixed number of bits, and the finite-bit representation of the CSI

is sent back to the transmitter. In this scenario, an important metric of the performance of

the feedback link is its diversity order. Loosely speaking, the diversity order is the limit of the

slope of the probability of error versus SNR curve plotted on a log-log scale, as the SNR goes

to infinity.

Next, we discuss the challanges in designing the MIMO CSI feedback system.
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1.2 Challenges in MIMO CSI Feedback Design

As mentioned earlier, in typical MIMO communication systems, the CSI is sent from the re-

ceiver to the transmitter over a low-rate feedback (control) channel. Hence, one challenge is to

compress, or quantize, the available CSI at the receiver using a small number of bits. In the

literature, methods based on fixed-rate lossy source coding such as Scalar Quantization (SQ)

and Vector Quantization (VQ) have been studied [23]. Different aspects of the CSI feedback

such as the impact of errors in the feedback link, delay, etc. have also been considered. However,

when the receiver uses a highly efficient source coding technique to compress the available CSI,

the resulting data bits could be very sensitive to noise introduced when they are transmitted

over the feedback channel. Moreover, the channel error rate may not be known at the receiver

prior to transmission. Hence, one challenge in the MIMO CSI feedback design is to come up

with techniques to mitigate the errors in the CSI at the transmitter introduced due to the

transmission of the quantized CSI data over a noisy feedback link.

One way to handle errors in the feedback link is to use a channel code. In designing such a

code, one has to keep in mind the requirements of keeping the code length short and the decoding

algorithm simple. Otherwise, the delay in receiving and decoding the CSI at the transmitter

would render the feedback practically useless. Hence, a challenge is to come up with low latency

codes that offer good coding gain with low decoding complexity.

Another challenge in the design of MIMO CSI feedback links is that the signal sent over the

feedback channel is related to handling the adverse effects of fading and multipath in the wireless

link. In particular, in TDD systems, due to channel reciprocity, the forward and reverse-link

channel are the same (or very nearly the same). In this case, if the receiver were to acquire

CSI through the forward-link training, an interesting challenge is to design the CSI feedback

signaling scheme to exploit the receiver’s knowledge of the channel, to efficiently feed back the

CSI to the transmitter.

In summary, a well-designed MIMO CSI feedback communication scheme should (a) com-

press the CSI using as few data bits as possible; (b) encode the data bits using a channel code

that is of short length and that admits low complexity, fast decoding at the receiver; (c) employ

a transmission scheme that offers as large a diversity order; and (d) use filtering or other mech-

anisms at the receiver to mitigate the excess distortion introduced when a highly compressed
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source is transmitted over a noisy channel. Meeting these challenges would improve the per-

formance of the reverse-link feedback channel, which would result in accurate and up-to-date

availability of CSI at the transmitter. This, in turn, translates to an improved forward-link data

rate and/or BER performance in the system. We now briefly present the main contributions of

this thesis in light of the above discussion.

1.3 Contributions

In this thesis, we consider the design of the MIMO reverse-link CSI feedback communication

channel, and design source coding, channel coding and diversity schemes to improve its perfor-

mance. Our specific contributions are as follows:

• The first problem we address is the source compression of CSI from the receiver to the

transmitter2 in noisy feedback channel conditions. We propose receiver-only adaptation

methods for minimizing the end-to-end average distortion of a fixed-rate source quantiza-

tion system. For the source encoder, both Scalar and Vector Quantization (SQ and VQ)

are considered. The codebook index output by the encoder is sent over a noisy discrete

memoryless channel whose statistics are unknown at the transmitter. Due to the latter

assumption, the index assignment is considered to be random, which leads to an equiv-

alent symmetric error channel for the index transition probabilities. At the receiver, the

code vector corresponding to the received index is passed through a linear receive filter,

whose output is an estimate of the source instantiation. Under this setup, an expression

for the average Weighted Mean Square Error (WMSE) between the source instantiation

and the reconstructed vector at the receiver is derived using high resolution quantization

theory. Also, a closed-form expression for the optimum linear receive filter that minimizes

the average WMSE is derived. The generality of framework developed is further demon-

strated by theoretically analyzing the performance of other adaptation techniques that

involve the transmitter also, such as joint transmit-receive linear filtering and codebook

scaling. Monte Carlo simulation results validate the theoretical expressions, and show

that, depending on the channel statistics, a significant improvement in the WMSE can be

2Here, by “receiver” and “transmitter” we refer to the reverse-link receiver (which is the same as the forward-
link transmitter) and the reverse-link transmitter (which is the same as the receiver of the forward-link),
respectively.
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obtained using the proposed linear receive filtering technique.

As an extension of this work for non-symmetric error channels with a given (fixed) index

assignment, we present a novel method for analyzing the total distortion as a convex com-

bination of the distortion under random IA and the distortion under what we call ideal IA

conditions. Using this, we derive expressions for the optimum receive filter that minimizes

the end-to-end distortion for the given channel, and analyze its distortion performance.

A third contribution in this context is that we propose a new receive processing scheme that

is applicable to continuous channels such as the AWGN channel, which we term semi-hard

decision VQ. Here, the receiver makes uses the log likelihood ratios of the received data

bits to declare data bits to be in erasure or make hard decisions. The receiver then uses the

decoded index, possibly with data bits marked as erased, to estimate the transmitted code

vector. We theoretically analyze this scheme for both random IA as well as specific IA,

and show how to pick the erasure threshold to minimize the distortion performance. We

compare the performance of this scheme with linear receive filtering, conventional source

optimized VQ and channel optimized VQ, to demonstrate the performance gains under

low SNR conditions. These topics are covered in Chapters 2, 5 and Appendices A, B.

• The second problem we address is the design of low latency error correction codes. We

present a new family of block codes referred to as Trellis Coded Block (TCB) codes, which

are built using a trellis code and a linear block code (LBC). The TCB code (TCBC)

construction is based on an algebraic structure inherent to many LBCs, which allows one

to partition an LBC into sub-sets with a constant distance between every pair of code words

in the subset. The proposed uniform sub-set partitioning is used to increase the minimum

distance of the code, as in trellis coded modulation (TCM). However, unlike conventional

TCM, the coding and modulation steps are separated in TCBC. An advantage of this

construction is that it can be applied to both discrete as well as continuous channels, while

conventional TCM is typically designed for continuous channels. The proposed TCBC is

shown to be useful in a variety of applications including forward error correction, low

rate quasi-orthogonal sequence generation, lattice code construction, etc. Moreover, the

encoder and decoder for TCBC are realized using off-the-shelf trellis and block encoders

and trellis decoders. Simulation results demonstrate the performance benefits offered by

the TCBC in a variety of applications, and compares them to other existing state of the
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art codes. These topics are covered in Chapters 3, 5 and Appendices C, D.

• Our third contribution addresses the problem of maximizing the diversity order achievable

in the MIMO feedback channel when the transmitter (user terminal) has knowledge of the

CSI. Transmission of data when CSI is available at the transmitter arises, for example, in

a TDD system, where the forward and reverse channels are the same. Hence, once the

receiver acquires the CSI through an initial round of training on the forward-link channel,

the reverse-link feedback channel corresponds to a scenario where the CSI is available at

the transmitter but not at the receiver. Here, we propose novel transmit diversity tech-

niques for Rayleigh fading MIMO systems when CSI is available at the transmitter, but

not at the receiver. Our proposed precoding schemes convert the fading MIMO channel

into a fixed-gain AWGN channel, while satisfying an average power constraint. Hence, the

proposed precoding schemes achieve an infinite diversity order, which is in sharp contrast

with perfect CSIR based schemes, which at best achieve a finite diversity order. Moreover,

the proposed schemes are simple-to-implement and facilitate single-symbol maximum like-

lihood decoding at the receiver. We extend the first precoding scheme to the multiuser

Rayleigh fading Multiple Access Channel (MAC) and the third precoding scheme to the

multiuser Rayleigh fading MAC, broadcast (BC) and interference channels (IC). We show

that the proposed schemes convert the fading MIMO channel into fixed-gain and paral-

lel AWGN channels in all three cases. Monte Carlo simulations illustrate the significant

performance improvement obtainable from the proposed precoding schemes compared to

existing diversity techniques.

• All the above methods are applied to the MIMO reverse-link CSI feedback channel, to study

how the techniques work when implemented in a practical communication system. To this

end, we construct an end-to-end simulation platform that includes all the source coding,

receive filtering, channel coding and transmit diversity techniques presented in this thesis.

This comprehensive setup allows us to evaluate the interoperability and performance of

different combinations of the proposed techniques. The quality of the CSI reconstructed

at the base station, measured both in terms of the mean squared error and the down-link

data rate, are used as performance metrics for numerical evaluation. We demonstrate the

performance improvement from the proposed techniques, using Monte Carlo simulations.

This topic is covered in Chapter 5.
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We note that although we have presented the above techniques in the context of the MIMO

reverse-link CSI feedback channel, they are directly applicable to many other communication

systems. The transmit diversity schemes we propose can be used whenever the transmitter has

channel state information, as in, for example, TDD systems with receiver-initiated training.

Also, the receive filtering techniques are applicable, for example, for alleviating the distortion

due to channel errors in data storage systems, since the error rate of the storage system is

generally not known at the time of encoding. Finally, the proposed TCBC can be used in any

application that calls for low latency and low complexity codes with good coding gain.
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1.4 Organization

This rest of the thesis is organized as follows.

• Chapter 2 describes the design, optimization and analysis of a linear filter at the receiver in

order to mitigate the excess distortion incurred in a fixed-rate source compression scheme

due to index errors introduced by the noisy channel. This chapter presents two types of

techniques: one suitable for hard-decision decoders and another for soft-decision decoders.

The necessary material from high resolution analysis and other related derivations for this

chapter are given in Appendix A. An alternate method for deriving the optimum receive

filter is provided in Appendix B.

• Chapter 3 introduces the low latency and low decoding complexity error correction code we

propose, which we term as a Trellis Coded Block Code (TCBC). The proofs of the theorems

and lemmas in this chapter are covered in Appendix C. Three different applications of

TCBC are illustrated in Appendix D.

• Chapter 4 gives three novel transmit diversity schemes which not only employs compu-

tationally simple algorithms at the transmitter but also admits low complexity optimal

decoding at the receiver. Some of the mathematical derivations pertaining to this chapter

are detailed in Appendix E.

• Chapter 5 applies all of the methods discussed in earlier chapters to the MIMO reverse-

link channel for designing the low-rate noise-resilient feedback channel for transmitting

the channel state information (CSI) to the transmitter. End-to-end simulation results are

presented that show the joint benefits of using the new code, the new diversity technique

with CSI data available only at the transmitter, and the receive filtering technique to

minimize the overall distortion. Further, the benefit of minimizing the distortion on the

received CSI on the data rate performance of the forward-link is quantified.

• Finally, Chapter 6 concludes the thesis and lists the possible future extensions.



Chapter 2

Receive Filtering for Source Coding

with Noisy Channels

“Lead us from the unreal to the real. Lead us from darkness to light. Lead us from death to im-

mortality. Om Shanthi, Shanthi, Shanthi!” - Brihadaranyaka Upanishad

2.1 Introduction

2.1.1 Motivation and Prior work

One of the methods used for reducing the data rate in the CSI feedback channel is to use an

efficient source encoder to compress the CSI. Vector Quantization (VQ) based source coding is

one of the popular techniques for lossy source compression, for two main reasons: simple off-

the-shelf algorithms are available for designing locally optimum code books that minimize the

average distortion, and the performance of VQ can be accurately characterized using high rate

quantization theory [24,25]. However, the performance of VQ-based source compression can be

very sensitive to errors introduced when the index output by the encoder is transmitted over a

noisy channel (compared to the distortion incurred when the channel is error-free) [11, 12].

VQ over discrete memoryless channels have been studied extensively in the literature, and

two dominant noise mitigation approaches have emerged: optimum index assignment (optimum

IA) [13–15], and channel optimized VQ (COVQ) [16,17]. The former involves mapping codewords

14
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to transmitter indices such that the most probable error events result in codewords which are

close to the codeword corresponding to the correct index. It is well-known that optimum IA is

an NP complete problem, and several sub-optimal methods have been proposed [11, 12, 15, 17–

20]. In COVQ, the distortion metric is changed to be the expected distortion after accounting

for possible index errors, and a new set of codewords and encoding regions are designed so

that the overall expected distortion is minimized. IA and COVQ are techniques that work

well for discrete memoryless channels, and can also be used simultaneously. Their natural

extension for continuous channels (such as the additive white Gaussian noise (AWGN) channel)

has also been explored, and is termed as soft-decision VQ (SDVQ). Here, a soft-metric (such

as the bit log-likelihood ratio (LLR)) is used to estimate the source instantiation, and the

expected distortion after averaging over the noise statistics is used to define a new set of encoding

regions at the transmitter [21, 22]. In [26], a COVQ that exploits the soft-decision information

from the channel’s output for Rayleigh fading channels was proposed. High-rate analysis of

Fixed Rate Quantizer (FRQ) for noiseless channels has been studied by many authors [11,

24, 25, 27, 28]. The high-rate analysis has also been extended to the noisy symmetric error

channel [29–31]. Similar analysis was extended to a fading symmetric error channel in [32]

where numerical evaluations were used for averaging over the channel realizations. However,

there is little past work on the performance of receiver-only techniques for FRQ. Also, the

aforementioned techniques for improving the distortion performance of FRQ with noisy channels

suffer from two main drawbacks. First, they require knowledge of the channel statistics at the

transmitter, which may not always be available. Second, they are computationally intensive to

optimize (e.g., COVQ or IA) when the number of quantization bits is large and/or the channel

statistics change over time. Moreover, in some applications such as recording the compact

disc, or the reverse-link feedback of channel state information in multiple antenna systems, the

channel statistics are not known at the time of recording/transmission. This motivates the

design of techniques for reducing the average distortion that can be implemented solely at the

receiver. Receive filtering, the focus of our study in this chapter, is a simple adaptation technique

that can be implemented at the receiver only, and can help in reducing the average distortion

performance of FRQ-based source compression schemes.
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2.1.2 Contributions

• In this chapter, we propose, analyze, and optimize two classes of receive filters for minimiz-

ing the average end-to-end distortion of both VQ and SQ under various channel models.

That is, we obtain a closed form expression for the end-to-end distortion, by approximat-

ing the total distortion (average WMSE), when a Linear Receive Filter (LRF) is applied

after the source decoder with random IA (defined in the next section), using high-rate

quantization theory. We then optimize the LRF to minimize the average WMSE. The

novelty in our approach lies in combining the minimum mean square error (MMSE) esti-

mation formulation and high resolution analysis for obtaining an analytical expression for

the optimum LRF. We derive expressions for the performance of an LRF which minimizes

the approximate MSE distortion, with both SQ and VQ. We show that using the pro-

posed LRF results in a lower average WMSE distortion compared to the no-filtering case.

Then, we compare the performance of the LRF with combined transmitter based adaptive

schemes, especially optimum linear transmit-receive filtering and scaled codebook [33] for

showing the benefits of the proposed algorithm. Note that, transmit-receive filtering and

scaled codebook method involve adaptation of the encoding scheme at the transmitter.

Hence, these schemes require knowledge of the channel statistics at the transmitter also.

Through numerical evaluation, it is shown that LRF works as well as COVQ and optimum

linear transmit-receiver filter at low and medium SNR where the distortion due to channel

errors has large impact on the total distortion. The high rate quantization approximations

used in the derivation is given in Appendix A. An alternate derivation for the optimum

LRF using a conventional optimization approach [34] is given in Appendix B.

• Another class of simple receive filtering is introduced for continuous memoryless channels.

This new method termed semi-hard-decision vector quantization (SHDVQ), is proposed

and analyzed for both random IA and good IA. One of the main differences in the pro-

posed method compared to the past work in [21,22] is that, the soft-metric is not used to

recompute a soft output codeword (also known as an estimation based decoder, as against

a detection based decoder) for every received symbol. Instead the receiver first performs

semi-hard-decision decoding and declares some bits as erasures. The other bits may be

received correctly or in error. The resulting index is then mapped to a codeword chosen

based on IA and the erasure bit locations. The proposed method works for both discrete
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channels with possible errors and erasures, and for continuous channels, by applying a

threshold based hard decision on the LLRs to declare erasures. To keep the receiver sim-

ple, a threshold is employed on the LLRs to declare erasures and the decoder outputs a

linear combination of codewords based on the erasure location and IA. The erasure thresh-

old that minimizes the expected distortion after accounting for channel errors and erasures

is computed from the analytical expressions derived in the sequel.

• A novel performance analysis of the average approximate MSE distortion for any given IA

is presented. That is, for any specific IA, we propose to express the total distortion as a

convex combination of the distortion with ideal IA and random IA (defined later). The

specific IA employed determines the factor used in the convex combination, and needs to

be numerically evaluated only once for a given IA and the number of quantization bits B.

The analytical framework and tools presented in this chapter form a powerful technique

for studying and optimizing the high rate performance of VQ with a specific IA for noisy

channels.

2.2 Problem Setup

We consider a random n-dimensional source vector x with zero mean, variance σ2
x and continuous

probability density function (pdf) fx(x) over a compact support Dx ⊂ R
n. The source encoder

maps x to the closest vector y in a codebook C of cardinality N , with respect to the WMSE

distortion d(x,y) , (x−y)TW(x−y), where W is an n×n symmetric positive definite matrix.

Also, for SQ, the matrix W is assumed to be diagonal. For both SQ and VQ, the Lloyd-Max

algorithm [35] is used to design codebooks that are source-optimized for a noiseless channel.

We denote the source-optimized codebook by the set {x̂1, x̂2, . . . , x̂N}, and the corresponding

point density function [25] by λ(x), i.e., there are roughly Nλ(x) dx code points in a small

volume dx containing x ∈ Dx. When a linear transmit filter T is employed, the encoder uses the

transformed codebook C , {Tx̂1,Tx̂2, . . . ,Tx̂N} for nearest-neighbor based quantization. That

is, the encoder outputs index i whenever x ∈ R̃i , {x : d(x,Tx̂i) ≤ d(x,Tx̂j), 1 ≤ j ≤ N}. We

use the notation Ri to represent R̃i with T = I, i.e., without transmit filtering. Now, whenever

x ∈ Ri , {x : d(x, x̂i) ≤ d(x, x̂j), 1 ≤ j ≤ N, j 6= i}, the encoder outputs index i, which is sent

over a noisy Discrete Memoryless Channel (DMC), and is received as a possibly different index
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Figure 2.1: Block diagram of the system model.

j at the receiver. The system model is illustrated in Fig. 2.1.

At the receiver, the VQ decoder outputs the codeword x̂j corresponding to the received

index j (which may not equal i, due to channel-induced index errors), as shown in the Fig. 2.1.

Then, a linear filter R at the receiver outputs Rx̂j as an estimate of the source instantiation x.

Thus, the end-to-end distortion in the source vector x ∈ Ri is d(x,Rx̂j).

2.2.1 Index Assignment

When the index output by the VQ encoder is transmitted over a noisy channel, the index assign-

ment (IA), i.e., the mapping of codewords to the indices that are transmitted over the channel,

plays a role in determining the overall distortion performance. When the bits corresponding to

a given index are transmitted over noiseless channel, all IAs are equivalant. That is, we can

assign any unique B = log2N bit pattern to the codebook vectors. On the other hand, when

the channel is noisy, IA does affect the average distortion, and a good IA can achieve a lower

distortion than a bad IA. However, the number of possible IAs is N !, and the problem of finding

the optimum index assignment is known to be NP complete.

In this chapter, we study two approaches to circumvent the problem of finding the optimum

index assignment. In the first approach, we consider random IA, where the IA is chosen uni-

formly at random from all possible IAs. This can be realized in practice by periodically and

synchronously changing the IA at both the transmitter and receiver, and sequentially employ-

ing all possible IAs. This results in a symmetric error channel as stated earlier [29]. In the

second approach, we implement the Linearity Increasing Swap Algorithm (LISA) , a Hadamard

transform based tool, for finding a good IA [20]. Mathematically, the operation of index assign-

ment results in a non-linear mapping between indices and the corresponding codewords that are

output by the receiver (and also between the source instantiation and the corresponding index

output by the encoder). The LISA tool tries to linearize this non-linear map. The performance
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of VQ for noisy channels with a good IA obtained from the LISA is analyzed by modeling the

IA as a convex combination of an Ideal IA and a Random IA. An IA is said to be “ideal” if any

single bit error on any transmitted index results in an index of one of the codewords which is

closest in distortion sense to the codeword corresponding to the transmitted index. Note that,

it is not guaranteed that such an index assignment is possible for all values of B and dimension

n. Extending this to multi-bit errors, ideal IA ensures that for a given channel error rate, the

distortion caused is smaller than any other IA. However, we assume ideal IA for two reasons.

One, it gives mathematical tractability for analyzing the total distortion as a function of channel

transition probabilities. Two, the distortion computed for ideal IA gives the lowest bound for

the total distortion among all possible IAs. Moreover, for any given values of B and n, ideal

IA condition can be satisfied for a certain fraction of the codewords. This gives the motivation

for modeling the good IA as a convex combination of ideal IA and random IA where a certain

fraction of the codewords have index assignments close to that of ideal IA. This will be discussed

in more detail in the sections to follow. We now describe the channel model used in the study.

2.2.2 Channel Model

For simplicity, we assume that the codebook index i is mapped to a binary sequence and trans-

mitted over a (possibly fading) AWGN channel using uncoded BPSK modulation. However, the

framework presented here can be easily extended to other modulation and coding schemes, as

long as the index transition probability due to channel errors can be computed. We assume that

the channel SNR is known at the receiver, using which, it can compute the probability of error

q given by

q = Q(
√

2γb), (2.1)

where γb is the receiver SNR. When the channel is flat-fading, the SNR γb depends on the

random channel instantiation. The pdf of γb with Lth order diversity is given by

p(γb) =
1

(L− 1)!γLb
γL−1
b e−γb/γb , (2.2)
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where γb denotes the average SNR at the receiver. The probability of error for BPSK transmis-

sion in a fading channel can be calculated by averaging over the distribution of γb as

q =

∫ ∞

0
Q(
√

2γb)p(γb)dγb. (2.3)

We consider the following two models for the BPSK demodulator implemented at the receiver.

2.2.2.1 Hard-Decision Decoding

When the bits are decoded using hard decision decoding, the codebook index transitions can be

modeled as a DMC, with the transition probability being dependent on the IA and the cross-over

probability of the underlying binary symmetric channel. When the IA is random, it is easy to

see that the DMC is equivalent to a symmetric error channel with N ×N transition probability

matrix [29] whose (i, j)th element Pj|i represents the probability that the index i is received as

index j, given by

Pj|i = ǫN + (1−NǫN )δ(i, j), (2.4)

where δ(i, j) = 1 when i = j and 0 otherwise; and ǫN = (1− (1− q)B)/(N − 1). For any given

specific IA, the transition probability is given by

Pπ(j)|π(i) = qWH(π(j)⊕π(i))(1− q)B−WH(π(j)⊕π(i)),

where π : [1, 2, . . . , N ] → [1, 2, . . . , N ] denotes the IA (a bijective map), a⊕ b denotes the XOR

operation between the binary vectors a and b and WH(b) denotes the Hamming weight of b.

2.2.2.2 Channel Model for Vector Quantization

In this work, we abstract the combined channel1 as a DMC, and parameterize the index transition

probability using the channel bit error rate. With random IA, the N ×N transition probability

matrix has its (i, j)th element Pj|i given by (2.4), where N = Nv is the number of codebook

vectors used.

1The effective channel comprising the channel encoder, the noisy channel, and channel decoder is referred to
as the combined channel.
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2.2.2.3 Channel Model for Scalar Quantization

When the bits are encoded using a scalar quantizer, the codebook index transitions for random

IA can again be modeled as a DMC. The N ×N transition probability matrix is given by (2.4),

where, now, N = Nn
s , and Ns is the number of quantization levels per dimension.

2.2.2.4 Semi-Hard Decision Decoding

Here, it is assumed that the receiver first computes the Log-Likelihood Ratio (LLR) from the

received symbol, and either outputs a bit or declares an erasure, depending on whether the

magnitude of the LLR exceeds or falls below a threshold. The threshold at which the receiver

declares an erasure is a design parameter, that will be optimized later.2 In this case, the AWGN

channel is converted into a binary symmetric error and erasure channel, where a bit is erased with

probability ρ and toggled with probability α. For a B bit transmission, the channel transition

probability matrix is now given by its (i, j)th element Pj|i = ρB1αB2(1− ρ− α)B3 , where B1 is

the number of erasures in received index j, B2 is the number of incorrectly received bits, and

B3 = B − B1 − B2 is the number of bits received correctly. For example, the P matrix (for

B = 2) can be written as














00 01 10 11

00 (1− α− ρ)2 α(1− α− ρ) α(1− α− ρ) α2

01 α(1− α− ρ) (1− α− ρ)2 α2 α(1− α− ρ)

10 α(1− α− ρ) α2 (1− α− ρ)2 α(1− α− ρ)

11 α2 α(1− α− ρ) (1− α− ρ)2 α(1− α− ρ)

0E 1E E0 E1 EE

ρ(1− α− ρ) αρ ρ(1− α− ρ) αρ ρ2

ρ(1− α− ρ) αρ αρ ρ(1− α− ρ) ρ2

αρ ρ(1− α− ρ) ρ(1− α− ρ) αρ ρ2

αρ ρ(1− α− ρ) αρ ρ(1− α− ρ) ρ2














where E denotes a bit erasure.

Depending on the decoded and erased bit positions, the decoder chooses one of the codewords

2If the threshold is set to zero, this channel defaults to the hard-decision decoding channel.
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(which are precomputed depending on the erasure location and IA) as the estimate of the

transmitted vector. Moreover, to keep the storage requirements minimal, additional codewords

are stored only for all 1 bit erasure cases. Hence, there are B 2B−1 additional codewords at

the receiver apart from the 2B codewords used for no-erasure cases. In the sequel, the Sec. 2.4

describes the design of the new codewords used at the receiver.

2.2.3 Optimization Problem

At the receiver, upon receiving j, the decoder outputs the corresponding codebook entry y , x̂j ,

which is multiplied by a linear receive filter R to obtain Ry as an estimate of x. Thus, the

end-to-end distortion in the source vector x ∈ Ri is d(x,Ry). The average distortion is given

by

J = E[(x−Ry)TW(x−Ry)] =
N∑

i,j=1

Pj|i

∫

Ri

(x−Rx̂j)
TW(x−Rx̂j)fx(x) dx, (2.5)

where the expectation is taken over both the source distribution and the channel transition

probabilities. Hence, our goal is to analyze (2.5) and design the LRF, R, to minimize the

average WMSE distortion. The next section presents the derivation of the optimal LRF.

2.3 Optimum Linear Receive Filters

2.3.1 Receive Filter for Random IA

Let x ∈ Ri be the source instantiation and y be the corresponding codeword at the receiver,

which could be different from x̂i due to channel errors. Then, the vector y can be written as

y = x+ n, (2.6)

where n is an additive noise vector. For the development to follow, it will be necessary to

consider two cases for y separately: y = x̂i when the correct index is received, and y = ŷ when

an incorrect index is received. Hence, when the channel makes no error, n = x̂i − x. When the

channel does make an error, n = ŷ−x, where ŷ is chosen uniformly among all other codewords

{x̂1, x̂2, . . . , x̂i−1, x̂i+1, . . . , x̂N} due to the structure of the index transition probability matrix.
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Equivalently, n is distributed as

fn(n) =







(x̂i − x), with probability 1− (N − 1)ǫN

(ŷ − x), with probability (N − 1)ǫN
, (2.7)

where ŷ is spatially distributed according to λ̃y(y) = cλx(y),y /∈ Ri and 0 otherwise, where

c is a normalization constant chosen such that
∫

Dx
λ̃y(y)dy = 1. Exactly which ŷ, among the

(N − 1) possible error codewords is received, depends on the assumption made on the type of

index assignment (IA). This is considered in two separate cases: (i) the random IA case, and

(ii) the good IA case, in the sequel.

2.3.1.1 Linear Receive Filter for VQ

Let Σxy , E[xyT ] and Σyy , E[yyT ]. The optimal LRF, Ropt, that minimizes the WMSE cost

function (2.5) is given by the well-known expression [36]

Ropt = ΣxyΣ
−1
yy . (2.8)

The main result of this chapter, stated as the following theorem, is valid under standard high-

rate approximations [11, 27, 28]. The key results from high rate quantization theory that are

relevant to our work are briefly reviewed in Appendix A.

Theorem 1. The LRF that minimizes an approximation of the average WMSE distortion in

(2.5) when the VQ index is transmitted over an SEC with index error rate ǫN is given by

Ropt = Σ̃xx

[
NǫN

1−NǫN
Σλ + Σ̃xx

]−1

, (2.9)

where Σ̃xx , Σxx −Θ, with Θ , ΦnΓnN
−2
n , Φn ,

κ
−2
n

n |W|
1
n

n+2 W−1, Γn ,

[∫

Dx
f

n
n+2
x (x) dx

]n+2
n

,

and Σλ ,
∫

Dy
yyTλ(y) dy. The corresponding minimum average WMSE is given by

E
Ropt

d,V Q = tr

(

W

[

Σxx − (1−NǫN )Σ̃xx

(
NǫN

1−NǫN
Σλ + Σ̃xx

)−1

Σ̃T
xx

])

, (2.10)

Proof. In order to derive the optimum receive filter, one needs to derive expressions for the

covariance matrices Σxy and Σyy. Now, from (2.6), Σxy = E[x(x+n)T ] = Σxx+E[xnT ]. Using
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the distribution of n in (2.7), E[xnT ] can be written as

E[xnT ] = (1− (N − 1)ǫN )E[x(x̂i − x)T ] + (N − 1)ǫNE[x(ŷ − x)T ]. (2.11)

The expectation in the first term above is approximated as

E[x(x̂i − x)T ] =

N∑

i=1

∫

Ri

x(x̂i − x)T fx(x) dx (2.12)

≈ −
N∑

i=1

fx(x̂i)

∫

Ei

(x̂i + e)eT de = −Θ, (2.13)

where e , (x− x̂i) and Ei , {e : e+ x̂i ∈ Ri}. The above is obtained using the approximations

that the polytope generating the Voronoi regions is geometrically centered about the origin [25]

and the expression for E[eeT ] from (A.9) in Appendix A.2.

Similarly, E[x(ŷ − x)T ] can be shown to be

E[x(ŷ − x)T ] =

N∑

i=1

∫

Ri

fx(x)




1

N − 1











N∑

j=1

x(x̂j − x)T



− x(x̂i − x)T









 dx (2.14)

≈ − N

N − 1
Σxx +

1

N − 1
Θ. (2.15)

The fact that E[x] = 0 and the approximation in (2.13) has been used to obtain the above.

Σxy = (1−NǫN )Σ̃xx. (2.16)

Now, Σyy = E[(x+ n)yT ] = E[xyT ] + E[xnT ]T + E[nnT ], and note that the first two terms

are as derived above. Using (2.7), Σnn , E[nnT ] is given by

Σnn = (1− (N − 1)ǫN )E[(x̂i − x)(x̂i − x)T ] + (N − 1)ǫNE[(ŷ − x)(ŷ − x)T ], (2.17)

with x̂i being the codeword corresponding to the source instantiation x and with ŷ being chosen

uniformly among all other codewords {x̂1, x̂2, . . . , x̂i−1, x̂i+1, . . . , x̂n} due to the structure of

the index transition probability matrix. The expectation in the first term is given by (A.9) in

Appendix A as E[(x̂i −x)(x̂i −x)T ] = Θ. To compute the expectation in the second term, note
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that E[(ŷ − x)(ŷ − x)T ] =
∑N

i=1

∫

Ri
E[(ŷ − x)(ŷ − x)T |x]fx(x) dx. Now, if x ∈ Ri, we have

E[(ŷ − x)(ŷ − x)T |x] =
1

N − 1





N∑

j=1

(x̂j − x)(x̂j − x)T − (x̂i − x)(x̂i − x)



 (2.18)

≈ N

N − 1

(
Σλ − xµT

λ − µλx
T + xxT

)
− 1

N − 1
(x̂i − x)(x̂i − x)T ,

where µλ , 1
N

∑N
j=1 x̂j ≈

∫

Dy
yλ(y) dy and Σλ , 1

N

∑N
i=1 x̂ix̂

T
i ≈

∫

Dy
yyTλ(y) dy from the

Monte Carlo approximation [29], and can be computed in closed-form given the source-optimized

point density of the codebook. Hence,

E[(ŷ − x)(ŷ − x)T ] ≈ N

N − 1
(Σλ +Σxx)−

1

N − 1
Θ. (2.19)

Again, the fact that E[x] = 0 and (A.9) in Appendix A have been used to obtain the above

expression. Substituting the above into (2.17) and using the result to evaluate Σyy, we obtain

Σyy = (1−NǫN )Σ̃xx +NǫNΣλ. (2.20)

Substituting (2.16) and (2.20) in (2.8), the optimum LRF can now be obtained as given in

(2.9). Finally, substituting for Ropt in (2.5) and simplifying the resulting expression yields the

following:

ERopt
d,V Q = tr

(
W
[
Σxx − ΣxyR

T
opt −RoptΣyx +RoptΣyyR

T
opt

])
(2.21)

= tr
(

W
[

Σxx − (1−NǫN )RoptΣ̃
T
xx

])

. (2.22)

The expression in (2.10) follows by substituting for Ropt from (2.9) in the above, completing the

proof.

Remark 1. The covariance of the output of the decoder, denoted Σyy, given by (2.20), is valid

for 0 ≤ ǫN < 1
N . Note that, when ǫN = 0, we have Σyy , E{x̂ix̂

T
i } = Σxx−Θ 6= 1

N

∑N
i=1 x̂ix̂

T
i ,

Σλ.
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2.3.1.2 Comparison with No Filtering

The expectedWMSE without the LRF is obtained by substitutingR = I in (2.5) and simplifying,

as

Econv
d,V Q = tr

(

W
[

Σxx − (1−NǫN )Σ̃xx +NǫNΣλ

])

. (2.23)

The above equation is interesting, as it provides an accurate and easy-to-evaluate expression

for the expected WMSE of VQ with a noisy DMC and random IA. With some manipulation, it

can be shown to be equivalent to the expected distortion expression in the literature [30] (see

Theorem 1), and hence, it can be viewed as an alternative and perhaps simpler derivation of

that result. Now, substituting for E
Ropt

d,V Q from (2.22), the reduction in the WMSE distortion due

to the LRF is given by

Econv
d,V Q − E

Ropt

d,V Q = tr



W



(1−NǫN )Ropt Σ̃
T
xx
︸︷︷︸

a

−(1−NǫN )Σ̃xx +NǫNΣλ







 . (2.24)

Substituting for Ropt from (2.9) and replacing Σ̃xx with
(

Σ̃xx + NǫN
1−NǫN

Σλ

)

− NǫN
1−NǫN

Σλ for the

term marked a in the above equation, since Σ̃xx is a symmetric matrix, we get

Econv
d,V Q − E

Ropt

d,V Q = tr



W



NǫN



I− Σ̃xx
︸︷︷︸

b

(

Σ̃xx +
NǫN

1−NǫN
Σλ

)−1


Σλ







 . (2.25)

Applying the same substitution for the term marked b, we get

Econv
d,V Q − E

Ropt

d,V Q = tr






W







N2ǫ2N
1−NǫN

Σλ

(

Σ̃xx +
NǫN

1−NǫN
Σλ

)−1

Σλ

︸ ︷︷ ︸

c













. (2.26)

Since Σ̃xx = Σxx −Θ and Θ decreases as N−2/n, Σ̃xx is positive definite for sufficiently large

N . Due to the positive definiteness of Σλ, the matrix marked c is positive definite, and hence,

the LRF offers a positive improvement performance over no filtering for all channel conditions.
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2.3.1.3 Linear Receive Filter for SQ

In this section, we derive the optimum LRF for SQ of a vector source, and characterize the

improvement in the performance from receive filtering. In practice, it is typical to use SQ when

the source dimensions are independent and the distortion function is separable, e.g., when W

is a non-negative diagonal matrix. Hence, in this section, attention is restricted to independent

random variables in each of the dimensions of the vector source and the weighting matrix W is

set as the identity matrix.

Let Ns be the number of quantization levels per dimension for SQ, so that N = Nn
s is the

size of the overall n-dimensional codebook. Within a given dimension, the probability that a

codebook index i is incorrectly received as an index j 6= i is N
(n−1)
s ǫN . This is because the

n-dimensional codebook has N
(n−1)
s indices with j as the component of the index in the given

dimension. Due to this, we obtain the following marginal index transition probability matrix

for each dimension: P
(SQ)
j|i , Nn−1

s ǫN +(1−Nn
s ǫN )δ(i, j), where 1 ≤ i ≤ Ns and 1 ≤ j ≤ Ns are

per-dimensional codebook indices and ǫN is as defined in the previous section. It is interesting to

note that the equivalent pairwise index error rate of SQ, ǫNs , Nn−1
s ǫN satisfies NsǫNs = NǫN .

Now, the total distortion with SQ is simply the sum of distortions incurred in each of the

dimensions. Hence, the optimum LRF in the i-th dimension, which is a scaling factor denoted

ropt(i), can be obtained by setting n = 1 in (2.9) and substituting the above index transition

probability, as follows:

ropt(i) =

(

σ2
xi
− Γi

N−2
s

12

)[
NǫN

1−NǫN
σ2
λi

+ σ2
xi
− Γi

N−2
s

12

]−1

, (2.27)

with σ2
xi

and σ2
λi

being the i-th diagonal components of Σxx and Σλ, respectively, and Γi ,
[
∫

Di
f

1
3
Xi
(x) dx

]3

. Here, fXi
(x) is the pdf and Di is the domain, of the i-th component of x.

Using (2.27) and (2.22), the expected MSE after LRF for SQ can be obtained as

E
Ropt

d,SQ =
n∑

i=1

σ2
xi
− (1−NǫN )

(

σ2
xi
− Γi

N−2
s

12

)2 [
NǫN

1−NǫN
σ2
λi

+ σ2
xi
− Γi

N−2
s

12

]−1

.(2.28)
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2.3.1.4 Comparison with No Filtering

Without receive filtering, we can obtain an expression for the expected distortion of SQ for noisy

channels by substituting n = 1 in (2.23) and simplifying, to get:

Econv
d,SQ =

n∑

i=1

[

(1−NǫN )Γi
N−2

s

12
+NǫN

(
σ2
xi
+ σ2

λi

)
]

. (2.29)

The reduction in the MSE distortion due to the LRF can be obtained from (2.26) as

Econv
d,SQ − E

Ropt

d,SQ =

n∑

i=1

N2ǫ2N
1−NǫN

σ4
λi

[
NǫN

1−NǫN
σ2
λi

+ σ2
xi
− Γi

N−2
s

12

]−1

, (2.30)

and the terms in the summation above are all positive for reasonably large N . Hence, for high-

rate quantization, the LRF obtains a lower MSE distortion compared to the no filtering case. It

is instructive to compare the above expressions with the average distortion for VQ obtained in

the previous subsection. The simulation results in the next section validate the above analysis

and quantify the relative performance of SQ and VQ with and without receive filtering, for noisy

DMCs.

2.3.1.5 Comparison with Transmitter Adaptation Methods

Now, we derive the optimum linear transmit and receive filter for minimizing the end-to-end

distortion and compare its performance with the receive-only filter. The system model is shown

in Figure 2.2. The past literature relevant for this work include COVQ, where the codebook

is adapted as per the channel statistics [12], and the scheme where a scaled codebook used in

both the transmitter and receiver [33]. In [33], the scaling factor is numerically optimized to

minimize the end-to-end distortion. The optimal scaling factor is depends on the channel SNR,

and can be precomputed and stored as a lookup table.

For the system shown in Figure 2.2, the source instantiation is quantized using the scaled

codebook, where the transmit linear filter (scaling matrix) T is set as T = αI for analytical

tractability and ease of comparison with existing literature. Using such a scaled codebook is

also equivalent to applying a scalar α−1 to the source instantiation prior to quantization, and

applying another scalar α at the decoder output. The model we use here is thus fairly general,

and by choosing R̃ = RT−1, where R is the optimized Rx filter for the given Transmit-only
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ENC DECChannel Rx Filter
X i j Y X = RY

Code book

TX TX
1,

TX2,
...

2
B

{ }

Figure 2.2: Combined transmit and receive filtering system model.

filter T, we can obtain a joint transmit-receive filter. Hence, the following special cases can be

handled in this approach: (a) Rx only filter, when T = I, (b) Transmit-only filter, when R = I

and (c) Transmit-Receive filter, when the optimum R is computed for the given T.

Now, the noise n can be written as n = y−x. Its PDF given by the following, when x ∈ R̃i

fn(n) =







x̃i − x ,with probability (1− (N − 1)ǫN )

x̃j − x ,with probability (N − 1)ǫN
, (2.31)

where R̃i denotes the modified Voronoi region according to the scaled codebook {Tx̂i}.

R̃i ,
{
x : (x̃i − x)TW(x̃i − x) < (x̃j − x)TW(x̃j − x), j 6= i

}
. (2.32)

Also, define Ẽi by shifting R̃i to the origin by subtracting x̃i from all x ∈ R̃i.

The end-to-end distortion for W-MSE distortion measure can be written as

J = E

{

(x− R̃y)TW(x− R̃y)
}

(2.33)

= tr
[

W
(

Σxx − ΣxyR̃
T − R̃Σyx + R̃ΣyyR̃

T
)]

.

Using high rate quantization cell approximation, one can compute the matrices Σxy,Σyy as

shown in the Rx filter derivation.

Σxy = E
{
x(x+ n)T

}
= Σxx + E

{
xnT

}
(2.34)

E
{
xnT

}
= (1− (N − 1)ǫN )E{x(x̃i − x)T }+ (N − 1)ǫNE{x(ỹ − x)T }, (2.35)
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where x̃i = Tx̂i, ỹ = Tx̂j , j 6= i. Now, E{x(x̃i − x)T } can be written as

E{x(x̃i − x)T } =

N∑

i=1

∫

x∈R̃i

x(x̃i − x)T fx(x)dx,

(a)
≈ −

N∑

i=1

fx(x̃i)

∫

e∈Ẽi

(x̃i + e)eTde,

(b)
≈ −

N∑

i=1

fx(x̃i)

∫

e∈Ẽi

eeTde,

(c)
≈ −

N∑

i=1

fx(x̃i)
Ṽi

n+ 2

(

Ṽ 2
i |W|
κ2n

) 1
n

W−1,

(d)
≈ −N

−2
n κ

−2
n
n |W| 1n

n+ 2
W−1

∫

x∈Dx

λ
−2
n

T (x)fx(x)dx, (2.36)

where we have used the following approximations: (a) fx(x) ≈ fx(x̃i),x ∈ R̃i, (b)
∫

e∈Ẽi
x̃ie

T ≈ 0

due to the geometric centroid nature of the codebook and (c) quantization cell approximation as

an ellipsoid, (d) Monte Carlo integration approximation for large N , and Ṽi denotes the volume

of the new quantization cell R̃i.

To simplify the analytical expressions further, we restrict ourselves to the special case where

xi ∼ N (0, 1) and T = tI, 0 ≤ t ≤ 1. For an n-dimensional Gaussian vector with i.i.d. elements

according to N (0, 1), it can be shown that

c =

∫

f
n

n+2
x (x)dx = (2π)

−n2

2(n+2)

(
n

n+ 2

)n
2

.

To compute the point density of the scaled codebook, one can use the fact that

λT(y) =
1

|T|λx(T
−1y) =

1

tn
f

n
n+2
x

(
x
t

)

c
,

which can be shown to be an i.i.d. Gaussian vector with elements distributed as N
(
0, t2

(
n+2
n

))
.

Now, substituting the above in (2.36), we get

E{x(x̃i − x)T } = −N
−2
n κ

−2
n
n |W| 1n

n+ 2
W−12πt2

(
n+ 2

n

)

(2π)
−n
2

∫

x∈Dx

e
−x

T
x

2

(

1− 2n
n(n+2)t2

)

dx

= −2πN
−2
n κ

−2
n
n |W| 1n t2

n
(

1− 2
(n+2)t2

)n
2

W−1 = −Θt,(2.37)
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where t is constrained to lie in
[√

2
n+2 , 1

)

for the above expression to be meaningful. Note that,

this reduces to −Θ in (A.9) when t = 1, as expected. Next, one can compute E{x(ỹ − x)T }
along similar lines. That is,

E{x(ỹ − x)T } =
N∑

i=1

∫

x∈R̃i

fx(x)
1

N − 1









N∑

j=1

x(x̃j − x)T



− x(x̃i − x)T



 dx

≈ − N

N − 1
Σxx +

1

N − 1
Θt, (2.38)

since
∑N

j=1 x̃j ≈ 0. Substituting (2.37) and (2.38) in (2.35), we get

E{xnT } = −NǫNΣxx − (1−NǫN )Θt (2.39)

Σxy = Σxx + E{xnT } = (1−NǫN )(Σxx −Θt). (2.40)

Now, consider E{yyT }.

E{yyT } = E{(x+ n)yT } = E{xyT }+ E{nxT }+ E{nnT }.

Since E{xyT } and E{xnT } are computed already, we need to compute only E{nnT }.

E{nnT } = (1− (N − 1)ǫN )E{(x̃i − x)(x̃i − x)T }+ (N − 1)ǫNE{(ỹ − x)(ỹ − x)T } (2.41)

= (1− (N − 1)ǫN )Θt + (N − 1)ǫN

N∑

i=1

∫

x∈R̃i

E{(ỹ − x)(ỹ − x)T |x}fx(x)dx,

E{(ỹ − x)(ỹ − x)T |x} =
1

N − 1





N∑

j=1

(x̃j − x)(x̃j − x)T (x̃i − x)(x̃i − x)T



 (2.42)

=
N

N − 1



Σλt
− x




∑

j

x̃j



+ xxT



− 1

N − 1
(x̃j − x)(x̃j − x)T

E{(ỹ − x)(ỹ − x)T } =
N

N − 1
(Σλt

+Σxx)−
1

N − 1
Θt, (2.43)

E{nnT } = (1−NǫN )Θt +NǫN (Σxx +Σλt
) . (2.44)
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Therefore, Σyy can be written as

Σyy = (1−NǫN )(Σxx −Θt) +NǫNΣλt
. (2.45)

By substituting for Σxy, Σyy and Σλt
in (2.33), one can compute the end-to-end distortion for

three special cases of R̃: (a) Transmit-only filter case when R̃ = 1
t I, (b) Optimized Rx filter

when R̃ = Ropt and (c) Scaled codebook when R̃ = I (as in [33]).

For the special case of Σxx = W = I, one can show that ETxFilt
d can be simplified to

ETxFilt
d (t) = n− 2n(1−NǫN )

t




1− 2πN

−2
n κ

−2
n
n t2

n
(

1− 2
(n+2)t2

)n
2






+
n

t2




(1−NǫN )




1− 2πN

−2
n κ

−2
n
n t2

n
(

1− 2
(n+2)t2

)n
2









+NǫN (n+ 2),

where t ∈
[√

2
n+2 , 1

)

. Differentiating the above with respect to t and equating to zero does

not give any insight into the relationship between the t and the other parameters such as

NǫN . Hence, we numerically evaluate the function for various t for the given NǫN and find

the optimal value of t which minimizes the total distortion. Now, we compute the distortion

with the optimal receive filter and with the transmit filter T = tI. Let R̃ = rI. Hence, the total

distortion ETxRxFilt
d can be written as

ETxRxFilt
d (t) = n− 2nr(1−NǫN )




1− 2πN

−2
n κ

−2
n
n t2

n
(

1− 2
(n+2)t2

)n
2






+nr2(1−NǫN )




1− 2πN

−2
n κ

−2
n
n t2

n
(

1− 2
(n+2)t2

)n
2




+NǫNr2t2(n+ 2),

Now, taking a derivative with respect to r and equating to zero gives the optimal value ropt for

the given value of t. That is,

ropt =
(1−NǫN )tr(I−Θt)

(1−NǫN )tr(I−Θt) +NǫN tr(Σλt
)
. (2.46)

Note the similarity of the expression for the optimum receive filter obtained earlier for the
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receive-only filtering case. Substituting this into the total distortion gives the minimum end-to-

end distortion for the combined transmit and receive filtering. Similarly, one can calculate the

total distortion for the scaled codebook given in [33] as follows.

EscaledCB
d (t) = n− 2n(1−NǫN )




1− 2πN

−2
n κ

−2
n
n t2

n
(

1− 2
(n+2)t2

)n
2






+n(1−NǫN )




1− 2πN

−2
n κ

−2
n
n t2

n
(

1− 2
(n+2)t2

)n
2




+NǫN t2(n+ 2),

which also can be evaluated for the optimum value t. Note that, all the above three distortions

can be compared with the total distortion without any filtering. The latter can be obtained by

setting t = 1 in the above the expression for EscaledCB
d (t).

2.3.2 Receive Filter for Ideal IA

For simplicity of presentation, we restrict the analysis to 1 bit errors, which dominates the

performance at moderate-to-high SNRs. The extension of our method to multi-bit errors is

straightforward. The expected distortion can be written as

Ed =
N∑

i=1

fX(x̂i)
N∑

j=1

Pj|i

∫

x∈Ri

d(x,Rx̂j)dx. (2.47)

If at most one bit errors occur, the channel transition probabilities can be written as follows:

Pi|i = Q , (1− q)B

Pj|i =
1−Q

B
=

1− (1− q)B

B
∀j ∈ Si, (2.48)

where Si denotes the set of neighbors for the ith codeword considering all 1 bit errors in the

index corresponding to the ith codeword. In Appendix A, it is shown that (2.47) can be written
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as (A.17) which is reproduced here for convenience.

Eideal
d

.
=

∫

x

fx(x)
[
xT (I−R)TW(I−R)x

]
dx+

nN
−2
n |W| 1n

(n+ 2)κ
2
n
n

[∫

x

fx(x)λ
−2
n (x)dx

]

+
4(1−Q)N

−2
n |W| 1n

n κ
2
n
n

tr
(
W−1RTWR

)
[∫

x

fx(x)λ
−2
n (x)dx

]

.

After some manipulations, the average distortion can be written as

Eideal
d

.
= tr

(
W(I−R)Σx(I−R)T

)

+ ESO
d

[

1 +
4(1−Q)(n+ 2)

n2
tr
(
WRW−1RT

)
]

. (2.49)

Now, straightforward differentiation of the above with respect to R results in an equation for

the optimum receive filter matrix Ropt, as follows:

[
WTRΣT

x +WRΣx −WTΣT
x −WΣx

]
+

4(1−Q)(n+ 2)ESO
d

n2

[
WTRW−T +WRW−1

]
= 0.

For symmetric W and Σx, a closed form expression for Ropt can be obtained as

Ropt =

(

Σx +
4(1−Q)(n+ 2)ESO

d

n2
W−1

)−1

Σx. (2.50)

Clearly, when the channel is error free, i.e., Q = 1, the optimum filter matrix turns out to be

the identity matrix, as expected.

2.3.3 Receive Filter for Specific IA

In this section, we model the expected distortion for a given IA as a convex combination of the

expected distortion for the ideal IA and expected distortion for the random IA. The weighting

constant η used in the combination is determined later using computer simulations. That is,
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the expected distortion can be written as

EIA
d

.
= ηEIdeal

d + (1− η)Erandom
d

= η

{

tr
(
W(I−R)Σx(I−R)T

)
+ ESO

d

[

1 +
4(1−Q)(n+ 2)

n2
tr
(
WRW−1RT

)
]}

+ (1− η)
{
NǫN

[
tr(WΣx) + tr(WRΣλR

T )
]

+ (1−NǫN ) tr
(

W (I−R) Σx (I−R)T
)}

+ (1− η)ESO
d

= [1− (1− η)NǫN ] tr
(
W(I−R)Σx(I−R)T

)

+ ESO
d

(

1 + η

[
4(1−Q)(n+ 2)

n2
tr
(
WRW−1RT

)
])

+ (1− η)NǫN
[
tr(WΣx) + tr(WRΣλR

T )
]
. (2.51)

Using straightforward differentiation with respect to R and equating to zero, we get

Ropt = Σx

[

Σx +
(1− η)NǫN

1− (1− η)NǫN
Σλ +

4η(1−Q)(n+ 2)ESO
d

[1− (1− η)NǫN ]n2
W−1

]−1

. (2.52)

The proportionality constant η can be obtained by simulations3 for the given IA. For a Gaussian

i.i.d. source with variance per dimension σ2 = 1, the optimum receive filter simplifies to

Ropt =

[
n+ 2(1− η)NǫN
n(1− (1− η)NǫN )

I+
4η(1−Q)(n+ 2)ESO

d

[1− (1− η)NǫN ]n2
W−1

]−1

.

It is interesting to note that even if the weight matrix is identity, W = I, there still is a correction

term corresponding to contribution from the ideal IA. That is, the output of the receive filter

is a scaled version of the received codeword. The scale value reduces as ESO
d increases (i.e., less

bits used in the quantization) or as η increases. In presenting simulation results, we evaluate

(2.51) numerically for the computed Ropt in (2.52).

Next, we describe and explore another receive filtering technique for mitigating the channel

noise.

3The parameter η roughly measures what percentage of the IA mapping behaves like an ideal IA. From our
numerical simulations, we have found that η = 0.6 works well for most IAs, and for wide range of B. When η = 0,
the solution in (2.52) converges to (2.9) in Theorem 1, except for some loss in the accuracy of the filter computed
using (2.52). This loss is due to the slightly different approximations used to get the closed form expression.
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2.4 Semi-Hard Decision VQ for Noisy Channel

In this section, we assume that the channel is a binary symmetric error and erasure channel

as described in Section 2.2. Since the receiver uses semi-hard decisions on LLRs (for declaring

erasures), the technique is termed semi-hard-decision VQ.

Recall that the average distortion of a B bit quantizer, for an n-dimensional source with

source distribution fX(x) and an error free channel, can be written as

ESO
d =

2B∑

i=1

∫

x∈Ri

fX(x) d(x,xi) dx. (2.53)

For SOVQ, with MSE as the distortion metric, it is known that [37]

ESO
d =

n

n+ 2
κ

−2
n
n 2

−2B
n

∫

x

λ
−2
n (x) fX(x) dx, (2.54)

where λ(x) is the “point density function”. The source optimized point density function λ(x) =

cf
n

n+2

X (x) where c is a normalization constant [11]. When the index is transmitted via an error

free channel, any IA is optimum. However, if the channel can be modeled as a noisy discrete

memoryless channel with index transition probability matrix P, then the average distortion can

be written as

Ed =
2B∑

i=1

fX(xi)
2B∑

j=1

pπ(i)π(j)

∫

x∈Ri

‖x− x̂j‖22 dx, (2.55)

where π(i) represents the IA, which is a bijective map π : [1 : 2B] → [1 : 2B] and x̂j represents

the codeword vectors used in the receiver decoder. As mentioned earlier, IA is an NP complete

problem and often sub-optimal methods such as simulated annealing [17], Hadamard transform

tool based mapping [20], etc. are used to arrive at a good IA. Thus, in the rest of this chapter, the

notation π(i) is replaced by i for simplicity under the assumption that a good index assignment

has been chosen. The following subsection describes the design of new codewords used at the

receiver. Then, we analytically derive the distortion for the proposed semi-hard decision VQ

scheme. Unlike the previous section, where the receive filter is linear, the receive filter applied

here is non-linear, in the sense that it is a function of the erasure threshold γ that is applied to

the received LLRs to declare erasures (a design parameter, explained later in this section).
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2.4.1 New Codewords

It is known that, for MSE distortion, the optimal codewords x̂j at the receiver for a discrete error

and erasure channel, described by the P matrix, can be expressed as a linear combination of

the codewords xi at the encoder (i.e., xi is the representation vector for Ri, the i
th quantization

region, in the nearest neighbor-based quantizer) as [11]

x̂j =

∑2B

i=1 pijxi
∑2B

i=1 pij
, 1 ≤ j ≤ 3B, (2.56)

where there are 3B codewords at the receiver because each of the B bits could be received

correctly, erased, or flipped. For a continuous channel, the optimum decoder output for SDVQ,

given the channel statistics Pr(R = r|I = i), can be written as [22]

x̂R =
2B∑

i=1

Pr(I = i|R = r) xi, R ∈ DR, (2.57)

where DR is the domain of the received signal vector. For example, if BPSK transmission is

used for transmitting the indices, then DR = R
B. However, defining the codewords as in (2.57)

has the drawback that it requires the computation of the probability terms for each continuous-

valued received symbol, r. Here, it is proposed to employ the new set of codewords given below

for a given P matrix. The use of the proposed codewords allows one to pre-compute them given

the channel statistics, thereby making them more suitable for real-time applications. That is,

in the proposed SHDVQ, the following code points are output by the decoder:

(i) when an index j, 1 ≤ j ≤ 2B is received, x̂j = xj (i.e., the codeword employed at the

transmitter corresponding to index j),

(ii) when a single bit is erased, i.e., for 2B + 1 ≤ j ≤ 2B + B 2B−1, x̂j =
xj,0+xj,1

2 where

xj,0 (similarly, xj,1) is the codeword at the transmitter with index j, but the erasure bit

location is replaced by a bit 0 (similarly, bit 1)4, and finally

(iii) when multiple bits are erased, the decoder outputs the all zero codeword, i.e., for 2B +

B 2B−1 + 1 ≤ j ≤ 3B, x̂j = 0.

4Note that, this does not require the receiver to know j, but only the erasure location. Given the erasure
location, the receiver can compute the mean of the two codewords of the original codebook that could have
resulted in the received bit and erasure sequence.
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The next subsection analytically computes the distortion for such a receiver. In the following,

we consider different cases for the possible errors and erasures in the codeword indices. We start

by computing the expected distortion when either no errors or exactly 1 bit erasures occur.

Then, we analyze the expected distortion when multi-bit erasures occur, and when 1 bit errors

occur. As mentioned earlier, we ignore the events where multi-bit errors occur, as this is a low-

probability event for moderate-to-high SNRs. Finally, we obtain the overall average distortion

by multiplying these average distortion expressions with their corresponding probabilities of

occurrence.

2.4.2 Average Distortion with 1 Bit Erasure and Ideal IA

Consider the case where at most 1 bit erasures occur, and the IA is ideal. Then, the average

distortion, given by (2.55), can be expressed as the sum of the contribution from the correct

index reception and an erroneous index reception with 1 bit erasures. Let φE = (1 − ρ)B

represent the probability of correct index reception. Then,

E1E
d,I = φEE

SO
d + 1−φE

B

∑2B

i=1 fX(xi)
∑

j∈S(i)

∫

x∈Ri
‖x− x̂j‖22 dx, (2.58)

where the subscript ‘I’ is used to emphasize that ideal IA is assumed, ESO
d is the average

distortion due to source quantization (given by (2.53)), and S(i) is the set of B indices with 1

bit erasures which have a non-zero probability in ith row of P.

Assuming ideal IA, the closest codewords differ in their indices by 1 bit. For high rate

coding, when the shape of the source Voronoi regions are similar, the distortion between the

new codewords x̂j and the signal vectors in region Ri can be upper bounded by sum of distortion

between the codeword of Ri and an offset vector E . That is,

d(x, x̂j) ≤ d(x,xi) + Ei,j , (2.59)

where Ei,j = d(xi, x̂j). Now, 1
B

∑

j∈S(i) Ei,j can be approximated by the average distortion
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between the codeword xi and the boundary of the Voronoi region Ri.
5 With high rate quan-

tization, it is known that, the Voronoi regions Ri can be well approximated by using hyper-

ellipsoids [27]. That is, the hyper-ellipsoid is the set of x satisfying the condition

(x− xi)
T (x− xi) ≤

(
υ2i
κ2n

) 1
n

, (2.60)

where κn is the volume of an n-dimensional sphere of unit radius and υi is the volume of the

region Ri. With the above approximation, it can be written that

E i ,
1

B

∑

j∈S(i)

Ei,j ≈
(

υ2
i

κ2
n

) 1
n
. (2.61)

Substituting (2.61) and (2.59) in (2.58), it can be shown that

E1E
d,I ≈ ESO

d + (1− φE) κ
−2
n
n

2B∑

i=1

fX(xi)υ
2
n

i υi. (2.62)

In the above, the volume υi can be approximated as υi ≈ 1/(2Bλ(xi)), and hence, we get

E1E
d,I ≈ ESO

d +
(1− φE) κ

−2
n
n

2
(n+2)B

n

2B∑

i=1

fX(xi)

λ
n+2
n (xi)

.

Using the Monte Carlo integration formula,

1

N

N∑

i=1

β(yi)
.
=

∫

y

β(y)λ(y)dy, (2.63)

where
.
= represents the asymptotic equality when N → ∞, and λ(y) represents the point density

of the codepoints, E1E
d,I can be written as

E1E
d,I ≈ ESO

d +
(1− φE) κ

−2
n
n

2
2B
n

∫

x

fX(x)λ
−2
n (x) dx. (2.64)

5This is valid since the new codewords for the erasure case are approximately at the boundary of the ith

Voronoi region.
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Also, recognizing that the integral term in (2.64) is proportional to the ESO
d in (2.55),

E1E
d,I ≈ ESO

d

[

1 + (1− φE)

(
n+ 2

n

)]

. (2.65)

For an n-dimensional Gaussian distributed independent random variables (with zero mean and

unit variance in each dimension), the average distortion can be shown to be

E1E
d,I ≈

[

1 + (1− φE)

(
n+ 2

n

)]
2πκ

−2
n
n

2
2B
n

(
n+ 2

n

)n
2

. (2.66)

The significance of the above equation is that it shows that the average distortion with ideal IA

decreases at the same rate 2
−2B
n as that for the average distortion of SOVQ, albeit with larger

coefficient. This is in contrast with the high rate distortion for random IA, which is discussed

next.

2.4.3 Average Distortion with 1 Bit Erasure and Random IA

When the IA is random, the above development will not work, as 1 bit erasures need not result

in codewords corresponding to neighboring cells being received. In this case, the average MSE

distortion can be derived from (2.55) as follows. Note that, the codewords at the decoder

corresponding to indices with a single bit erasure and random IA when index i is sent, are

computed by the receiver as x̂j =
xi+xl

2 where l is some random index. Then, it follows that

E1E
d,R = ESO

d +
2B∑

i=1

fX(xi)
∑

j∈S′(i)

1− φE

B
‖xi − x̂j‖2υi,

where the subscript ‘R’ is used to emphasize that random IA is assumed, j > 2B and for these

values of j ∈ S′(i), x̂j = xi+xl

2 (for some random l). That is, S′(i) now contains B indices

corresponding to codewords of the form xi+xl

2 , where the indices l are randomly chosen. The

above expression simplifies to

E1E
d,R = ESO

d +
1− φE

4

2B∑

i=1

fX(xi)




1

B

∑

j∈S′(i)

‖xi − xj‖2


 υi.
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Using the Monte Carlo integration formula (2.63), we get

1−φE

4

∑2B

i=1 fX(xi)
[
1
B

∑

j∈S′(j) ‖xi − xj‖2
]

≈∑2B

i=1 fX(xi)
∫

z
‖xi − z‖2λ(z)dz = 1−φE

4 (σ2
x + σ2

λ),

where σ2
x and σ2

λ are the variances of the source distribution and point density function, re-

spectively. For the n-dimensional i.i.d. Gaussian example, the total distortion can be simplified

to

E1E
d,R ≈ ESO

d +

(
1− φE

2

)(
n+ 1

n

)

σ2
x (2.67)

The significance of the above expression is that it clearly shows that the high rate distortion

with random IA always floors – the distortion is eventually dominated by the second term, since

the ESO
d term reduces as 2

−2B
n . Thus, if a particular practical IA is non-ideal, we would expect

its performance would be in between the performance with ideal IA and random IA, which is

explored next.

2.4.4 Average Distortion for a given IA

As mentioned earlier, the average distortion analysis is done in two parts: with ideal IA and with

random IA. Then, the overall distortion of any given IA is modeled as a convex combination of

the distortion with the ideal IA and random IA. The convex combination factor can be seen as

a single parameter that measures the “goodness” of the IA, and can be obtained experimentally

using simple measurements. Thus, the expression for total distortion for i.i.d. Gaussian source

due to 1 bit erasure and a given IA can be modified as

E1E
d,c ≈ ESO

d

[
1 + η1(1− φE)

(
n+2
n

)]
+ (1− η1)

(
1−φE

2

) (
n+1
n

)
σ2
x, (2.68)

where η1 ∈ (0, 1] depends on n, B and the IA. Our simulation results have shown that 60% of

the codewords meet the ideal IA condition for the natural IA, and hence, we set η1 = 0.6 in

evaluating the above expression. This will be demonstrated in the simulation results section.

2.4.5 Average Distortion with Zero Output for Erasures

Consider the case when the decoder outputs zero codeword (the mean of the source) whenever

an erasure occurs. In the above analysis, if we replace x̂j with all zero codeword 0, we can show
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that

Eall zero
d ≈ ESO

d + (1− φE)σ
2
x. (2.69)

Thus, whenever an erasure occurs, the decoder introduces a maximum error equal to the variance

of the source. Comparing (2.67) and (2.69), it can be concluded that using the average between

the two codewords always pays-off in reducing the total distortion even when the IA is random.

That is, the scheme in (2.67) is better than the scheme in (2.69) in terms of total distortion.

This justifies the use of the additional code vectors as proposed in this section, even when the

IA is random.

2.4.6 Average Distortion for 1 bit Errors

Along similar lines as the analysis for 1 bit erasures, the 1 bit error case can also be analyzed

under the assumptions of ideal IA and random IA. It can be shown that

E1e
d,c ≈ ESO

d

[
1 + 4η2(1− φe)

(
n+2
n

)]
+ 2(1− η2)(1− φe)

(
n+1
n

)
σ2
x, (2.70)

where φe is the probability of correct reception and η2, the convex combination, equals η1 in

(2.68), since the IA is the same for both cases.

2.4.7 Average Distortion for the Proposed Receiver

For a given channel, there is a non-zero probability that multi-bit erasures and errors can occur.

Here, we consider a decoder that outputs the receiver optimized codewords described in Section

2.4.1 whenever a single bit erasure occurs and outputs the all-zero codeword whenever multi-bit

erasures occur. Thus, the total distortion can be written as

Etotal
d = p0 ESO

d + p1e E1e
d,c + p1E E1E

d,c + prest E
all zero
d , (2.71)

where prest = 1 − (p0 + p1e + p1E), p0 is the probability that no error has occurred, p1e is the

probability that 1 bit error has occurred and p1E is the probability of 1 bit erasure. For the given

SNR and erasure threshold γ, one can compute these probabilities easily using the Gaussian error

function. In the following section, we determine the optimal threshold for minimizing the total

distortion.
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2.4.8 Optimum Threshold Selection

The tradeoff involved in selecting the optimal threshold is as follows. The average distortion due

to erroneously received bits exceeds that obtained by declaring the error-bit as an erasure. This

is because erasures lead to codewords that are closer to the transmitted codeword, compared to

the codeword output by the receiver when an error occurs. Hence, if a bit is likely to be in error,

it is better to declare it as an erasure, but if it is likely to be received correctly, it is better accept

the hard-decisions. So, if the erasure threshold (i.e., the threshold on the LLRs below which

the bit is declared to be in erasure) is too high, there will be many erasures (and even bits that

could be decoded correctly will be declared as erasures), leading to a larger average distortion.

A similar argument applies when the threshold is too low, leading to large distortion because

many bits will be received incorrectly. Thus, there exists an optimal value of the threshold for

a given SNR. In order to compute the optimum threshold, one needs to consider the distortion

incurred due to error cases also. Let γ be the threshold on the LLR below which a bit is declared

to be in erasure. Then, the probability of correct index reception is given by

1− α− ρ = Q

(
γ − 2SNR

2
√
SNR

)

,

where Q(.) is the standard Gaussian tail function for computing Gaussian tail error probability.

6 Along similar lines, the probability of receiving with 1 bit error is given by

α = Q

(
γ + 2SNR

2
√
SNR

)

.

From the above equations, ρ can be found and used for computing the P matrix. The optimum

γ∗ can be found by differentiating Etot
d with respect to γ and equating to zero. However, since

this is mathematically cumbersome, numerical computation is used to find the optimum γ∗ for

the given values of SNR, B and n. Figure 3.3 shows the value optimum threshold γ for various

values of SNR for a 2-dimensional Gaussian source, with B = 6. It can be noticed that γ gets

smaller as the SNR increases. This is expected, since, as the channel approaches an error free

channel, the receiver should declare erasures less frequently.

6Q(x) is defined as 1
2
erfc

(

x√
2

)

, where erfc() is the standard Gaussian complementary cumulative distribution

function.
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Figure 2.3: Optimum erasure threshold as function of SNR for 2-dimensional Gaussian i.i.d.

source and B = 6.

2.5 Simulation Results

In this section, we validate the analytical expressions derived above and illustrate the improve-

ment in the average distortion that can be obtained through the above LRF and SHDVQ, using

Monte Carlo simulations. An n-dimensional i.i.d. zero mean Gaussian distributed vector with

unit variance per dimension is used as the source and 50, 000 instantiations are used for gen-

erating the optimal encoder codebook using the Lloyd-Max algorithm [35]. The covariance of

this source-optimized codebook is used as the covariance of the point density, for evaluating the

theoretical expressions. Another set of 50, 000 instantiations are used for encoding the source

using the above computed codebook. The index from the encoder is sent over a noisy channel

and the optimal LRF is applied at the decoder before computing the end-to-end distortion.

The noisy channel is modeled as a binary symmetric channel (BSC) with transition probability

q = Q(
√
2 SNR) [38] that depends on the SNR per bit, and B = log2N bits are employed for

source quantization.
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2.5.1 Receive Filter for Non-Fading Channel

Figure 2.4 shows the average MSE and WMSE distortion for the source-optimized VQ with

n = 3 and B = 9 bits. In the WMSE case, the matrix:

W =








0.69 0.26 0.03

0.26 0.44 0.43

0.03 0.43 1.87







,

accurate to 2 decimals, was used. The matrix was generated using a random unitary matrix

as eigenvectors and eigenvalues equal to [2.0, 0.8, 0.2], which ensures that tr(W) is the same

as in the MSE case. The excellent match between the simulation results and the theoretical

expression is clear from the figure. At low SNR, the distortion with and without filtering are

found to approach n and 2(n + 1), which matches with (2.10) and (2.23), respectively. Also,

at high SNR, all schemes converge to the high-rate distortion of VQ for noiseless channels, as

expected.

Figure 2.5 compares the MSE performance of SQ and VQ based LRF for reducing the total

distortion, with n = 2 and B = 8. It is interesting to note that the LRF greatly diminishes the

performance difference between SQ and VQ. This corroborates with the theoretical expressions,

since, at high rate, neglecting the terms of order N−2/n, we have

E
Ropt

d,SQ − E
Ropt

d,V Q =
2NǫN (1−NǫN )2(n− 1)

(1 + 2NǫN )(1 + 2NǫN/n)
.

Figure 2.6 plots the ratio of the average MSE of the LRF, joint transmit-receive linear

filter, the scaled codebook [33] and COVQ [12], to the average MSE of SQ with no filtering. For

obtaining this plot, n = 4 and B = 48 bits were used. The COVQ provides the best performance

for all SNRs, at the cost of a computationally expensive reoptimization of the codebook and

feedback of the optimal codebook from the receiver to the transmitter for every SNR. This is

followed by the performance of the joint transmit-receive linear filter, which also requires the

feedback of the optimal transmit filter. The joint transmit-receive linear filter outperforms the

scaled codebook at all SNRs. The scaled codebook outperforms the LRF at high SNR, while

the LRF performs better for SNR ≤ 4 dB. However, the scaled codebook requires numerical

computation of the optimal scale factor and its adaptation at both the transmitter and the
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Figure 2.4: MSE and WMSE vs. SNR for a 3-D Gaussian i.i.d. random source with B = 9 bit

VQ.

receiver for every SNR. The LRF is the least computationally expensive and the simplest to

implement. It always performs better than no filtering, and offers several dBs of improvement

in the average MSE for practical SNR values.

Finally, Table 2.1 lists the percentage improvement in MSE distortion from the LRF com-

pared to the no-filtering case. We observe that the percentage improvement is the highest for

small N and n, and is higher for larger NǫN . Moreover, in all three cases of NǫN , comparing

the percentage improvement for N = 64 with N = 512, we observe that it has decreased for

n = 1 and 2, but increased for n = 3. That is, as N is increased, the percentage improvement

increases till about 4 bits per dimension, after which it starts to decrease. These observations

agree with the theoretical expressions obtained above.
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Figure 2.5: Performance comparison of the LRF designed for SQ and VQ with n = 2 and B = 8

bits.

2.5.2 Receive Filter for Fading Symmetric Error Channel

In this simulation, we consider a Rayleigh fading channel to first compute the BSC bit tran-

sition probability q for each channel instantiation, and then average the expected distortion

performance over 500 channel instantiations. The indices obtained after source compression are

transmitted over the channel and the optimal receive filter computed under two scenarios: (a)

optimal receive filtering for each channel instantiation, and (b) optimal receive filtering for the

“average channel”, i.e., where the optimal LRF is computed for the average q for the given

SNR. The simulation results are compared for no receiver filtering, receive filter for Random IA

(i.e., symmetric error channel) as well as for receive filter using specific IA (obtained using the

LISA [20]). The convex combination parameter η = 0.6 is used for this simulation also.

Figure 2.7 plots the average MSE versus SNR for a 2-dimensional i.i.d. zero mean Gaussian

source with unit variance per dimension, and with 6-bit quantization. It can be observed that the

total distortion in the fading channel is improved with LRF compared to no filtering. Moreover,

with only a small loss in the performance, one can also use the single receive filter computed

using the average channel cross-over probability. The advantage of using the LRF is also shown
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Figure 2.6: Comparison of the LRF, joint transmit-receive filter, scaled codebook and COVQ

for n = 4 and B = 48 bits.

in terms of an improvement in the fade margin required to achieve a given target distortion

in Table 2.2. Here, the target distortion is set as 6 and 12 dB above the minimum distortion

that can be achieved in the absence of channel errors for the given number of quantization bits.

It can be observed that there is about 2 dB improvement due to good IA and another 2 dB

improvement due to receive filtering for a specific IA (highlighted in the table in bold font).

Moreover, there is 1 dB difference in the performance of receive filter designed for average q and

receive filter designed on a per-channel instantiation basis.

2.5.3 SHDVQ for AWGN

Here, comparison is done between the average distortion for SOVQ with both noiseless and noisy

channels, receive filter and the proposed SHDVQ. The encoder output is sent via an AWGN

channel for with noise variance depending on the SNR condition. At the receiver, the LLR

values of the bits comprising the received indices are computed, and used to declare erasures,

by comparing the LLR to a threshold. The value of the threshold is chosen by numerically

minimizing Etot
d in (2.71).

Thus, the total distortion was computed for various SNRs, and the results for a 2-dimensional
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Table 2.1: Percentage performance improvement due to receive filtering.

Econv
d,V Q

−E
Ropt
d,V Q

E
Ropt
d,V Q

× 100 NǫN = 0.05 NǫN = 0.1 NǫN = 0.25

Sim. Th. Sim. Th. Sim. Th.

n = 1, N = 64 6.65 6.72 13.63 13.72 36.15 36.32

n = 1, N = 512 2.77 2.82 5.72 5.77 15.55 15.65

n = 2, N = 64 3.97 4.13 9.12 9.33 26.20 26.53

n = 2, N = 512 3.09 3.54 6.89 7.36 19.47 19.96

n = 3, N = 64 2.11 1.89 5.45 5.15 17.57 17.21

n = 3, N = 512 2.85 3.19 6.88 7.21 20.41 20.60

Table 2.2: Improvement in the link margin under Rayleigh fading channels. The table lists the

channel SNR needed to achieve a target distortion of 4 ESO
d and a target distortion 16 ESO

d , for

B = 8 and B = 6, and for a 2-dimensional standard Gaussian source.

No. of Target Channel SNR needed (dB)

Quant. distortion No Filter Rx Filter (avgCh) Rx Filter

bits (dB) Random IA Specific IA Random IA Specific IA Random IA Specific IA

B = 8 4 ESO

d
24 21 24 21 21.5 19.5

16 ESO

d
17 13.7 16.5 13.5 15 12.3

B = 6 4 ESO

d
17.2 15 17 14.7 15.1 13.5

16 ESO

d
9.5 7 8.5 5.5 6.5 4.5
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Figure 2.7: MSE vs. SNR for a 2-dimensional Gaussian i.i.d. random source with B = 6. The

index is sent over a Fading Binary Symmetric channel.

Gaussian vector withB = 6 is given in Figure 2.8. The figure also compares the performance with

COVQ [29] and receive filtering [34] under Random IA as well as specific IA. It can be observed

that the SHDVQ method performs as well as or better than COVQ and receiver filtering method

at all SNRs for Random IA. However, for specific IA, receive filtering outperforms SHDVQ.

Figures 2.9 and 2.10 demonstrate the accuracy of the analytical expressions for the performance

of SHDVQ with various number of quantization bits and with η = 0.6, as before.

2.6 Summary

In this chapter, we presented two receiver-only adaptation techniques for source quantization

over noisy channels, that help to mitigate the excess distortion incurred due to index errors

caused by the noisy channel. The advantage of these methods is that encoder remains agnostic

to the channel, and hence require no feedback from the source decoder to the source encoder.

Analytical expressions were derived for the average distortion and the optimal linear receive filter

was designed for an symmetric error channel by optimizing the approximate total distortion with
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Figure 2.9: MSE performance for a 2-dimensional Gaussian i.i.d. source with a fixed IA and
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Figure 2.10: MSE performance for a 3-dimensional Gaussian i.i.d. source with a fixed IA and

different SNRs.

the weighted-MSE distortion metric. We also designed the receive filter for a specific IA, by

modeling the total distortion as convex combination of distortion for random IA and ideal IA.

The performance of the receive filter-based approach was compared with no filtering, COVQ

and transmit filter based methods. It was shown that the receive filter provides an improvement

in the average distortion compared to no filtering, and it performs as well as COVQ at low

SNR. The performance under a fading symmetric error channel was evaluated numerically and

improvement in average distortion due to the receive filter was illustrated in this case also. Then,

an another receive processing technique for continuous channel such as the AWGN channel was

presented with semi-hard decisions at the receiver. The end-to-end distortion for the proposed

receiver codebook was analyzed for both ideal IA and random IA. Simulation results were

presented to demonstrate the accuracy of the analytical expressions as well as illustrate the

performance improvement under noisy channel conditions. In conclusion, the receive processing

techniques proposed in this chapter are simple, easy to implement, and help in improving the

average distortion performance when the output of the source encoder is transmitted over a noisy

channel whose statistics are available at the receiver. In Chapter 5, we apply these techniques
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to the problem of reverse-link CSI feedback, and show the improvement in the forward-link

throughput that is attainable by using these techniques for mitigating the distortion caused due

to feedback channel errors.



Chapter 3

Trellis Coded Block Codes

“Om! That (Brahman) is infinite, and this (universe) is infinite. The infinite proceeds from the

infinite. (Then) taking the infinitude of the infinite (universe), It remains as the infinite (Brah-

man) alone.” - Brihadaranyaka Upanishad

3.1 Introduction

3.1.1 Motivation and Prior work

Recall that an important factor that determines the performance of a MIMO wireless link is

the availability of accurate and up-to-date CSI at the transmitter. Hence, it is desirable to have

low complexity and low latency channel codes which can help in improving the quality of the

CSI estimated at the transmitter. Most of the known block codes which have good distance

properties, unfortunately, also have code latencies proportional to their code length (e.g., RS or

BCH codes [39]). On the other hand, Convolutional Codes (CC) have low latency, but designing

high rate codes with good distance property is computationally very intensive and there is no

systematic design procedure available. In this chapter, we design Trellis Coded Block Codes

(TCBC), which combine the benefits from both the block codes and trellis codes. Moreover, the

TCB codes are applicable to both discrete channels and continuous channels. The TCB code is

obtained by concatenation of a block codes and a convolutional codes in a novel way.

Combining the block codes and trellis codes has been done in multiple ways. For example,

54
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(i) Trellis Coded Modulation (TCM) [40, 41], (ii) Concatenated codes [42], and (iii) Multi-level

coding (MLC) [42] are some of the popular techniques. But, each of these techniques have

their own shortcomings. For example, TCM depends on constellation expansion and it is not

applicable for discrete channels, while concatenated codes have large decoding latency. The MLC

also has large decoding latency, and the multi-level decoder is sub-optimal.1 Our approach of

concatenation is different from all the above in the sense that, we select one of the sub-codes of

the block code depending on the trellis code output. Although this is similar to the TCM, the

difference lies in the application of uniform code partitioning theorem derived in this thesis to

generate the sub-codes, and in the procedure for selection of the codeword within a sub-code by

the rest of the data bits.

To put the uniform code partitioning that we explore in this work in context, there are

four known ways of partitioning linear block codes. These are: (i) the sub-codes obtained by

a coset decomposition [43], (ii) sub-codes of smaller length which constitute the mother code

by concatenation [44], (iii) an association scheme to group code-pairs with a given Hamming

distance between them [39], and (iv) decomposing N -tuple codes into cosets using finite groups

that exploit the algebraic structure available in Cartesian product space [45]. In this work, we

describe another algebraic structure, which we call uniform sub-code partitioning, that allows

one to partition code words into disjoint sub-code sets with a certain uniform distance property.

We provide the details in the later sections.

3.1.2 Contributions

In this chapter, TCBC are designed along the similar principle of TCM, but exploiting the

underlying algebraic structure in all linear block codes rather than constellation expansion.

The main contributions in this chapter are:

• A new algebraic result describing partitioning of linear block codes into uniform sub-codes.

• An encoder/decoder structure which utilizes the uniform sub-set partitioning in Hamming

space (and hence is usable in both discrete and continuous channels) is proposed. The

codes so constructed are referred to as Trellis Coded Block Codes (TCBC). The proposed

decoder is shown to be a Maximum Likelihood Sequence Detection (MLSD) decoder.

1The ML decoder for MLC is computationally very complex.
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• Analytical expressions for an upper bound on the BER performance of the TCBC are

derived.

• Perhaps the most practically useful implication of this work is that it provides a systematic

method of constructing fixed length codes with a desired minimum distance property, using

off-the-shelf block and convolutional codes as building blocks. These provide a system

designer a convenient way to custom design codes with desired distance properties while

also meeting a given decoding latency requirement.

3.2 Uniform Code Partitioning

The following definitions are used in the description of the new algebraic structure of Linear

Block Code (LBC) in the binary field F
n
2 .

Definition 1. Uniform set: A set in F
n
2 is said to be uniform if the distance du between any

pair of elements is a constant.

Note that the above definition differs from that of the equi-distant codes used in the coding

theory literature [39] in that a uniform set need not be closed under addition.

Definition 2. Maximal uniform set: A uniform set U is said to be maximal if it is the

largest possible set in terms of cardinality, for the given length n and the uniform distance du.

Definition 3. Non-trivial set: A set U is said to be non-trivial if it contains atleast 3

non-zero elements.

If the uniform code is linear, it is a constant weight code, except for the all zero code-word.

Hadamard codes [39] are an example of such a uniform code. One straightforward method of

partitioning a given code into uniform sub-sets is pair-wise partitioning,2 where elements are

grouped into pairs, such that the distance between the pairs is constant, as explained in the

lemma below.

Lemma 1. For any LBC, there exists a disjoint code-word pair set (partitioning) such that

distance between the code-word pairs is constant. In fact, there exists at least one code-word pair

partition for every Hamming weight in the code’s distance spectrum.

2This pair-wise partitioning is unrelated to the association scheme [46]. Association schemes find all pairs of
code-words that are at various Hamming distances whereas pairwise partitioning finds disjoint pairwise subsets
of the parent code.
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Proof. Let d be a distance in the distance spectrum of C. Then, there exists atleast one code-

word c1 such that DH(c1,0) = d. Now, add any other code-word c2 to both 0 and c1 to get the

codeword pair (c2, c1 + c2) satisfying DH(c2, c1 + c2) = d. Proceeding this way, we can create

disjoint code pairs with distance d for every Hamming weight in the distance spectrum of C.

While the above lemma is useful, it is desirable to have partitions that have more than two

code-words in each subset. This is because having fewer subsets helps reduce the complexity of

the outer trellis code that will be introduced later. That is, we seek to find a partition

C =
L⋃

i=1

Ci, (3.1)

such that Ci ∩Cj = {φ} , 1 ≤ i, j ≤ L , i 6= j, where L is the number of constituent uniform

sub-sets and Ci, i = 1, 2, . . . , L are non-trivial uniform sub-codes.

In the sequel, Theorem 2 asserts that such partitioning exists for many binary LBCs. Now,

we state and prove some useful properties of uniform linear sub-codes which will set the stage

for stating Theorem 2.

Lemma 2. The distance du for any non-trivial uniform linear code C0 is even. Moreover, the

uniform code is linear if and only if du = 2WH(c0 ∗ c1) for any two non-zero c0, c1 ∈ C0.

Proof: See Appendix C.1.

Remark 2. An immediate consequence of the above Lemma is that the uniform distance of a

non-trivial linear uniform code and its even parity extension code are the same. This property

will be used in the derivations to follow.

Lemma 3. Let c0, c1, c2 belong to a uniform linear code with distance du and ci 6= 0, for i =

0, 1, 2. Then, c0 = c1 + c2 if and only if WH(c0 ∗ c1 ∗ c2) = 0.

Proof: See Appendix C.2.

Remark 3. Combining Lemmas 2 and 3, it is immediate to see that if WH(c0 ∗c1 ∗c2) = du/4,

then WH(c0+c1+c2) = du, where c0, c1 and c2 belong to a uniform linear code C0 with atleast

8 code-words.
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Lemma 4. There exists a non-trivial uniform sub-code Cu of the rate-1 code F
n
2 with

du =







n
2 if n = 4k

n−1
2 if n = 4k + 1

n+2
2 if n = 4k + 2

n+1
2 if n = 4k + 3

, (3.2)

where k is an integer ≥ 1. Moreover, a uniform linear subset CF
0 which spans a vector space

with dimension at least 2 can be constructed from Cu.

Proof: See Appendix C.3.

We can now state the main theorem of this section.

Theorem 2. For a binary LBC C, if C0 , CF
0 ∩ C is a non-trivial uniform set for some CF

0

satisfying the properties in Lemma 4, the following hold:

(i) Tiling property: C0 and its cosets tile C and one can build Cmax
0 , a linear maximal uniform

sub-code of C, from the cosets of C0,

(ii) Cardinality bounds: The cardinality of C0 is bounded as 22 ≤ |C0| ≤ 2⌊log2 n+1⌋, and

(iii) Cardinality of the maximal linear uniform set: |C0| = 2j
∗+1 where j∗ ≥ 1 is the largest

integer such that (a) C0 has a subset Cj∗ with cardinality j∗+1 and non-zero entries such

that

WH(c0 ∗ c1 ∗ . . . ∗ cj∗) =
du
2j∗

, (3.3)

where c0, c1, . . . , cj∗ ∈ Cj∗, and (b) For l = 1, 2, . . . , j∗ − 1, for all subsets Cl of Cj∗ with

cardinality l + 1,

WH(c0 ∗ c1 ∗ . . . ∗ cl) =
du
2l

, (3.4)

where, with a slight abuse of notation, c0, c1, . . . , cl ∈ Cl.

Proof: See Appendix C.4.

Discussion: The above theorem suggests the following procedure for obtaining uniform

sub-codes for a given code C:

(i) Find code-words in C with Hamming weight du given by (3.2). Denote this sub-set as Cu.
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(ii) Find a sub-set of Cu that is closed by using the linearity conditions (3.3) and (3.4) in case

(iii) of Theorem 2. Denote this sub-set as C0.

(iii) Now, C0 and its cosets form a uniform partitioning of C.

If no non-trivial C0 can be found in step (ii), then a non-trivial uniform sub-code partitioning

does not exist for the code C. In this case, we partition the code into subsets with pairs of

elements. The sub-sets are constructed from the pair of code-words formed by the all-zero

code-word and one of the code-words in Cu, and its cosets.

Note that the partitioning of C into its maximal uniform linear sub-codes is not unique.

However, the number of partitions L is unique due to the linearity of the sub-codes. Moreover,

for a given number of subsets, the uniform subset partitioning results in the maximum possible

dmin among all possible partitions into non-trivial subsets. The utility of finding uniform distance

sub-codes with large cardinality, as given by Theorem 2, will be seen in the TCBC construction,

presented in the next section. Specifically, the larger the cardinality of the uniform subsets,

the lesser the complexity of the CC associated with constructing the TCB code. In general,

the uniform partitioning theorem reveals the fundamental structure in the LBCs that is used to

construct the code. This idea is schematically illustrated in Figure 3.1. That is, in the case of

LBCs, for the given length, the code is built using the one underlying uniform coset, by taking

union of the shifted versions of the coset.

Examples: The following examples illustrate the uniform partitioning given in Theorem 2.

The Hamming (7, 4, 3)2 code can be partitioned into two maximal uniform sub-sets3 as follows:

C0 = {0, 1, 6, 7, 10, 11, 12, 13} and C1 = {2, 3, 4, 5, 8, 9, 14, 15}. All the code words in each sub-

set are at an equal Hamming distance (du = n+1
2 = 4) from each other. Another example

is the Maximum Length Shift Register (MLSR) (6, 3, 3)2 code4, which can be partitioned into

C0 = {0, 3, 4, 7} and C1 = {1, 2, 5, 6}. The Hamming distance between any pair of elements in

both sub-sets C0 and C1 is du = n+2
2 = 4. Hadamard codes are themselves maximal uniform

codes. Hence, any partition would give a non-maximal, but uniform sub-sets with du = n
2 .

MLSR (9, 4, 3)2 code
5 can be partitioned into uniform cosets with C0 = {0, 2, 9, 11} and uniform

3The code-words in the sub-set are denoted by indices which are the decimal equivalent of the binary data
vectors in the code C. The binary data vectors are the binary k-tuples which get multiplied by the generator
matrix G to generate the code-words in C.

4C = {00,16,23,35,47,51,64,72} in octal notation.
5C = {000, 075, 107, 172, 217, 262, 310, 365, 436, 443, 531, 544, 621, 654, 726, 753} in octal notation.
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Figure 3.1: Structure of LBC as union of cosets.

distance du = n−1
2 = 4. The binary Golay (23, 12, 7)2 code can be partitioned into 512 cosets

of 8 elements each. Elements in the uniform linear coset is listed here as an illustration: C0

= {0, 120, 79, 929, 1434, 1764, 1739, 2508}. The uniform distance of this sub-set C1 is 12.

Similarly, the Bose-Chaudhuri-Hocquenghem (BCH) (31, 11, 11)2 code can be partitioned into

128 cosets with 16 elements each. The generator polynomial for this cyclic code is given by

g(x) = x20 + x18 + x17 + x13 + x10 + x9 + x7 + x6 + x6 + x4 + x2 +1. The elements of a uniform

coset, of the code generated by the non-systematic generator matrix built from g(x), is given

here for illustration: C1 = {4, 8, 59, 69, 256, 422, 487, 491, 542, 545, 962, 1010, 1084, 1193,
1561, 1627}. The uniform distance for this sub-set is 16, which is again greater than 11, the

dmin of the parent BCH code. It can be noticed that for these binary LBCs,the uniform distance

of the sub-sets is n
2 ,

n−1
2 , n+2

2 or n+1
2 , as given in (3.2). Finally, an example of a code without

a non-trivial uniform sub-code partitioning is the MLSR (9, 3, 4) code6 with C0 = {0, 1} and

du = n−1
2 = 4.

6C = {000, 164, 235, 351, 472, 516, 647, 723} in octal notation.
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3.3 Trellis Coded Block Codes

We now introduce TCBC, a new family of codes based on the aforementioned uniform subset

partitioning. We construct the (n, k) TCB code with k input bits and n-output bits as follows.

Let l of the k bits be input into a rate l
m trellis code, whose output selects one of 2m sub-sets

(partitions) of an (n, k − l + m) LBC, and the k − l additional input bits select one of the

code-words in the selected sub-set, resulting in an (n, k) TCB code. Note that, n is the length

of the LBC C with 2k−l+m code-words, which is partitioned into 2m uniform sub-sets with 2k−l

code-words in each sub-set.

The minimum distance of this hybrid code is determined by the smaller of the (constant)

minimum distance between code-words in each sub-set and K−1
l dmin, where K is the constraint

length of the CC and dmin is the minimum distance of the parent LBC. 7 We choose K such

that K−1
l dmin > min1≤i≤2m dmin(Ci), and hence the minimum distance of the TCB code is

determined by the uniform distance in any sub-set (assigned to parallel transitions of the trellis

of the CC). Thus, by choosing the sub-set partitioning appropriately, one can obtain a coding

gain in a conceptually similar manner to TCM/coset codes. Hence, the TCBC can be viewed as a

generalization of TCM, where the modulation is not integrated with the codeword construction.

This enables the use of TCBC for both continuous (e.g., the AWGN) as well discrete (e.g., the

binary symmetric) channels. Also, as the modulation scheme is not coupled with the code design,

the system designer gets more flexibility in choosing communication sub-system parameters such

as signal constellation, constellation shaping, etc.

3.3.1 Encoder and Decoder Structure

We now describe the encoding and decoding operations in the proposed TCBC. For simplicity

of exposition, we first illustrate the central idea through an example construction, and then

present a general procedure for code construction. Figure 3.2 shows an example of a TCB

encoder that uses the Hamming (7, 4) code as the parent LBC. The encoder comprises a trellis

code, which selects the sub-set indices (v0,v1), a look-up-table (LUT) which selects the data

word based on sub-set indices and the remaining input data bits (v2,v3), followed by the LBC

7When one out of l input bits is nonzero, it takes K−1
l

transitions before the trellis path merges with the all

zero path. Thus, the minimum distance in this path is given by dmin
(K−1)

l
. On the other hand, the minimum

distance in the parallel transitions in the trellis equals the uniform distance, du, by construction.
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Table 3.1: LUT mapping for TCB (7,3) code.

v0v1v2v3 u0u1u2u3 v0v1v2v3 u0u1u2u3

0000 0000 1000 1100

0001 0001 1001 1101

0010 0110 1010 1010

0011 0111 1011 1011

0100 0100 1100 1000

0101 0101 1101 1001

0110 0010 1110 1110

0111 0011 1111 1111

Figure 3.2: An example of a TCBC encoder.

encoder. The entries of the LUT enforce the sub-set partition structure. For example, for a

4 sub-set partitioning of the Hamming (7, 4) code as C0 = {0, 1, 6, 7}, C1 = {10, 11, 12, 13},
C2 = {2, 3, 4, 5} and C3 = {8, 9, 14, 15}, if (v0 v1 v2 v3) = (0000), the LUT will select the first

code-word in C0, if (v0 v1 v2 v3) = (1111), the LUT will select the fourth code-word in C3,

and so on. The complete LUT for the TCBC (7, 3) using the Hamming (7, 4) code is given in

Table 3.1 as an illustration. Once the data-words to be encoded are determined, the output

of the LUT denoted as (u0,u1,u2,u3) is sent to a conventional Hamming (7, 4) block encoder

which generates the 7-bit code-word. These coded bits can be transmitted on a binary symmetric

channel (BSC) as is, or can be mapped into any digital modulation constellation symbols such as

binary phase shift keying (BPSK) and transmitted on an additive white Gaussian noise (AWGN)

channel.

The decoder structure is shown in Figure 3.3. A trellis decoder (e.g., Viterbi decoder, Fano
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Figure 3.3: An example of a TCBC decoder.

decoder, etc.) is used for detecting the sub-set index. The branch metric for each transition in

the trellis is chosen to be the smallest distance between the received word and the code-words in

the sub-code selected by the output of the trellis assigned to that transition. Once sub-set indices

are estimated (after tracing the data bits back as in the Viterbi decoder), this information is

used to compute the distance (Hamming/Euclidean) between the transmitted (block) code word

and the code-words in the selected sub-set/coset. The code-word with the least distance is used

to estimate the remaining data bits. Thus, the decoder can be constructed using off-the-shelf

Viterbi and (block) sub-set minimum distance decoders as its components. This enables an

efficient hardware implementation of the decoder compared to a brute force minimum distance

decoder.

Now, we describe a design procedure for constructing a TCBC with a desired dTCBC
min and

rate k
n .

Design Procedure

(i) For the given dTCBC
min , compute the code length n such that du = dTCBC

min , where du is given

by (3.2).

(ii) Choose any LBC of length n and rate rL > k
n . Denote the minimum distance of the LBC

by dLBC
min .

(iii) Find a maximal linear uniform partitioning of the chosen LBC. In case non-trivial parti-

tioning is not possible, choose a different LBC. Let the number of sub-codes be L = 2m.

Note that L is a power of 2 since the sub-codes are cosets of a linear sub-code.

(iv) Compute l = m + k − n rL. Choose a rate l
m CC with constraint length K satisfying
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K−1
l dLBC

min > du.

(v) Send l out of the k input bits into the l
m rate CC. Select one of the 2m sub-codes of the

LBC based on the m output bits of the CC. Use the remaining k − l bits to choose one of

the codewords from the selected sub-code. That k − l > 0 can be seen from the following

argument. Since l = m+k−nrL, we have n rL−m = k− l. The fact that rL > m
n implies

that k− l > 0. Thus, the n-bit TCBC codeword is completely determined for every k input

bits.

The n bit codeword sequence is now transmitted over the channel after suitable constellation

mapping and modulation. At the receiver, the process is reversed: the output of the channel is

used to compute the metrics of a Viterbi decoder, which detects the l input bits of the CC. The

remaining k− l bits are detected using a minimum distance decoder for the coset chosen by the

output of the Viterbi decoder. The minimum distance decoder does not impose a significant

computational burden on the receiver since it computes distances only to codewords within the

sub-code. Moreover, the following Lemma asserts that the proposed decoder is a maximum

likelihood sequence detector (MLSD).

Lemma 5. The proposed TCB decoder is an MLSD decoder for both binary symmetric and

AWGN channels.

Proof: See Appendix C.5.

3.3.2 Rate and Coding Gain

Recall that the parent LBC used to generate the TCB code has a rate rL = k−l+m
n . The TCBC

itself has a rate rT = k
n . Hence, the rate loss associated with TCBC is m−l

n . By choosing

m = l + 1, one can restrict the loss in TCB encoder to be 1
n . In many practical codes, the

improvement due to increased minimum distance compensates for this small loss ( 1n) in the

coding rate, and hence the proposed TCBC offers an overall coding gain improvement compared

to the parent LBC. Here, the coding gain of a code is defined as the product of its minimum

distance and rate. The goal of the TCBC construction prescribed above is to ensure that the

gain in the minimum distance due to the uniform distance partitioning offsets the small rate loss

incurred in the encoding process. This is analogous to the gain obtained in conventional TCM
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Table 3.2: Ratio of coding gains.

(n, k, dmin) du
du
dmin

GT /GL for (m− l)=

⌊(k − 1)/2⌋ 1

(7, 4, 3) 4 4/3 12/12 1

(15, 11, 3) 8 8/3 48/33 80/33

(23, 12, 7) 12 12/7 84/84 132/84

via first doubling the constellation size followed by set partitioning to increase the minimum

distance.

Discussion: Suppose the LBC C with minimum distance dmin can be partitioned into the

union of uniform cosets with du given by (3.2). Then, for the rate k
n TCBC designed using

the procedure mentioned above with C as the parent LBC, if dmin < du ≤ K−1
l dmin, we have

GT > GL, i.e., the coding gain of TCBC, denoted GT , is higher than that C, denoted GL. To

illustrate this, consider a modified notation where we use (n, k, d) LBC to design (n, k− (m− l))

TCB code. Table 3.2 shows bounds on the ratio of coding gains GT /GL for three choices of the

parent (n, k, dmin) code. It can be seen that for (m − l) ≤ ⌊k−1
2 ⌋, the GT /GL is greater than

or equal to 1. i.e., there is a coding gain improvement for the TCBC especially when du/dmin

is close to 2. Here, we have used the fact that in the designed (n, k − (m − l)) TCB code, the

number of bits (m− l) is at most (k−2). It also can be noticed that du/dmin is closer to 2 which

compensates for small rate associated with various values of (m− l) ≥ 1.

3.3.3 Latency and Complexity

The TCBC encoder builds its codewords by concatenating short length codewords. Moreover,

the short length codes are connected via a trellis to enable MLSD at the receiver. Thus, the

length of a TCB code-word is an integer multiple of the length of the parent code used in the

encoder, and can be chosen by the system designer depending on the latency constraints. Also,

from the TCBC decoder structure, it can be observed that one need not wait till the entire TCB

code-word is received, in order to decode the message bits. In fact, the maximum delay incurred

in the receiver is the trace-back length used by the Viterbi decoder, which is typically set at

about 10 times the constraint length of the CC. Thus, independent of the length of the TCBC,
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the decoder can start decoding the message bits after receiving a few parent code-words, which

will be much smaller than the actual length of the code.

From the proposed encoder and decoder structures for TCBC, it can be seen that the com-

plexity of encoding and decoding is significantly smaller than traditional LBC encoders and

decoders with the same rate and overall length. If one has to encode and decode large length

block codes without any hierarchical structure, it would involve large generator matrices and

look-up tables. The optimal ML decoder for such a code would clearly have formidable computa-

tional requirements. Even for codes with structure, the complexity of encoding and decoding in

extended Galois-field arithmetic and root-finding algorithms is non-trivial. Hence, constructing

large length block codes with structure and good distance property is not an easy task. In this

context, TCBCs offer the advantage that they can be used to systematically build good, large

length block codes using existing LBCs, and their minimum distance can be easily characterized.

The TCBC encoder has an additional CC code (compared to an LBC) whose complexity

is negligible when compared to the complexity of an LBC encoder of the same overall length.

Moreover, the LBC encoder needs to work only at the sub-set level, which is a significant

computational advantage. The TCBC decoder also implements a Viterbi decoder whose trellis

complexity is 2K+l, where K is the constraint length of the CC and l is the number of input bits

given to the rate l
m CC encoder. Although the bit metric computation for each of the transitions

in the trellis of the CC requires 2k−l distance computations, total distance computation is only

2k per trellis stage. After the Viterbi decoding, a minimum distance decoder is used for decoding

the remaining k − l bits at the sub-set level, which requires only 2k−l distance computations.

Note that the minimum distance decoder can reuse the information available in the branch

metrics assigned to the trellis, thus further saving on the computational cost. Thus, the TCBC

decoder performs MLSD decoding of large length block codes at very low complexity, without

constructing the trellis structure of the concatenated parent LBC.

3.3.4 Further Properties and Performance Bounds

We now make the following observations regarding the proposed TCB code.

(i) TCBC as a generalized TCM code: The TCBC can be considered as a generalized version

of the classical TCM code, since it can separate the coding and modulation, as opposed to

TCM. Some key similarities and differences between the TCB and TCM codes are listed
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Table 3.3: Comparison of TCB and TCM codes.

Property TCM Code TCB Code

Coding and

Modulation Combined Separate

Rate l
m & constellation l

m & partitioning

dmin f(dCC
free, d

CONST
min ) f(dCC

free,K, du, l)

Parallel

transition bits uncoded coded

Channel supported Continuous Continuous or

discrete

Decoding MLSD MLSD and min.

distance decoder

in Table 3.3. In Table 3.3, dCONST
min represents the minimum distance of the constellation

used in TCM. Another difference between TCBC and TCM is that the parallel transition

bits in TCBC are coded using codewords within the sub-block code.

(ii) From Theorem 2, the maximum uniform partitioning results in partitions with large car-

dinality for the given du, leading to small m in the rate l
m CC used to build the code.

Codes with small m and high rate are readily available from off-the-shelf designs [47],

which simplifies the TCB code construction.

(iii) The uniform distance helps in bounding the Bit Error Rate (BER) of the code, since all

error events for parallel transitions have the same effect on the overall BER. For example,

using the union bound and the theory of Multi-Level Coding (MLC) [42], it can be shown

that

PBSC
b ≈ 1

k

[

2d
CC
free [p(1− p)]

dCC
free
2 + (|C0| − 1)

(
n

d̃

)

pd̃(1− p)(n−d̃)

]

, (3.5)

PAWGN
b ≈ 1

k



BdCC
free

Q





√

2dCC
freeR1Eb
σ2
n



+ (|C0| − 1) Q





√

2d̃R2Eb
σ2
n







 , (3.6)
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Table 3.4: Parameters for the SER performance study.

dTCBC

free
dH(Ci) CC Rate CC Poly. K

4 4 1/2 [3; 7] 3

6 7 2/3 [7 4 1; 1 2 3] 3

7 7 2/3 [13 6 13; 6 13 17] 4

where Q(x) is the standard Gaussian tail function, BdCC
free

is the number of neighbors of

the trellis code at distance dCC
free, d̃ = mini dmin(Ci) and C0 corresponds to the coset with

smallest uniform distance d̃.

3.4 Simulation Results

In this section, Monte Carlo simulation results are presented to illustrate the performance gains

due to the proposed TCB codes.

3.4.1 Binary Symmetric Channel

To demonstrate the coding gain in a BSC, Monte Carlo simulations are performed with TCBC-

based on the Hamming (7, 4) code as the underlying LBC. The encoder and decoder structures

shown in Figures 3.2 and 3.3 are used to obtain a TCB (7, 3) code for various values of dTCBC
free .

The various LBC partitioning and CC codes used for the simulations are listed in Table 3.4.

Note that the rate of all three codes is the same
(
3
7

)
, but higher coding gain is obtained by the

codes that have higher trellis complexity. The SER curves are plotted in Fig. 3.4. The SER in

these plots are computed using 108 data bits with 103 bits in each symbol.

The SER performance of the TCB (7, 3) with dTCBC
free = 4 is similar to that of the Hamming

(7, 4) code since a dTCBC
free of 3 or 4 will have roughly the same SER. It can be observed that

the slope of the SER curve matches that of the theoretical curve (of a hypothetical8 code of the

same length and chosen minimum distance) more closely at low channel cross over probability

(equivalently high SNR). A higher dH(Ci) improves the performance, as expected. For higher

8Note that such code does not exist. i.e., no code exists with n = 7 and dmin = 5. We assume such a code exists
and compute its SER as per theoretical formula to show that TCBC with dmin = 5 achieves similar performance
(slope of the SER curve).
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Figure 3.4: SER of TCBC (7, 3) using the Hamming (7, 4) code in BSC.

channel cross-over probability (equivalently low SNR), the SER is worse than the theoretical

number due to error propagation in the Multi-Stage Decoding (MSD). Finally, the several orders

of magnitude improvement in SER relative to the parent LBC obtained using the proposed

TCBC is clear from the graph.

3.4.2 AWGN Channel

The performance gain from TCBC in the AWGN channel is now demonstrated through Monte

Carlo simulations. The TCB and CC code-words are mapped suitably to BPSK or QPSK

symbols, and sent over the AWGN channel. The performance of the proposed codes are compared

with a CC code of the same rate and trellis complexity. For benchmarking, the BER performance

is also compared with Turbo codes of the same length and rate for two different number of

iterations in the Turbo decoder.

3.4.2.1 TCBC-FEC code and Comparison with CC Codes

The example TCBC-FEC construction given in the Appendix D.1 is numerically evaluated

here. The output of the TCBC is encoded using BPSK symbols and transmitted over AWGN
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Figure 3.5: Comparison of CC and TCBC for R = 0.5,K = 4 with example TCBC-FEC

construction.

channel. The received code sequences are decoded using the TCBC decoder. It can be noticed

in Figure 3.5 that the code achieves a coding gain for 6 dB for a block length of 1000 uncoded

bits. To highlight the performance of this code this plot is overlaid with BER performance of

other codes described next.

Figure 3.5 also compares the BER of a rate 0.47 TCBC against a rate 1
2 CC with K = 4.

The rate 1
2 CC is generated using the polynomials [17 13]. The Golay-TCB (23q, 11q, 12) code

is generated using the rate 8
9 CC with K = 4 given in [47]. It can be seen that the proposed

code outperforms the CC by 0.5 dB at a BER of 10−5 for a block length of 1000 bits. Moreover,

this code and CC achieve a coding gain of about 4.25 dB and 3.5 dB respectively, related to

uncoded transmission for a 1000 bit block length.

3.4.2.2 Comparison with Turbo codes

For comparison purposes, a rate 1
5 parallel concatenated turbo code with a block length of 175

bits is constructed using a rate 1
3 CC generated by the polynomials [7 5 3] in the systematic form.

This rate 1
5 code is decoded using an iterative Soft-Output-Viterbi-Algorithm (SOVA) decoder
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Figure 3.6: Comparison of Turbo code (175, 35) and Golay-TCBC (161, 35).

[48]. Note that, this turbo code can be considered as a (175, 35) block code. For comparison,

TCBC (161, 35) is constructed using q = 7 consecutive symbols of a TCBC (23q, 5q, 12) (whose

rate is slightly higher than that of the turbo code) which is built based on the binary Golay

(23, 12, 7) code. The Golay-TCBC is constructed using the rate 2
9 CC9. The turbo decoder is run

with 10 and 100 iterations. The BER and SER of the two decoders are plotted in Figure 3.6. It

can be observed that there is little difference in performance of the turbo code and the TCB code

for 10 iterations in the turbo decoder at an SER of 10−3. Also, the TCBC performs less than

0.5 dB worse than the turbo code for 100 iterations in the turbo decoder at the same SER. Note

that, the decoder of TCBC is non-iterative and hence can be parallelized to decode with low

latency, which is not possible in the case of iterative decoders. Thus, TCB provides an alternate

coding and decoding method with low latency which can perform nearly as well as turbo codes

in AWGN, when the symbol size is of the order of a few hundred bits. Figure 3.7 shows the

performance of the turbo code (1000, 200) for 10 iterations and Golay-TCBC (920, 200). It can

be observed that the performance gap is about 1 dB.

9CC(9,2) is defined by the polynomials [6, 3, 7, 6, 3, 7, 6, 3, 7; 3, 10, 17, 3, 10, 17, 3, 10, 17].
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Figure 3.7: Comparison of the Turbo code (1000, 200) and Golay-TCBC (920, 200).
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Figure 3.8: Comparison of the CC-based and TCBC lattice codes (8, 6).
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3.4.2.3 Comparison with CC-based lattice codes

Figure 3.8 compares the BER performance of a CC-based lattice code and a TCB based lattice

code constructed in section D.3. Both codes are rate 6
8 codes, and the BER of uncoded-QPSK

is also plotted for comparison. The TCB-based code outperforms the CC-based lattice code, for

the same trellis complexity and using the same lattice partition in R
8. The CC-based lattice code

comprises a (4, 3) CC generated using polynomials [0 2 1 3; 2 1 1 3; 3 2 2 2] with K = 6, dCC
free = 4

and TCB-based lattice code comprises a (3, 2) CC generated using polynomials [ 3 6 7; 14 1 17]

with K = 6, dCC
free = 6. The lattice code is generated in R

8 using QPSK constellation points.

The lattice code-words are transmitted over an AWGN channel and decoded using the CC-

based lattice decoder and TCB-based lattice decoder, respectively. In both decoders, the coded

bits are recovered using a standard Viterbi decoder and the uncoded bits are recovered using a

minimum distance decoder.

3.5 Summary

In this chapter, a new algebraic structure of binary linear block codes (LBC) was presented and

a new family of codes referred to as trellis coded block codes was introduced, which can be used

in discrete as well as continuous channels. The procedure developed here can be used to obtain

a coding gain starting from any LBC. It was shown that, at a small loss in the rate ( 1n), the BER

performance can be improved relative to the parent code. Such codes could come in handy when

one needs to design codes with short length and low decoding latency. This is made possible

via the uniform sub-set partitioning of block codes. A simple encoder/decoder structure which

uses an off-the-shelf block encoder and a Viterbi decoder was proposed. It was shown that the

proposed decoder is a maximum likelihood sequence detector. Analytical expressions for bounds

on the BER performance of the TCB code were obtained based on the theory of multi-stage

decoding. It was also shown that using the proposed decoder structure, the latency of decoding

can be made significantly smaller than the length of the block code. Moreover, the non-iterative

decoder for the TCBC enables parallel hardware implementation. Three different applications

of the proposed TCBCs were described in Appendix D, to illustrate their utility in practical

systems. Finally, Monte Carlo simulation results demonstrated the performance gains in BSC

and AWGN channels. In Chapter 5, we use the proposed TCBC for encoding the quantized
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CSI for feedback to the transmitter in a multiple antenna communication system with a noisy

feedback link, and illustrate the positive impact of TCBC on the forward-link average data rate.



Chapter 4

Transmit Diversity Techniques with

CSIT and no CSIR

“As rivers flow into the sea and in doing so lose name and form, even so the wise man, freed

from name and form, attains the Supreme Being, the Self-luminous, the Infinite.” -Mundaka

Upanishad.

4.1 Introduction

One of the seminal results in fading Multiple-Input Multiple-Output (MIMO) communication

with Channel State Information (CSI) at the receiver (CSIR) is the exact characterization of

the trade-off between the diversity and multiplexing gain (the so-called Diversity Multiplexing

gain Trade-off (DMT)) [49]. A key finding in this work is that, for Rayleigh fading MIMO

channels with perfect CSIR, the maximum diversity order can at most be NrNt, where Nr and

Nt denote the number of antennas at the receiver and transmitter, respectively. In turn, this

has the important implication that, as a function of the SNR expressed in dB, the logarithm of

the probability of error in communication can at best decrease linearly with a slope of NrNt,

even with constant-rate transmission, as the SNR goes to infinity. Since that early result, the

DMT has been extended to various cases with full/partial knowledge of CSI at the transmitter

(CSIT) and CSIR.

75
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However, to the best of our knowledge, diversity transmission schemes, and the corresponding

achievable DMT, of a fading MIMO channel with CSI available only at the transmitter and no

CSIR has not been studied in the literature. This is perhaps because the acquisition of CSIT

has typically been viewed as a two-stage process: CSI is first acquired at the receiver, and

then fed back from the receiver to the transmitter in a quantized or analog fashion. Thus, the

existing studies inherently assume an initial estimation of CSI at the receiver. However, when

the channel is reciprocal, i.e., when the forward and reverse channels are the same, CSI can

be directly acquired at the transmitter by sending a known training sequence in the reverse-

link direction. The channel can be modeled as being reciprocal, for example, in Time Division

Duplex (TDD) communication systems [50–54].1 It is hence possible to acquire CSIT without

first acquiring CSIR. In this context, some important questions that we seek to answer in this

work are: If perfect CSI is available at only the transmitter, what is the best diversity order

that can be achieved? How does it compare with the diversity order that can be obtained when

perfect CSI is available only at the receiver? We answer these questions by proposing novel

transmission schemes based on CSIT and no CSIR. The schemes are fundamentally different

from straightforward techniques such as zero-forcing transmission in that zero-forcing does not

satisfy an average power constraint at the transmitter under Rayleigh fading [55]. Further, since

our techniques require CSI only at the transmitter, there is no need for forward-link training and

channel estimation at the receiver. We show that our proposed schemes can convert a Rayleigh

fading MIMO channel into fixed-gain parallel AWGN channels, while simultaneously satisfying

an average power constraint at the transmitter. The proposed schemes thus equalize the fading

channel, and achieve an infinite diversity order. Also, and perhaps more significantly, we show

that our proposed precoding schemes extend elegantly to the fading multi-user multiple access,

broadcast and interference channels, thereby achieving an infinite diversity order in these cases

also.

4.1.1 Motivation and Prior work

The importance of spatial diversity for reliable communication in a wireless communication

system with multiple antennas is now very well understood [56, 64]. As already mentioned,

1Note that channel reciprocity also requires that the transmit and receive radio-frequency (RF) chains are
well-calibrated, which is assumed here [3].
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Table 4.1: Summary of maximum diversity order achievable in Rayleigh fading Single-Input

Multiple-Output (SIMO), Multiple-Input Single Output (MISO), and MIMO channels.

Scenario CSI Condition Maximum Diversity Order References

SIMO CSIR Nr [56]

SIMO CSIRT̂ 2Nt,∞ [57, 58]

MISO CSIR Nt [59, 60]

MISO CSIR̂T̂ N2
t (N

2
t +Nt + 1) +Nt [61]

MIMO CSIR NtNr [49]

MIMO CSIR̂ NtNr

[
rTc

Tc−Ltr

]

[62]

MIMO CSIRT̂ NrNt(NrNt + 2) [63]

MIMO CSIR̂T̂ 2NrNt [63]

MIMO CSIT ∞ This work

a diversity order of NtNr can be achieved with perfect CSIR [49]. On the other hand, an

exponential diversity order can be achieved when perfect CSI is available at both transmitter

and receiver [65]. It is also known that under partial CSIT and perfect CSIR, a diversity order

greater than NtNr can be achieved (See [57], [66], and [7-18] in [63]). In the above papers, the

available CSIT is exploited either for inverting dominant modes, or for power control, to improve

the diversity order, under the assumption of perfect CSIR. In [55, 67–69], channel-inversion

based power control and precoding was considered. However, channel inversion fails to satisfy

the average power constraint [55], requiring the use of regularization [67] or computationally

intensive sphere encoding schemes [68,69]. Table 4.1 lists the key results from the literature on

the maximum diversity order that is achievable under various assumptions on the availability

of CSI at the receiver and transmitter. In the second column of the table, the CSI condition is

represented as CSIR (or CSIT), when the CSI at the receiver (or transmitter) is perfect, and

no CSI is available at the transmitter (or receiver). Also, a hat over a letter, e.g., CSIR̂T̂,

represents the system with estimated CSI at the receiver and transmitter, where the estimation

error variance is assumed to be inversely proportional to the training SNR. Thus, to the best of

our knowledge, none of the existing studies analyze the diversity order that is achievable when
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CSI is available only at the transmitter, which is our focus in this Chapter.

4.1.2 Contributions

• We propose three novel and simple-to-implement transmit precoding schemes which require

CSI only at the transmitter. Our first proposed technique uses a real Orthogonal Space-

Time Block Code (O-STBC) based signaling with power control, and can be used with 3

or more transmit antennas. With 2 transmit antennas, the same scheme is also applicable

with the complex Alamouti code based signaling and an appropriate power control. The

second technique we propose is a modification of the existing Maximum Ratio Transmission

(MRT) scheme [70]. The third technique we propose uses a more general complex signaling

scheme, thereby recovering the spectral efficiency lost due to the real-valued signaling, but

is applicable when Nt ≥ 2Nr. We show that our proposed transmit precoding schemes

achieve an infinite diversity order. Added benefits of our proposed approach are that

forward-link training is not required, and optimal decoding at the receiver is very simple.

• We extend the first transmit precoding scheme to the Rayleigh fading Multiple Access

Channel (MAC). We show that an infinite diversity order is achieved in this case as well.

• We extend the second transmit precoding scheme to three kinds of multi-user Rayleigh

fading channels: the MAC, the Broadcast Channel (BC), and the Interference Channel

(IC). We show that an infinite diversity order is achieved in all three cases.

• We illustrate the performance of the proposed schemes via Monte Carlo simulations. We

show the AWGN-like waterfall behavior of the probability of error versus SNR curves in

the single-user and multi-user cases. We also present simulation results with imperfect

CSIT obtained using reverse-link training, as well as with practical peak-to-average power

constraints, and show that, for practical SNRs, the waterfall behavior is still retained.

The three precoding schemes we propose are quite different from each other. The first is

based on O-STBC signaling, second is based on the MRT scheme and the third is based on the

use of the QR-decomposition of the channel to achieve a form of active interference cancellation

at the transmitter. The real O-STBC based scheme is simpler to implement than the QR-based

scheme, but the latter allows the use of complex-valued signaling, and extends elegantly to the

multi-user MAC, BC and IC. Since our proposed precoding scheme converts the Rayleigh fading
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MIMO MAC, BC and IC with CSIT and no CSIR into fixed-gain AWGN channels, one can use

existing results for the Gaussian channel [71] to immediately obtain achievable rate regions for

all three cases.

4.2 Transmit Precoding Based on Real O-STBC Signaling

4.2.1 Equivalent Channel Model

For our first proposed scheme, we consider real O-STBC signaling. At the receiver, we consider

the real part of the baseband received signal, and, hence, we can consider both the baseband

equivalent channel as well as the additive noise as having real-valued components. Before pre-

senting the proposed transmit precoding scheme, we start with the following mathematical model

for the received signal at the ith receive antenna:

yi =

√

kρ

Nt
Xhi + ni, (4.1)

where yi ∈ R
L denotes the received signal vector for L ≥ Nt consecutive symbols. The channel

vector between the transmit antennas and the ith receive antenna is denoted by hi ∈ R
Nt , and is

assumed to have Gaussian, independent and identically distributed (i.i.d.) entries with zero mean

and unit variance, denoted by N (0, 1). The real O-STBC codeword is denoted by X ∈ R
L×Nt .

The noise vector is denoted by ni ∈ R
L, and is assumed to have i.i.d. N (0, σ2

n) entries. Also, ρ

is the total transmit power available across the Nt antennas per channel use, and k is a constant

used to meet the average transmit power constraint. Using the equivalent representation of the

codeword matrix X in terms of its constituent Hurwitz-Radon matrices [60], it is shown in [72]

that (4.1) can be written as

yi =

√

kρ

Nt
H̃ix+ ni, (4.2)

where H̃i ∈ R
L×L denotes the equivalent channel matrix and the vector x ∈ R

L contains the

symbols used to construct X. Note that, the matrix H̃i is obtained from hi using a simple

mapping π : RNt → R
L×L [72].

Examples: Consider the 4 × 4 real O-STBC code designed in [60]. In this case, it can be
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shown that

XT =











s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

s4 s3 −s2 s1











, H̃ =











h1 h2 h3 h4

h2 −h1 h4 −h3

h3 −h4 −h1 h2

h4 h3 −h2 −h1











, (4.3)

where sj denotes the j
th data symbol drawn from a finite size constellation set, x = [s1 s2 s3 s4]

T ,

and hj = hji, j = 1, 2, . . . , Nt are the channel coefficients between the Nt transmit antennas and

ith receive antenna. Note that, for simplicity, we have omitted the receive antenna index i in

writing the expression for H̃.

As an example with a non-square O-STBC, for the G3 code in [60], the codeword and the

equivalent channel matrix can be written, respectively, as

XT =








s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2







, H̃ =











h1 h2 h3 0

h2 −h1 0 −h3

h3 0 −h1 h2

0 h3 −h2 −h1











. (4.4)

It can be verified that, in both cases, the equivalent channel matrices H̃ are orthogonal. In fact,

this property is true for all real O-STBCs, as we show next.

By the equivalence of the two representations, we have Xh = H̃x. Multiplying by XT on

both sides, we get

βh = XT H̃x, (4.5)

where XTX = βINt , and β =
∑Nt

i=1 s
2
i > 0, since X is a real O-STBC codeword. Also, INt

represents the Nt ×Nt identity matrix. Now, suppose h 6= 0, but the columns of H̃ are linearly

dependent. Then, there exists a nonzero x that lies in the null space of H̃, and substituting

such an x in the above leads to h = 0, i.e., a contradiction. Hence, any nonzero channel vector

h leads to an H̃ with full column rank. Next, we show that H̃ is orthogonal.

Let x1 and x2 denote two data vectors and X1 and X2 denote their corresponding O-STBC

matrices. Further, let xk,j denote the jth column of Xk, for k = 1, 2. Due to the structure of
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O-STBC codes, xT
2,jx1,i = −xT

2,ix1,j for j 6= i, and xT
1,ix2,i = xT

1,jx2,j = xT
1 x2 [73]. Hence,

hTXT
1 X2h =

∑

i

∑

j

hihjx
T
1,ix2,j =

∑

i

h2ix
T
1,ix2,i = xT

1 x2

∑

i

h2i . (4.6)

Using the fact that Xh = H̃x, we get

xT
1

(

H̃T H̃
)

x2 = xT
1 x2

∑

i

h2i . (4.7)

The above equation holds for any pair of vectors x1 and x2, if and only if H̃ is orthogonal and

H̃T H̃ = H̃H̃T = (
∑Nt

i=1 h
2
i )IL. Thus, the equivalent channel matrix H̃ is an orthogonal matrix.

Remark 4. The equivalent channel representation in (4.2) and the orthogonality property in

(4.7) also hold for the complex 2× 2 Alamouti code (see Exercise 9.4 of [74]). However, it does

not necessarily hold for other complex O-STBCs. Due to this, it is not possible to directly

extend the real O-STBC based transmit precoding scheme proposed in the next subsection to

complex O-STBC signaling, except when Nt = 2.

4.2.2 Proposed Transmit Precoding Scheme

4.2.2.1 Single Receive Antenna Case

For the ease of the presentation, we first consider the single receive antenna case. We premultiply

the data vector x with the matrix P , 1
αH̃

T where α = h21 + h22 + . . . + h2Nt
is a scalar. Then,

we use the vector Px to generate the real O-STBC codeword X. Since the channel matrix H̃ is

orthogonal, such a precoding equalizes the effective channel, i.e.,

y =

√

kρ

Nt
H̃Px+ n =

√

kρ

Nt
x+ n. (4.8)

In the above, the constant k is used to satisfy the transmit power constraint; we derive its value

below. Note that, with the aforementioned precoding, optimal data decoding at the receiver is

very simple,2 as the equivalent channel consists of L parallel Single-Input Single-Output (SISO)

AWGN channels with their gain independent of the channel instantiation. Since the effect of

fading has been perfectly equalized at the transmitter, the proposed scheme achieves an infinite

2The data decoding is even simpler than that of O-STBC with perfect CSIR.
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diversity order. Moreover, as the equivalent channel has a fixed gain, channel estimation is not

required at the receiver.

Satisfying the Average Transmit Power Constraint

In the proposed scheme, the columns of actual O-STBC matrix transmitted, X, are constructed

using permutations and sign-inversions of the entries of the precoded vector Px. Hence, the

average transmit power over L channel uses, which is given by tr(XTX), can be written as

Pavg =
kρL

Nt

(
Eh,x

[
xTPTPx

])
, (4.9)

where Eh,x refers to the expectation over the distributions of h and x. This average power

constraint is the same as in past work that considers transmission schemes with CSIT, e.g.,

[57, 63, 65, 66]. Since ρ is the total power available for transmission per channel use, to satisfy

the average transmit power constraint of Pavg = Lρ, we need

ρL =
kρL

Nt
Eh

[
1

α

]

Ex[‖x‖22], (4.10)

where the orthogonality property of H̃ is used. Now, α is a χ2
Nt

random variable when the

channel is Rayleigh fading with i.i.d. N (0, 1) entries, and it is shown in Appendix E.1 that

E

[
1

α

]

=
1

Nt − 2
, for Nt > 2. (4.11)

Hence, assuming that each entry of x is normalized to have unit energy, Ex[‖x‖2] = L, and the

average transmit power constraint can be satisfied by choosing

k =
Nt(Nt − 2)

L
. (4.12)

Moreover, the SNR at the receiver can be computed as ρ(Nt−2)
L σ2

n
.

4.2.2.2 Extension to Multiple Receive Antennas

First, note that the above precoding scheme converts a Rayleigh fading channel into L parallel

SISO AWGN channels with a fixed gain over L channel uses. Hence, we obtain an infinite

diversity order with a single receive antenna. Having additional receive antennas can improve
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the received SNR, but does not increase the diversity order.

One way to use multiple receive antennas with the above precoding scheme is to employ

antenna selection at the receiver. For each channel instantiation, we select the receive antenna

for which the average transmit power required is the minimum. This corresponds to choosing

the antenna for which the ℓ2 norm of the channel vector is the highest among all the receive

antennas. This requires limited CSI at the receiver; i.e., the receiver would require knowledge

of the antenna selected by the precoding scheme. Alternatively, the receiver could decode the

data on all its receive antenna chains and pick the antenna chain for which the decoded data

passes a cyclic redundancy check (CRC). Clearly, the receive antenna selection based scheme

also achieves an infinite diversity order, as, on a per channel instantiation basis, the effective

channel is still an AWGN channel. For example, consider the 2 receive antenna case, with

α , max{‖h1‖22, ‖h2‖22}. It is shown in Appendix E.2 that

E

[
1

α

]

=
21−Nt

Γ
(
Nt

2

)

∞∑

m=0

Γ(Nt − 1 +m)

2mΓ
(
Nt

2 +m
) , (4.13)

where Γ(·) is the Gamma function [75]. Hence, k can be computed as Nt

E[ 1α ]L
. For the case

of Nt = 4, L = 4 with real hi, we get k ≈ Nt in the 2 receive antenna case with antenna

selection, in contrast with k = (Nt − 2) for the single antenna case. Thus, when Nt = 4, the

above precoding scheme offers a nearly 3 dB improvement in the performance with 2 receive

antennas and antenna selection, compared to the single receive antenna case. The extension

of the antenna selection scheme to Nr > 2 receive antennas is straightforward. However, the

expression for E
[
1
α

]
is cumbersome to obtain, and hence is omitted.

Remark 5. The proposed scheme also works for the case of 2 transmit antennas, by using the

complex Alamouti code as the underlying O-STBC. In this case, with one receive antenna, it

can be shown that E
[
1
α

]
= 1, when the channel coefficients are i.i.d. CN (0, 1). With Nr = 2

and receive antenna selection, using the derivation in Appendix E.2, one can calculate3

E

[
1

α

]

=
2 · 21−2Nt

Γ(Nt)

∞∑

m=0

Γ(2Nt − 1 +m)

2mΓ (Nt +m)
= 0.5. (4.14)

3Note that, with complex baseband signaling, we consider each entry of hi is assumed to be complex circularly
symmetric Gaussian distributed with a variance of 0.5 per real dimension, denoted by CN (0, 1). Also, the entries
of the noise vector are assumed to be i.i.d. and drawn from CN (0, 1).
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Hence, the average transmit power constraint can be satisfied with 2 receive antennas also; and

the receive antenna selection between two antennas offers a 3 dB improvement in the average

SNR compared to the single receive antenna case.

4.3 Maximum Ratio Transmission Based Precoding

Now, we present our second precoding scheme, which is based on Maximum Ratio Transmission

(MRT). We start with single receive antenna and Nt ≥ 2 transmit antennas. Let h denote the

Nt × 1 channel vector with i.i.d. CN (0, 1) components in the complex baseband representation.

In classical MRT, one uses h
‖h‖ as the beamforming vector at the transmitter. Here, we propose

to use p , h
‖h‖2

to precode the unit-power data symbol x. The received signal y can be written

as

y =

√

kρ

Nt
hHpx+ n =

√

kρ

Nt
x+ n, (4.15)

where n ∈ C denotes the receiver noise, distributed as CN (0, σ2
n), and k denotes transmit power

normalization. Thus, the above MRT based precoding scheme equalizes the fading channel,

provided an average power constraint can be satisfied. The average transmit power can be

written as

Pavg =
kρ

Nt
E[x2]E[pHp] =

kρ

Nt
E

[
1

‖h‖2
]

. (4.16)

This average power constraint is the same as in past work that considers transmission schemes

with CSIT, e.g., [57, 63, 65, 66]. In Appendix E.1, it is shown that E
[

1
‖h‖2

]

= 1
Nt−1 for Nt ≥ 2.

Hence, the power normalization constant k = Nt(Nt − 1) satisfies the average power constraint

Pavg = ρ.

k =







Nt(Nt − 2), for Nt > 2 with real h

Nt(Nt − 1), for Nt > 1 with complex h
. (4.17)

The corresponding SNR at the receiver is given by

SNR =







(Nt−2)ρ
σ2
n

, for Nt > 2 with real h

(Nt−1)ρ
σ2
n

, for Nt > 1 with complex h
, (4.18)

where σ2
n is the variance of the zero mean Gaussian noise at the receiver.
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4.3.1 Extension to Multiple Receive Antennas

As in the previous precoding scheme, we employ antenna selection in order to extend the scheme

to multiple receive antennas. At the transmitter, we form the precoding vector p corresponding

to the receive antenna that requires the least transmit power among the available receive an-

tennas. Thus, the transmitter picks the receive antenna for which the resulting channel vector

has the largest norm and employs the MRT based precoding scheme for the selected channel.

Along the lines of (4.13) and (4.14), the normalization constant k can be computed. That is, for

Nr = 2 and complex signalling we get k = 2 Nt which satisfies the average transmit constraint

Pavg = ρ.

4.4 QR-Decomposition Based Precoding Scheme

In this section, we present another novel precoding scheme, which is based on the QR-decomposition

of the channel matrix. This scheme not only applies to a wider range of antenna configurations,

but also extends to multiuser scenarios with CSIT. Consider a Rayleigh fading MIMO channel

with Nr receive antennas and Nt ≥ 2Nr transmit antennas. The complex baseband signal model

for the received signal at the ith receive antenna can be written as

yi =

√

kρ

Nt
hH
i Px̃+ ni, (4.19)

where hi ∈ C
Nt denotes the complex channel coefficients between the Nt transmit antennas and

ith receive antenna, x̃ = [x̃1, x̃2, . . . , x̃Nt ]
T denotes an extended data vector of dimension Nt, and

is derived from a data vector x ∈ C
Nr containing the Nr symbols to be transmitted. We assume

the normalization E[xHx] = 1. Also, ρ, k and P denote, respectively, the average transmit

power available across the Nt transmit antennas per channel use, a normalization constant, and

an Nt × Nt precoding matrix. The noise is assumed to be i.i.d. across receive antennas with

entries from CN (0, σ2
n).

For ease of presentation, as in the previous section, we start with the Nr = 1 case. Let

h ∈ C
Nt denote the channel vector. We set the precoding matrix P as

P = QU, (4.20)
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where the unitary matrix Q ∈ C
Nt×Nt is obtained from the QR-decomposition of h, i.e., h , Qr,

with r ∈ C
Nt and upper triangular, with first element r1 = ‖h‖2 and remaining elements equal

to zero. Also, U ∈ C
Nt×Nt is chosen to be an arbitrary, non-diagonal unitary matrix.

Now, given the complex scalar data symbol x, the extended data vector x̃ is chosen such

that the following condition is satisfied:

rHUx̃ = x. (4.21)

It is easy to verify that (4.21) can be satisfied by choosing x̃1 = x, x̃2 =
x(1−r1u1,1)

r1u1,2
, and x̃j = 0,

for j = 3, . . . , Nt, where ui,j is the (i, j)th element of U, provided u1,2 6= 0. Substituting for x̃

and P, the above precoding scheme leads to the following equivalent channel:

y =

√

kρ

Nt
x+ n. (4.22)

In the above, k is a normalization constant independent of the channel instantiation, whose value

is specified below. Thus, the fading channel is converted to an AWGN channel with a fixed gain.

The proposed precoding scheme inherently equalizes the effect of fading and simultaneously

cancels the interference caused due to the signal being transmitted from multiple antennas.

Next, we show that, with k appropriately chosen, the above precoding scheme satisfies an average

transmit power constraint.

Satisfying the Average Transmit Power Constraint

The average transmitted power can be written as

Pavg =
kρ

Nt
Ex,h

[
x̃HPHPx̃

]
,

=
kρ

Nt
Ex

[
x2
]

(

1 +
|u1,1|2

|u1,2|2
+

1

|u1,2|2
Eh

[
1

‖h‖22

]

− 2
ℜ{u1,1}
|u1,2|2

Eh

[
1

‖h‖2

])

. (4.23)

For Rayleigh fading channels, it is shown in Appendices E.1 and E.3 that

E

[
1

‖h‖22

]

=
1

Nt − 1
,

E

[
1

‖h‖2

]

=
Γ
(
2Nt−1

2

)

Γ (Nt)
. (4.24)
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Using (4.23) and (4.24), we can satisfy the average transmit power constraint of Pavg = ρ by

choosing

k = Nt

(

1 +
|u1,1|2

|u1,2|2
+

1

|u1,2|2
− 2

ℜ{u1,1}
|u1,2|2

Γ
(
2Nt−1

2

)

Γ(Nt)

)−1

, (4.25)

where ℜ{·} denotes the real part of {·}, and u1,2 6= 0 so that k > 0 and finite. For example,

when Nt = 2, one can choose

U =




0 1

1 0



 , (4.26)

which results in k = 1 and a received SNR of ρ
2σ2

n
, i.e., a 3 dB loss compared to the unit-gain

AWGN channel. Finding the unitary matrix U that minimizes the SNR loss is an interesting

extension for future work.

Remark 6. One way to accommodate multiple receive antennas in this scheme is to employ

antenna selection, as in the O-STBC based precoding scheme. The power normalization constant

k can be easily derived as follows. For example, with Nr = 2 and U chosen as in (4.26), we can

write (4.23) as

Pavg =
kρ

Nt
Ex

[
x2
]
(

1 + E

[
1

α

])

, (4.27)

where α = max{‖h1‖22, ‖h2‖22}, as before. Using (4.14), we can obtain a closed-form expression

for k to satisfy the average power constraint of Pavg = ρ per channel use.

In the following, we present an alternative way to extend the above QR-based precoding

scheme to the case where multiple receive antenna chains are available. The proposed scheme

results in an equivalent channel that consists of Nr parallel fixed-gain AWGN channels.

Extension to Multiple Receive Antennas

When the receiver is equipped with Nr antennas, with Nt ≥ 2Nr, our proposed extension leads

to Nr parallel, non-interfering AWGN channels. The input-output relation is given by

y =

√

kρ

Nt
HHPx̃+ n, (4.28)

where the received vector y ∈ C
Nr , the channel matrix H ∈ C

Nt×Nr , and the noise n ∈ C
Nr .

Denote the QR decomposition of H by H = QR, where Q ∈ C
Nt×Nt is unitary and R ∈ C

Nt×Nr
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is upper triangular. Note that, in particular, since Nt ≥ 2Nr, the rows Nr +1 through Nt of the

matrix R are all zeros.

We consider the data vector x = [x1, x2, . . . , xNr ]
T , and choose the extended vector x̃ such

that RHUx̃ = x, where U ∈ C
Nt×Nt is a fixed non-diagonal unitary matrix. Now, the matrix

R can be partitioned as R = [RH
1 0H ]H , where the submatrices R1 and 0 are of dimension

Nr ×Nr and (Nt −Nr)×Nr, respectively. We set the first Nr entries of x̃ as x. If we partition

x̃ as x̃H = [xH x′H 0H ], where 0 is a vector of (Nt − 2Nr) zeros, x
′ can be written as

x′ = R−1
u2 (I−Ru1)x, (4.29)

where Ru1 , RH
1 U11 and Ru2 , RH

1 U12. The matrix U11 is the Nr ×Nr principal submatrix

of U, and the matrix U12 is the Nr × Nr submatrix of U obtained by taking the entries from

rows 1 through Nr and columns Nr + 1 through 2Nr. Finally, we let P = QU, as before.

The above described precoding scheme leads to the input-output relation:

y =

√

kρ

Nt
x+ n, (4.30)

and hence, we obtain Nr parallel, fixed-gain AWGN channels. By choosing k appropriately, we

can satisfy the average power constraint on the data signal, as we show next.

Satisfying the Average Transmit Power Constraint

Noting that ‖x̃‖22 = ‖x‖22 + ‖x′‖22, the average transmit power per channel use can be computed

from

Pavg =
kρ

Nt
Ex,h

[

xHx+ xH(I−Ru1)
HR−H

u2 R−1
u2 (I−Ru1)x

]

,

=
kρ

Nt

[

1 +
1

Nr
tr
(

Eh

[

(I−Ru1)
HR−H

u2 R−1
u2 (I−Ru1)

])]

. (4.31)

Since the choice of the unitary matrix U is arbitrary, we can simply choose U11 = 0Nr and

U12 = INr . Now, we get Ru1 = 0 and Ru2 = RH
1 . Further, using Lemma 6 in [76], we have

tr
(

Eh

[

R−1
u2R

−H
u2

])

=
Nr

Nt −Nr
. (4.32)
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Hence, we can simplify the average transmit power as

Pavg =
kρ

Nt

[

1 +
1

Nt −Nr

]

, (4.33)

and k can be chosen as

k = Nt

[

1 +
1

Nt −Nr

]−1

, (4.34)

to satisfy the average transmit power constraint of Pavg = ρ. The SNR per receive antenna for

this scheme is given by

SNR =
ρ(Nt −Nr)

(1 +Nt −Nr)σ2
n

. (4.35)

Next, we present CSIT-based precoding schemes for the fading multiuser MAC, BC and IC.

4.5 Precoding Schemes for Multi-user Channels

In this section, we extend the above transmit precoding schemes to the multiuser MAC, BC

and IC. We assume that the wireless channels between transmit and receive antenna pairs are

i.i.d. and Rayleigh distributed. An interesting feature of the proposed precoding schemes is

that they require each transmitter to have knowledge only of the channel between itself and the

receiver(s), and not the other users’ channels. We start with the multiuser MAC with CSIT.

4.5.1 The Multiple Access Channel

4.5.1.1 Real O-STBC Signaling Scheme

Consider the M user MAC with Nt antennas at each transmitter (user) and a single antenna at

the receiver. The received signal y ∈ R
L can be written as

y =
M∑

i=1

√

kρi
Nt

H̃(i)P(i)xi + n, (4.36)

where n ∈ R
L is the additive noise at the receiver, distributed as N (0, σ2

n); xi ∈ R
L
i is the

O-STBC data vector; and ρi denotes the average transmit power from the ith user. Also, P(i)

denotes the precoding matrix employed by the ith transmitter corresponding to its channel to

the receiver, H̃(i) is the equivalent channel matrix as defined in Sec. 4.2, and k denotes the

power normalization constant. Now, we choose P(i) , 1
αi
H̃(i) T where αi = ‖hi‖2, and hi is
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the channel from the ith transmitter to the receiver, with i.i.d. N (0, 1) entries. Then, as in

Sec. 4.2, the precoding scheme equalizes the channel, and we obtain L parallel Gaussian MACs

with transmit powers ρi, i = 1, 2, . . . ,K. That is, the received signal can be written as

y =
M∑

i=1

√

kρi
Nt

xi + n, (4.37)

where k = Nt(Nt − 2)/L, for Nt > 2. Hence, the precoding scheme converts a Rayleigh flat-

fading MISO MAC channel into a fixed-gain Gaussian MAC channel. Moreover, the scheme

only requires each transmitter to have knowledge of its own channel to the receiver, and not

the other users’ channels. The capacity region of the Gaussian MAC channel is known [71], and

hence, this forms an achievable rate region for the fading MAC channel with CSIT.

4.5.1.2 QR-Based Precoding Scheme

Consider the M user Rayleigh fading MAC with Nr antennas at the receiver and Nt ≥ 2Nr

antennas at each transmitter (user). Using precoding scheme described in the previous section,

the received signal y ∈ C
Nr can be written as

y =
M∑

i=1

√

kρi
Nt

HH
i Pix̃i + n, (4.38)

where Hi ∈ C
Nt×Nr denotes the channel between the ith user and the receiver, distributed as

i.i.d. CN (0, 1), x̃i ∈ C
Nt denotes an extended data vector, and is derived from the complex data

vector xi as explained earlier in the single user case. Also, ρi and Pi ∈ C
Nt×Nt denote the

average transmit power available and the precoding matrix, respectively, corresponding to the

ith user, and k is a normalization constant. The components of the AWGN n are assumed to

be i.i.d. CN (0, σ2
n). At the ith transmitter, we choose the matrix Pi as in Sec. 4.4. With this

precoding scheme, the received data vector becomes

y =
M∑

i=1

√

kρi
Nt

xi + n. (4.39)

Thus, for the multiuser MAC channel, our proposed coding scheme converts the Nt×Nr MIMO

Rayleigh fading MAC channel into Nr parallel Gaussian MAC channels with a fixed gain, when

CSI is available at the transmitters.
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4.5.2 The Broadcast Channel

We now present an adaptation of the proposed precoding scheme to the M user BC with

Nr antennas at each user terminal and Nt ≥ 2MNr antennas at the transmitter. Here, the

combined channel matrix H ∈ C
Nt×MNr between Nt transmit antennas and M user termi-

nals can be considered as a virtual MIMO channel, but with MNr individual messages. Let

x = [
√
ρ1s1,

√
ρ2s2, . . . ,

√
ρMsM ]T denote the vector containing the messages intended to the

M users, where ρi denotes the transmit power used by user i such that
∑

i ρi = ρ, the total

available transmit power, and the transmitted symbols si ∈ C
Nr are drawn from a constellation

satisfying E[sHi si] = 1. Let x̃ ∈ C
Nt denote an extended message vector, derived from x ∈ C

MNr

as described in the previous section. Hence, one can write the signal model as

y =

√

k

Nt
HHPx̃+ n, (4.40)

where P ∈ C
Nt×Nt is now a common precoding matrix for all users, k is a normalization constant

and n ∈ C
MNr denotes the complex Gaussian noise vector at all the M receivers.

Now, the scheme proposed in Sec. 4.4 in the single user case is directly applicable to the

multiuser BC. Note that, due to the possibly unequal power allocation across the users, we have

Cx = E
[
xxH

]
= diag(ρ1INr , ρ2INr , . . . , ρMINr). Hence, the average power equation (4.31) is

modified to:

Pavg =
kρ

Nt
tr
(

Cx

{

IMNr + Eh

[

(I−Ru1)
HR−H

u2 R−1
u2 (I−Ru1)

]})

. (4.41)

Correspondingly, the transmit power normalization constant k is given by

k =
Nt

tr
(

Cx

{

I+ Eh

[

R−H
1 R−1

1

]}) , (4.42)

where we have used U11 = 0MNr and U12 = IMNr . Thus, the average power constraint can

be satisfied, and the MIMO channel HH ∈ C
Nt×MNr is simultaneously converted into MNr

parallel AWGN channels. Due to this, data received at the other users are not required for

symbol detection and decoding at a given receiver.
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4.5.3 The Interference Channel

In this subsection, we extend the transmit precoding proposed in the previous subsection to an

M user IC. For ease of presentation, we consider the M = 2 user IC, with Nt ≥ 2MNr antennas

at each transmitter and Nr antennas at each receiver. In contrast with the BC, we now have M

interfering transmitters. The received signal at ith receiver can be modeled as

yi =

√

k

Nt

2∑

j=1

HH
i,jPjx̃j + ni, (4.43)

where Hi,j ∈ C
Nt×Nr denotes the channel matrix between the ith transmitter and jth receiver,

having i.i.d. CN (0, 1) entries, and ni denotes the Gaussian noise vector at the ith receiver, having

i.i.d. CN (0, σ2
n) entries.

Now, we exploit the fact that a 2 user IC can be viewed as a combination of two interfering

BCs. We employ the power allocation scheme described for the BC, and choose ρ1 = ρ and

ρ2 = 0 at transmitter 1, and ρ1 = 0 and ρ2 = ρ at transmitter 2, with ρ denoting the per-user

transmit power constraint, assumed to be the same for both users. We apply the precoding

scheme presented for the BC in the previous subsection. Due to the zero power allocation to the

signal component from each transmitter to the unintended receiver, the transmitters do not need

to know the data symbols being transmitted by the other transmitter. Also, the receivers see

only their intended messages, and hence do not need joint decoding or multi-user detection, and

the Rayleigh fading IC is converted into MNr parallel AWGN channels. Further, it is interesting

to note that, when M = 2, the number of parallel AWGN channels corresponds precisely to the

degrees of freedom of the two user Nt ×Nr MIMO IC with perfect CSIT and CSIR [77].

Remark 7. In most of the existing precoding methods, for example, in techniques such as block

diagonalization [78], the channel matrix between all possible transmit-receive pairs is needed for

computing the precoding matrix. In contrast, in our proposed method, each transmitter needs

to know only the channel between itself and the receivers. That is, it need not know the channels

between other transmitters and receivers. This is a significant advantage in practical systems,

in terms of the bandwidth and latency involved in exchanging CSI prior to data transmission.

For example, in cellular systems, it leads to a reduction in the amount of CSI that needs to be

shared between base stations via the backhaul link.
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4.6 Simulation Results

In this section, we demonstrate the performance of the proposed precoding schemes using Monte

Carlo simulations. For simplicity, we consider a Rayleigh flat-fading MIMO system with Nt = 2

or 4 antennas, and Nr = 1 or 2 antennas. We consider uncoded QPSK or 4-PAM constellations

and compute the BER by averaging over 106 noise and 104 channel instantiations. We compare

the BER performance of the proposed scheme with other existing schemes in the literature

that assume perfect CSIR and/or perfect CSIT. We also study the impact of imperfect CSIT

(obtained by uplink training using finite transmit power) as well as the impact of imperfect

channel inversion (due to the finite peak transmit power available on the practical transmitters)

on the BER performance of the proposed methods.

4.6.1 Single User Channels

Figure 4.1 shows the BER performance corresponding to the Nt ×Nr = 2× 1 and 2× 2 MIMO

systems. We compare the performance of the Alamouti encoding scheme [59] under perfect CSIR

with that of the proposed O-STBC based precoding scheme under perfect CSIT. When Nr = 2,

both schemes use antenna selection at the receiver. From the figure, we see the significant

improvement in the diversity order offered by the proposed O-STBC based precoding scheme

compared to the CSIR-based Alamouti scheme. Also, the performance of the O-STBC precoding

scheme without antenna selection is about 3 dB worse than the unit-gain SISO AWGN channel,

as predicted by the theory. Employing the antenna selection between two receive antennas

fills most of this gap. Thus, the proposed scheme converts a MIMO fading channel into an

equivalent SISO fixed gain AWGN channel. This plot also shows the performance of the QR-

based precoding scheme in the 2× 1 system. It can be observed that O-STBC based precoding

needs about 0.5 dB higher transmit power to achieve the same BER. Note that the O-STBC

based scheme is simpler to implement compared to the QR-based scheme.

To demonstrate the O-STBC based scheme with a higher number of transmit antennas, we

show the performance of a 4× 1 system employing the full-rate 4× 4 real O-STBC code in (4.3)

with 4-PAM constellation symbols in Fig. 4.2. Also shown is the performance of the 4×2 system

with antenna selection at the receiver. In both cases, we see that the proposed precoding scheme

renders the effective channel to be a fixed-gain AWGN channel at all SNRs, as expected. Also,

the antenna selection between two antennas results in about 3 dB gain in the BER performance
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2x1 − Alamouti

2x1 − OSTBC Precoding

2x1 − QR Precoding

2x2 − Alamouti with AntSel

2x2 − OSTBC Precoding with AntSel

QPSK − AWGN − Theory

Figure 4.1: BER comparison of the Alamouti code with perfect CSIR and the two proposed

schemes with perfect CSIT, for a 2× 1 system and a 2× 2 system with antenna selection at the

receiver, using the QPSK constellation.

for the proposed precoding scheme, while it results in a diversity order improvement from 4 to

8 for the CSIR-based O-STBC transmission scheme.

Figure 4.3 shows the BER performance the QR based precoding scheme for the 2 × 1 and

4×2 systems. We also show the performance of the complex Alamouti code with uncoded QPSK

transmission and perfect CSIR. It can be seen the BER of the proposed scheme is parallel to

that of the unit-gain SISO AWGN channel. The gap between the two is about 3 dB and 1.7 dB

for the 2× 1 and 4× 2 systems, respectively, which corroborates well with the theory in (4.35).

Further, the proposed scheme far outperforms the perfect CSIR-based Alamouti coding scheme.

4.6.1.1 Precoding with CSI Estimated at the Transmitter

Now, we present simulation results when the CSIT is imperfect. The channel is estimated at the

transmitter using a reverse-link training sequence consisting of 10 known symbols transmitted

with 10 dB power boosting compared to the forward-link data SNR. We also evaluate the

performance when the training signal is transmitted at a fixed power of 30 dB. The MMSE
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4 X 1 − OSTBC based precoding

4PAM − AWGN − Theory

Ant.Sel=0

Ant.Sel=1

Figure 4.2: BER comparison of the the real O-STBC transmission scheme with perfect CSIR

and proposed O-STBC based precoding scheme with perfect CSIT for a 4×1 system with 4-PAM

constellation. The dashed curves correspond to the scheme with Nr = 2 and antenna selection

at the receiver.

channel estimator is used for estimating the CSIT. Simulation results are provided for the O-

STBC based precoder in Fig. 4.4; the behavior of the MRT and QR based precoding schemes is

similar. It can be seen that the BER performance is close to that obtained with perfect CSIT,

and that the waterfall-type behavior of the curves is retained.

4.6.1.2 Transmit Precoding with a Peak Power Constraint

Here, we present the simulation results when the peak power used by the transmitter is restricted

to a practical limit (say, to 15 dB higher than the average average power). Limiting the peak

power does not invert the channel perfectly for those channel realizations where the peak power

required is more than 15 dB above the average power constraint, but the transmit power con-

straint is still satisfied with the normalization factor k derived earlier. The BER performance is

plotted as a function of the SNR for the O-STBC scheme in Fig. 4.5; the behavior of the other

two precoding schemes is similar. It can be observed that the BER performance is very close
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Figure 4.3: BER comparison of the Alamouti code under perfect CSIR and proposed QR-based

scheme under perfect CSIT, for the 2× 1 and 4× 2 systems, with uncoded QPSK signaling.

to the one with no peak power limit, and the peak power constraint does not significantly alter

the behavior of the curves at practical SNRs.

4.6.2 Multi-user Channels

In Fig. 4.6, we demonstrate the performance of the O-STBC precoding scheme for the MAC

channel with M = 2 users, Nt = 2, Nr = 1 and L = 2. We compare the performance of the

complex Alamouti code constructed using QPSK symbols with that of the proposed O-STBC

based and QR based precoding schemes. Here, users 1 and 2 are allocated 9
10 and 1

10 of the

total transmit power, respectively. For decoding symbols from the two users, a joint Maximum

Likelihood (ML) decoder is used at the receiver. We see, again, that the proposed precoding

schemes are able to convert the fading MAC into a fixed-gain Gaussian MAC, with the QR

based precoding scheme marginally outperforming the O-STBC based precoding scheme.

We next illustrate the BER performance of the proposed precoding scheme for the two-user

BC, in Fig. 4.7. We consider a 4 × 1 system with uncoded QPSK signaling. Equal power is

allocated to both users, and, hence, the power normalization constant k with the QR-based
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10 dB training
Power boost

30 dB fixed
training power

Figure 4.4: BER performance the Nt = 2, Nr = 1 system with O-STBC based precoding and

estimated CSIT. QPSK constellation used for signalling. The MMSE channel estimate was

computed using 10 known training symbols with 10 dB SNR boost during the training phase.

precoding scheme is given by (4.34). We see that the performance of the QR-based precoding

scheme is parallel to the that of uncoded QPSK symbols in a unit-gain AWGN channel. Thus,

the fading MIMO BC is converted into 2 parallel fixed-gain AWGN channels. In the plot, we

also show the performance of the vector perturbation method for multi-user BC in [79] for the

same antenna configuration, which also requires CSIT. The proposed scheme is not only simpler

from an implementation point of view at both the transmitter and receiver, but also outperforms

the vector perturbation approach by about 1 dB.

Note that, since the precoding scheme for the IC follows from that of the BC, it results in

exactly the same performance as in the BC at the two receivers. Hence, we do not explicitly

illustrate the performance of the proposed scheme for the 2-user IC.

4.7 Summary

In this chapter, we proposed three novel, simple-to-implement precoding schemes which utilize

CSIT to convert a Rayleigh fading MIMO channel into a fixed-gain AWGN channel, thereby
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Figure 4.5: BER performance of the Nt = 2, Nr = 1 system with O-STBC based precoding

and a peak power constraint. The peak power was limited to be 15 dB higher than the average

transmit power. As another example, peak power limit of 20 dB is used along with estimated

channel vector using training sequence with 10 dB additional power than the data transmission.

achieving an infinite diversity order, while simultaneously satisfying an average power constraint.

Thus, if perfect CSI could be made available either at the transmitter, or at the receiver, but not

both, the perfect CSIT option provides significantly better resilience to fading. The proposed

schemes not only offer an improvement over CSIR-based techniques in terms of the diversity

order, but also admit single symbol ML decoding at the receiver. We extended the precoding

schemes to the fading multiuser MIMO multiple access, broadcast and interference channels. In

all three cases, we showed that the fading MIMO channel is converted into parallel fixed-gain

AWGN channels. Numerical simulations illustrated the significant performance advantage of the

proposed scheme compared to CSIR-based diversity transmission schemes. Moreover, under the

practical SNR conditions, the performance under imperfect CSIT also does not degrade signifi-

cantly when compared to the performance under perfect CSIT conditions. Thus, the proposed

precoding schemes are promising for use in reciprocal MIMO systems, where it is practically

feasible to directly acquire CSI at the transmitter. Future work could involve optimizing the

unitary matrix U used in the QR-based precoding scheme, and extending the proposed schemes
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Figure 4.6: BER performance of users 1 and 2, with QPSK signaling in a 2× 1 MAC. Here, the

transmit powers at the users are set using ρ1 =
9
10SNR and ρ2 =

1
10SNR, and joint ML decoding

is employed at the receiver.

to handle channel estimation errors at the transmitter.
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1
2SNR.



Chapter 5

Application to CSI Feedback Link

Design in MIMO Systems

“Oh God! Thou art the giver of life, the remover of pain and sorrow, the bestower of happiness.

Oh! Creator of the Universe, may we receive thy supreme sin-destroying light. May Thou guide

our intellect in the right direction.” - Gayatri Mantra.

5.1 Introduction

In this chapter, the source and channel coding techniques developed in the previous chapters

are applied to a MIMO wireless system, in the context of CSI feedback on the reverse-link.

That is, we design the various blocks of the low-rate CSI feedback channel (See Fig. 1.2). We

use the quality (MSE) of the received CSI on the reverse-link, and data-rate achieved on the

forward-link, as two metrics of interest.

Our goal is to study how the techniques proposed in Chapters 2, 3, and 4 work when

implemented in a communication system. To this end, we construct an end-to-end simulation

platform that includes all the source coding, receive filtering, channel coding and transmit

diversity techniques presented in this thesis. The simulation platform allows us to evaluate the

impact of these techniques on quality of the CSI received at the base station as well as on the

resulting downlink data rate. In the simulation, the CSI data is compressed using a VQ based

101
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source encoder. The index output by the source encoder is channel-coded using the Hamming

TCB (7, 3) code presented in 3. The output of the TCB code is mapped to symbols from the

signal constellation. The symbols are sent over the fading MIMO reverse link channel using

either the CSIR-based Alamouti scheme or the CSIT-based O-STBC transmit diversity scheme

presented in Chapter 4. At the receiver, symbols are demodulated and decoded using the TCB

decoder. This is followed by the source decoder and the receive filtering operation described in

Chapter 2. This comprehensive setup allows us to evaluate the interoperability and performance

of different combinations of the proposed techniques.

The rest of the chapter is organized as follows. We describe the system model in section 5.2.

The performance of the system under various system configurations is given in Section 5.3. The

key take-home messages from this chapter are captured in the summary remarks presented in

Section 5.4.

5.2 System Model

The wireless system considered here assumes a Rayleigh fading channel, with two antennas

(Nt = 2) at the base station (BS) and two antennas (Nr = 2) at the user terminal (UT). We

consider a TDD system, with perfect channel reciprocity. Further, for simplicity, we consider

the transmit powers from the UT and the BS to be such that the average SNR is the same at

the two receivers (i.e., at the BS and the UT, respectively). We consider OFDM modulation

with N = 64 sub-carriers. The entries of the 2 × 2 channel matrix for each subcarrier are

therefore modeled as i.i.d. circularly symmetric complex Gaussian distributed with zero mean

and unit variance. The BS sends forward-link training to the UT for estimating the channel.

For simplicity, and to focus our attention on the effect of fading and noise in the reverse-link on

the feedback of CSI, we make the following assumptions in the simulations:

1. A TDD system with perfect channel reciprocity.

2. CSI at the transmitter (UT) is perfect.

3. The transmit powers at the UT and BS are chosen such that the SNR at both receivers

are the same.

In this chapter we consider two types of CSI feedback to the BS: (i) the channel matrix

entries corresponding to each sub-carrier are source encoded using the 2-dimensional VQ method
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described in Chapter 2 and transmitted to the BS, and (ii) the dominant beamforming vector of

the channel matrix corresponding to each subcarrier is computed by the UT and is compressed

using a source encoding scheme described in the next section. The source encoder output for

each of the subcarrier is sent over a noisy fading channel to the BS using the space-time codes

presented in the previous chapter. From the received symbols, the BS estimates the CSI, possibly

after applying a receive filter. The estimated CSI is used to compute the beamforming vector

for down-link data transmission. We evaluate the performance by finding the average data rate

achievable in the forward-link as well as by computing the average MSE of the estimated CSI

at the BS.

We start by describing the source quantization at the UT. The descriptions of the CSI feed-

back transmission and reception schemes, the receive filtering at the BS, the down-link beam-

formed data transmission, and the achievable rate calculation are provided in later subsections.

In the following, we describe two methods of source coding the CSI at the UT. The first

method involves directly compressing the entries of the channel matrices, while the second in-

volves first computing the transmit beamforming vector and then compressing the beamforming

vector at the UT.

5.2.1 CSI Compression: Source Coding of Channel Matrices

Here, the 2 × 2 channel matrices corresponding to each sub-carrier are compressed using a 2-

dimensional Gaussian codebook. In this method, the 4 complex entries present in each channel

matrix are converted into four 2-dimensional Gaussian vectors by stacking the real and imaginary

parts of each element. These vectors are compressed using Lloyd-Max MSE optimal codebook

designed with 22B size codebook where B denotes the number of bits per real dimension. The

indices corresponding to the 256 (i.e., 64 sub-carriers × 4 complex entries per channel matrix)

2-dimensional vectors are transmitted to the BS. At the BS, the received indices are used to

estimate the 64 channel matrix instantiations. These reconstructed channel matrices are used

to compute the beamforming vector that will be used for the down-link data transmission.
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5.2.2 CSI Compression: Source Coding of Beamforming Vectors

In this method, the UT first computes the beamforming vector on each subcarrier for forward-

link data transmission as the dominant singular vector of the channel matrix on the correspond-

ing subcarrier. The beamforming vectors so computed are then source encoded using VQ-based

quantization using a 2B-bit codebook, i.e., B bits per real dimension. The Lloyd-Max algorithm

is used to design locally optimal VQ codebooks of beamforming vectors using 50, 000 beamform-

ing vector instantiations. The VQ codebooks are designed using the projective distance as the

distortion metric, which is known to minimize the downlink capacity loss [80]. The projective

distance between two unit-norm vectors v and v̂ is defined as d(v, v̂) = 1−
∣
∣vH v̂

∣
∣2.

Thus, on each subcarrier, the indices corresponding to the entry in the codebook that is

closest to the beamforming vector on the subcarrier is found. These indices are transmitted to

the BS using classical Alamouti coding [59], or using the transmit diversity scheme proposed in

Chapter 4.

5.2.3 CSI Feedback Method 1: Transmission using STBC Code

The 2NB bits of information corresponding to the codeword indices output by the source encoder

is converted into data bits, which are BPSK modulated. The data symbols are space-time

encoded using the Alamouti code and transmitted to the BS. For simplicity and for ease of

comparison with the proposed diversity scheme, we assume ideal knowledge of CSI at the base

station for data decoding, especially for CSIR based feedback transmission in the uplink.

5.2.4 CSI Feedback Method 2: Transmission using Transmit Precoding

In a TDD system, one can exploit the reciprocity of the channel at the UT to transmit the CSI

feedback information to the BS without using the uplink training. This also reduces the overall

transmission time as well as provides exponential diversity order as described in Chapter 4. More

specifically, the 2NB bits of information are transmitted using the transmit diversity scheme 1

given in Chapter 4. For simulating the effect of channel coding, the CSI data bits are channel

encoded using a Hamming TCB (7,3) code given in Chapter 3, before being precoded for uplink

transmission. This provides a coding gain in the CSI feedback channel compared to uncoded

transmission of the CSI. In all cases, BPSK is used as the underlying modulation scheme for

data transmission.
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5.2.5 Receive Filtering

Since the uplink transmission is not error free, the code indices are possibly corrupted by the

noise in the channel. In order to reduce the overall distortion at the source decoder output,

we apply the linear receive filter derived in Chapter 2. The following subsections describe the

computation of receive filter for MSE distortion metric and projective distance distortion metric.

5.2.5.1 MSE Distortion Metric

The linear receive filter that minimizes the MSE distortion is given by

R = ΣxyΣ
−1
yy

where y the is received vector at the decoder when x is transmitted from the encoder. In the

simulation setup, the quantities Σxy and Σyy are numerically computed using 50, 000 random

source and channel output instantiations of the source index being transmitted through the

noisy feedback channel. Thus, it is straightforward to include the receive filtering technique into

the simulation setup.

As shown in Chapter 2, when the channel SNR is low, the receive filter drives the source

decoder output towards the origin. However, during data transmission, the vector output by

the source decoder is re-normalized to have unit-norm, to ensure that the average transmit

power is maintained. In beamforming-based systems, therefore, it is the angle between the ideal

and estimated beamforming vectors – that is, projection of one vector onto the other – that

determines the downlink data rate. Hence, the following modification is made in the receive

filter computation, in order to adapt it to account for the projective distance as the distortion

metric.

5.2.5.2 Projective Distance Distortion Metric

In this scheme, we compute the covariance of the beamforming vector given the received index,

and use its dominant eigenvector as the beamforming vector for data transmission. For example,

in the noiseless case, this leads to choosing the dominant eigenvector of the covariance Σxx of the

beamforming vector x, conditioned on x ∈ Ri, where Ri ,
{
x ∈ C

Nt : |xH x̂i| > |xH x̂j |, i 6= j
}
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as the beamforming vector for data transmission. In the noisy case, the covariance matrix compu-

tation accounts for possible channel errors and their probabilities, in computing the beamforming

vector for data transmission. We omit the details as they are straightforward.

5.3 System Performance

In the following, we compare the performance of the proposed system with two baseline (ref-

erence) systems for source compression. These baseline systems differ in terms of the way the

channel instantiation is quantized, and is in-line with proposals in recent wireless standards.

In both baseline systems, the feedback channel is assumed to be noiseless and delay-free. The

baseline systems are described in Sec. 5.3.1.

We contrast the performance of the baseline systems with the performance obtained under

various schemes:

• Channel coding on the feedback channel: We present results both with and without

employing the trellis coded block code proposed in Chapter 3.

• Transmit diversity scheme for the feedback channel: we consider the Alamouti

STBC and the CSIT-based Transmit precoding scheme proposed in Chapter 4.1

• Receive filtering at the base station: We present results with the receive filter designed

for both the MSE distortion metric as well as the projective distance distortion metric.

We use the receive filtering scheme proposed in Chapter 2. We also present results without

receive filtering.

Here, two performance metrics are considered for the comparing the various systems: (i)

The end-to-end average MSE in the channel matrix entries, termed as Channel Quality Metric

(CQM), which measures the quality of the CSI that is decoded at the BS, and (ii) The downlink

rate that can be achieved with the noisy feedback of CSI.

1We emphasize that by CSIT based transmit precoding scheme we refer to the O-STBC scheme proposed in
the previous chapter. This scheme requires the channel state information at the UT in order to precode the CSI
data to be sent to the BS on the uplink feedback channel. The received CSI is used at the BS for computing
the beamforming vectors for downlink data transmission. Hence, “CSIT” in this context corresponds to the
availability of CSI at the UT, which is the transmitter of the CSI on the feedback (uplink) channel. The CSI at
the BS, which transmits data to the UT on the downlink channel, is always estimated from the signal received
on the noisy feedback link.
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5.3.1 Baseline Systems

5.3.1.1 REF-I System

In the first system, we convert the four complex entries of the channel matrix into four 2-

dimensional real-valued vectors and quantize them using a VQ codebook with 22B entries. The

codeword indices are transmitted to the BS via a noiseless feedback channel. At the BS, the

beamforming vector corresponding to the largest singular value is computed from the received

quantized CSI matrix. Such a direct quantization of the channel entries has been used, for

example, in the IEEE 802.11n standard [3].

5.3.1.2 REF-II System

The second system differs from the REF-I system in that the beamforming vector is quantized

at the UT using a VQ codebook. In particular, we use the projective distance as the metric in

the Lloyd algorithm for designing the codebook. For example, similar codebooks are designed

in communication standards such as 3GPP and LTE [8, 9]. The resulting codeword index is

transmitted to the BS via the feedback channel.

5.3.1.3 Downlink Rate as the Performance Metric

To make the comparison fair across various number of bits of feedback and SNR conditions, the

performance metric chosen for comparison of various schemes is the ratio of the average data rate

with the ideal CSI and the average data rate with the quantized CSI, with or without noise in

the feedback channel. This ratio is expressed as a percentage of the achievable average downlink

data rate. Given the beamforming vector v̂ at the transmitter, we compute the downlink data

rate as:

CQ , Eh

[
log
(
1 + ‖Hv̂‖2PT

)]
,

where PT is the average downlink data transmit power. Note that, strictly speaking, the above

expression represents an upper bound on the ergodic capacity of the channel, since it requires

knowledge of Hv̂ at the UT. This knowledge can be acquired without additional training sym-

bols, for example, by measuring the average power over a large number of symbols received

within the coherence interval of the channel. However, for simplicity, we assume a genie-aided

receiver at the UT which has knowledge of ‖Hv̂‖, and, hence, the above expression represents
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the ergodic capacity of a genie-aided, beamforming-based downlink system.

5.3.2 Simulation Results and Discussion

5.3.2.1 Effect of CSI Compression

Channel Quality Metric: Figure 5.1 considers the REF-I system described above, and com-

pares the CQM (MSE distortion) obtained with noiseless feedback with that obtained using the

Alamouti code-based and the proposed CSIT-based transmission of CSI on the uplink. Here,

no receive filtering or TCBC is employed at the BS. It can be observed that the total end-to-

end MSE distortion in the channel coefficients increases significantly at low SNR, for both the

STBC and the CSIT based precoding methods. At low SNR, the STBC based scheme gives

better performance, since the advantage of CSIT based precoding methods are exhibited only

at moderately high SNRs. However, if an error correction code is employed, the CSIT-based

precoding scheme outperforms the STBC based scheme. This is demonstrated in section 5.3.2.2.
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Figure 5.1: Comparison of CQM with CSI feedback for Nt = Nr = 2, using 2-dimensional

Gaussian codebooks with 16 and 256 entries, STBC and CSIT based transmit precoding method

on the feedback link, and with the BPSK constellation.
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Downlink Rate Metric: Figure 5.2 shows the performance of the REF-I system that uses a 2-

dimensional Gaussian codebook, for various values of B bits per real dimension. The percentage

of the achievable data rate is compared for different VQ codebook cardinalities under noiseless

and noisy feedback channel conditions. Under noiseless conditions, it can be seen that using

as little as 3 bits per real dimension for quantizing the channel matrix achieves most of the

achievable data rate with perfect CSI at the BS. Note that, the total number of feedback bits

transmitted per channel instantiation is 2BNrNtN = 1536 bits, for the case of B = 3 bits.
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Figure 5.2: Comparison of ergodic capacity with CSI feedback for Nt = Nr = 2, using 2-

dimensional Gaussian codebooks, STBC on the feedback link, and with the BPSK constellation.

Figure 5.3 shows the performance of the REF-II system, obtained by quantizing the beam-

forming vector using codebooks designed with the projective distortion metric, and with various

values of B. It can be seen that as low as 2B = 6 bits per beamforming vector achieves most

of the capacity achievable with perfect CSI at the BS, in the noiseless feedback channel case.

The total feedback bits transmitted per channel instantiation is 2BN = 384, when B = 3. This

translates to an 80% reduction in the number of feedback bits that are needed compared to the

REF-I case.

Figures 5.2 and 5.3 show the dramatic effect of noise in the feedback channel. Unlike in
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the ideal feedback case, at low SNR, using a higher number of bits for quantization results in

a higher performance loss. This is intuitively reasonable, since, the finer the quantization, the

more sensitive the resulting codebook indices would be to errors in the feedback link.
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Figure 5.3: Comparison of ergodic capacity with CSI Feedback using beamforming vector com-

pressed with the capacity-optimal, projective distance-based codebook for Nt = Nr = 2 and

STBC using BPSK constellation.

5.3.2.2 CSI Feedback Using Proposed Techniques

Channel Quality Metric: Figures 5.4, 5.5 and 5.6 compare the CQM for STBC based and CSIT

based transmit precoding during the uplink transmission of CSI. Curves are plotted both with

and without the receiver filtering and TCBC based error correction codes. Specifically, Fig 5.4

shows the performance with and without receive filtering, Fig. 5.5 shows the performance with

and without the TCBC, while Fig. 5.6 shows the performance with both receive filtering and

TCBC. It can be observed that the CQM improves when any of the proposed techniques are

applied. We see from Fig. 5.4 that the receive filter helps in improving the CQM at low SNRs

for both the uplink transmission schemes. We see from Fig. 5.5 that the scheme using the

Alamouti STBC and TCBC for channel error correction gives the best performance. However,
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with the Alamouti STBC scheme, the CQM improves gradually with SNR, unlike the waterfall

type behavior in the performance of the CSIT based transmit precoding scheme around 0 dB

SNR. Finally, Fig. 5.6 shows that using both the receive filter and the TCBC offers the best

possible CQM performance.
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Figure 5.4: CQM performance of the CSI feedback link with Nt = Nr = 2, BPSK constellation,

and using 2-dimensional Gaussian codebooks with 256 entries, as a function of the SNR. Com-

pared are the CSIR based Alamouti STBC and the CSIT based transmit precoding method,

with and without receive filtering. The CQM improvement due to the linear receive filtering is

demonstrated here.

Downlink Rate as the Metric: We now illustrate the achievable data rate improvement from

the proposed technique compared to the reference systems described in the previous section.

(a) CSI Feedback Using Receive Filter: Figure 5.7 compares the performance of the CSIT-based

transmit precoding scheme and the CSIR based Alamouti STBC, with and without the receive

filter, for B = 4. It can be seen that the receiver filter results in only a marginal improvement in

the performance achieved by both the feedback transmission schemes. This plot also highlights

the higher sensitivity of the Ref-II system to the noisy feedback channel.

(b) CSI Feedback with the CSIT Based Transmit Precoding Scheme and TCBC: Now, we study
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Figure 5.5: CQM performance of the CSI feedback channel for Nt = Nr = 2, BPSK signal-

ing, and using 2-dimensional Gaussian codebooks with 256 entries. Compared are CSIT based

transmit precoding method on the feedback link, with and without the TCBC. The CQM im-

provement due to TCBC is demonstrated here.

the effect of using a short latency TCBC for mitigating the effect of errors in the uplink channel.

Figure 5.8 compares the performance of transmit diversity based uplink transmission with the

TCB code, for both Gaussian and beamforming codebooks. Here, we used an 8 bit codebook for

both the encoders. The performance improvement obtainable by employing the TCBC is clear

from the graph. The performance with the TCBC is nearly as good as with a noiseless feedback

channel, when the channel SNR is close to 0 dB.

(c) CSI Feedback Using Transmit Precoding, TCBC and Receive Filter: Here, we apply all

the three methods for mitigating the noise in the feedback channel, namely, the CSIT-based

precoding, the TCBC and the linear receive filter. In Fig. 5.9, we compare the normalized

downlink data rate performance obtained due to the noise mitigation methods with that of the

reference scheme, when the CSI for downlink beamforming is estimated from the feedback bits

received over the noisy uplink channel . It can be observed that upto 15% improvement in the

normalized downlink rate is possible for a channel SNR of 0 dB even with a simple TCBC code,
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Figure 5.6: CQM performance of the CSI feedback channel for Nt = Nr = 2, BPSK signaling,

and using 2-dimensional Gaussian codebooks with 256 entries. Compared are the CSIT based

transmit precoding method on the feedback link, with and without joint receive filtering and

TCBC. The CQM improvement due to jointly using both the receive filtering and the TCBC is

demonstrated here.

the CSIT based transmit precoding technique and linear receive filtering. This also corresponds

to about 0.25 bits/s/Hz improvement in the downlink data rate, at 0 dB SNR.

5.4 Summary

In addition to the performance plots shown in this chapter, we have also extensively simulated

the system under various other system configurations. We make the following observations from

our experiments:

• For the same number of bits used for encoding, quantization of the beamforming vectors

based on VQ offers better performance (in terms of achievable downlink rate for the same

SNR) than that obtained from compressing the entries of the channel matrix directly using

either a scalar or a vector quantizer. Quantizing the beamforming vectors directly also
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Figure 5.7: Comparison of the normalized data rate with CSI Feedback using beamforming

vector codebooks for Nt = Nr = 2. The schemes compared are the CSIT based transmit

precoding scheme and the CSIR based Alamouti STBC scheme, with BPSK constellation. Here,

the receive filter is applied at the source decoder output before it is used for beamforming, as

described in the previous section.

leads to fewer bits being needed, to convey the CSI to the transmitter through the feedback

link. However, the beamforming VQ indices are more sensitive to channel induced errors

than the channel coefficient quantization indices.

• The transmit diversity scheme converts the Rayleigh fading MIMO channel into fixed gain

AWGN channel. This allows us to use existing codes designed for AWGN channels for error

correction in fading channels. This was demonstrated by using the Hamming TCB (7, 3)

code in the simulation. This makes the channel virtually noise free for SNRs above 0 dB.

However, without the channel code, the CSIT-based transmit diversity scheme performs

worse than the CSIR based schemes such as the Alamouti code, at SNRs below 6 dB.

When the target BER is below 10−4, the CSIT based transmit diversity schemes offer

significant gain in the operating SNR.
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Figure 5.8: Comparison of the normalized data rate with CSI Feedback using Gaussian and

beamforming vector codebooks for Nt = Nr = 2. The uplink transmission employed the CSIT

based transmit precoding scheme with a BPSK constellation and the TCBC(7,3) channel code.

• The low-latency TCB codes offer good coding gain even with a relatively simple code such

as the Hamming TCB (7, 3) code. Also note that, the TCB code can easily work as an

outercode, since it can be designed for both discrete as well as continuous channels.

• The receive filter offers considerable gain in the MSE distortion but only a marginal gain

in the downlink rate, when the beamforming vectors are compressed.

• We have found that a similar percentage improvement can be obtained in both the average

data rate and in the 10 % outage rates, when any of the noisy mitigation measures proposed

in this thesis are employed. However, we have omitted the outage rate curves to avoid

repetition.
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Figure 5.9: Comparison of the normalized downlink data rate with CSI Feedback using beam-

forming vector codebooks designed for projection distance metric for Nt = Nr = 2. The trans-

mission of CSI on the uplink feedback channel employed the CSIT based transmit precoding

scheme with BPSK constellation and the TCBC(7,3) channel code.



Chapter 6

Conclusions

“The lotus of the heart, where Brahman exists in all His glory that and not the body, is the true

city of Brahman. Brahman, dwelling therein, is untouched by any deed, ageless, deathless, free

from grief, free from hunger and from thirst. His desires are right desires, and His desires are

fulfilled.” - Chandogya Upanishad

6.1 Contributions

This thesis addressed three key problems in the MIMO reverse-link channel, with particular

emphasis on its use for sending the CSI feedback to the base station. The main contributions

of this thesis are as follows:

• Channel noise tolerant source coding: We proposed channel noise mitigation techniques

for source compression that can be implemented at the receiver. That is, the proposed

techniques reduce the overall end-to-end distortion when the source compressed data is

sent over noisy channel. The key advantage in this scheme compared to the existing

methods is that the source encoder at the transmitter can remain channel agnostic. The

receiver filter used at the decoder is computed as a function of channel SNR and applied

to the source decoder output, in order to reduce the total distortion.

• Low latency error correction coding: The proposed low latency error correction codes

perform as good as known Turbo codes for short block lengths, but with lower complexity

117
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and decoding delay. Our proposed codes were based on a uniform distance sub-code

partitioning that is possible in many of the existing linear block codes. Due to this, the

proposed code construction procedure can leverage the vast literature on LBCs with good

minimum distance properties. The TCBCs can be used to encode the source compressed

channel state information (CSI) data.

• Reliable communication in a fading environment: We proposed diversity methods for re-

ducing the SNR required to send the feedback data reliably by converting the Rayleigh

fading MIMO or MISO channel into SISO AWGN channels with fixed gain. These methods

require CSI at the transmitter, which can be acquired by sending a known training signal

in reverse-link direction in time division duplex systems. These schemes were extended to

fading multi-user channels as well. This study showed that, in reciprocal Rayleigh fading

MIMO systems, acquiring CSI at the transmitter is fundamentally better than acquiring

CSI at the receiver. Moreover, with perfect CSIT, one can obtain an infinite diversity

order, which is in contrast with the finite diversity order obtainable in perfect CSIR based

diversity techniques.

Finally, all the above methods were applied to the MIMO reverse-link CSI feedback channel.

We constructed an end-to-end simulation platform that includes all the source coding, receive

filtering, channel coding and transmit diversity techniques presented in this thesis. This com-

prehensive setup allowed us to evaluate different combinations of the proposed techniques in a

single platform. Using the platform, we demonstrated the improvement in channel quality at

the transmitter and the consequent improvement in the achievable downlink data rate, offered

by the proposed techniques.

6.2 Future Work

The techniques presented in this thesis to address the various issues in MIMO reverse-link

channel can be extended to other applications. Some specific examples are as follows:

• Receive filtering can be extended to handle non-linear filtering methods and nonstan-

dard channels such as finite state channels, channels with synchronization errors, inser-

tion/deletion errors, and so on.
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• The uniform partitioning theorem for binary linear block codes can be extended to non-

binary fields, which can result in efficient coding and decoding of TCBC built on non-binary

fields also.

• The transmit diversity methods can be extended for multiple receive antenna systems

by optimally combining them with or without the knowledge of CSI at the receiver. The

antenna selection method addressed in this thesis is one of the ways of addressing the issue.

There could be other ways in which additional improvements can be obtained. Also, the

real O-STBC based precoding scheme can be extended to handle complex O-STBC also.

• Finally, the CSI feedback channel design can be extended to the multiuser scenario, where

the inter-user interference also needs to be taken into account.



Appendix A

High-Rate Distortion Analysis

A.1 High-Rate Distortion Analysis

For a noiseless channel, the MSE distortion of VQ (without the receive filtering) can be written

as

Ed =

N∑

i=1

∫

x∈Ri

d(x, x̂i)fx(x)dx. (A.1)

For the result to follow, the standard high-rate approximations in [24,35], and the quantization

cell approximation in [27] are employed. 1 Now, computing the Taylor series expansion of the

distortion measure d(x, x̂) about x = x̂ results in

d(x, x̂) = d(x̂, x̂) + (x− x̂)Td(x̂) +
1

2
(x− x̂)TD(x̂)(x− x̂) +O(‖x− x̂‖3),

where d(x) denotes the derivative defined by di(x̂) ,
d d(x,x̂)

dxj

∣
∣
∣
x=x̂

and D(x) denotes the Hessian

matrix given by D(i, j) ,
d2 d(x,x̂)
dxj dxk

∣
∣
∣
x=x̂

. Since the distortion measure is a proper metric and

its derivative goes to zero at the local minima of twice continuously differentiable function, the

distortion can be approximated as

d(x, x̂i) ≈ (x− x̂i)
TD(x̂)(x− x̂i) ∀x ∈ Ri,

1The approximations used in this paper are well established in the classical source coding literature, and are
known to be accurate for high-rate quantization. A good rule-of-thumb is that about 3 bits per dimension (i.e.,
N of the order 23n) are required for the high-rate results to apply.
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where the constant 1
2 is absorbed in the definition of Hessian matrix. Note that, the Hessian

matrix is interchangeably referred as “sensitivity matrix” in the literature. Thus, any distortion

measure can be approximated by a weighted MSE (W-MSE) within the vicinity of Ri for high-

rate quantizer. Under high-rate condition, the specific point density, which is a piece-wise

constant function defined as gN (x) , 1/(NV (Ri)) where x ∈ Ri and V (Ri) is the volume of

the Voronoi region Ri, approaches a continuous point density function λ(x) as N increases.

Specifically, for high-rate quantization, the regions Ri are small, and fx(x) ≈ fx(x̂i) for x ∈ Ri

Hence, (A.1) can be reduced to [24, 25, 37]

ESO
d

.
=

n

n+ 2
N

−2
n κ

−2
n
n |W| 1n

∫

x

λ
−2
n (x)fx(x)dx, (A.2)

where
.
= denotes asymptotic equality (i.e., equality when number of quantization cells is very

large), κn is the volume of an n−dimensional unit sphere and the superscript ESO
d denotes the

distortion for source optimized VQ. The point density function that minimizes (A.1) is [25, 37]

given by

λconv(x) =
f

n
n+2
x (x)

∫

y∈Dx
f

n
n+2
x (y)dy

. (A.3)

A code book with the above point density can be designed using, for example, the Lloyd-Max

algorithm [35], which involves using a large set of training vectors and starting with a random

code book, and iteratively updating the quantization regions Ri and the code points x̂i using the

Nearest-Neighbor Criterion (NNC) and Centroid Criterion (CC) respectively, till the sample-

averaged distortion converges. The resulting high-rate expected distortion for n−dimensional

Gaussian vector with zero mean and unit variance per dimension is given by

ESO
d

.
= 2πN

−2
n k

−2
n
n

(
n+ 2

n

)n
2

|W| 1n . (A.4)

A.2 Some Key Approximations

We present some key high-rate approximations that are used in the derivation of the receive

filter. Let x ∈ Ri be the source instantiation and let x̂j be the received codeword when the

index i is transmitted over a noisy channel. Let e , (x− x̂j) denote the error vector. Then, the
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mean and covariance of e can be written as

E[e] =

N∑

i=1

∫

Ri

(x− x̂i)fx(x) dx
(a)
≈ 0 (A.5)

E[eeT ] =
N∑

i=1

∫

Ri

(x− x̂i)(x− x̂i)
T fx(x) dx

(b)
≈

N∑

i=1

fx(x̂i)

∫

Ei

eeT de, (A.6)

where Ei denotes the Voronoi region Ri shifted to the origin. The equality (a) is obtained by

assuming that the codewords are at the centroids of the Voronoi regions [25], and (b) is due

to the approximating fx(x) with fx(x̂i) inside the quantization cell Ri [25]. Using an ellipsoid

approximation for Ri, it can be shown that [27, 37]

∫

T (0,W,Vi)
eTQe de =

Vi

n+ 2

(
V 2
i |W|
κ2n

) 1
n

tr
(
W−1Q

)
. (A.7)

where Q is any positive semi-definite matrix and T (y,W, Vi) is the hyper-ellipsoid defined as

T (y,M, V ) ,

{

x

∣
∣
∣
∣
∣

(
κ2n

V 2|M|

) 1
n

(x− y)TM(x− y) ≤ 1

}

. (A.8)

Now, to compute the (i, j)-th element in (A.6), one can simply set Q = Eij in (A.7), with Eij

being the all zero matrix except for a 1 as the (i, j)-th element, as follows:

N∑

i=1

fx(x̂i)

∫

Ei

eeT de ≈
N∑

i=1

fx(x̂i)
Vi

n+ 2

(
V 2
i |W|
κ2n

) 1
n

W−1 (c)
≈ ΦnΓnN

−2
n , (A.9)

where Φn ,
κ

−2
n

n |W|
1
n

n+2 W−1, Γn ,

[∫

Dx
f

n
n+2
x (x) dx

]n+2
n

, and Θ , ΦnΓnN
−2
n . In the above, (c)

is obtained by substituting for the source-optimized point density in (A.3) and converting the

summation into the corresponding integral. Note that, the trace of the expression above results

in the high-rate characterization of the WMSE of VQ-based source coding [27, 37].
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A.3 Derivation for Ideal IA

The following relationships are used in the simplification of the average distortion expression.

By adding and subtracting Rx̂i in d(x,Rx̂j) one can simplify the following sum

d(x,Rx̂j) = d(x−Rx̂i +Rx̂i −Rx̂j)
∑

j∈S(i)

d(x,Rx̂j) =
∑

j∈S(i)

[
(x−Rx̂i)

TW(x−Rx̂i) + (x̂i − x̂j)
TRTWR(x̂i − x̂j)

+ (x−Rx̂i)
TWR(x̂i − x̂j) + (x̂i − x̂j)

TRTW(x−Rx̂i)
]
. (A.10)

∑

j∈S(i)

d(x,Rx̂j) = B(x−Rx̂i)
TW(x−Rx̂i) +

∑

j∈S(i)

(x̂i − x̂j)
TRTWR(x̂i − x̂j)

+ (x−Rx̂i)
TWR




∑

j∈S(i)

(x̂i − x̂j)



+




∑

j∈S(i)

(x̂i − x̂j)
T



RTW(x−Rx̂i),

d(x,Rx̂i) = d(x̂i,Rx̂i) + eTWe+ x̂T
i (I−R)TWe+ eTW(I−R)x̂i, (A.11)

where we have used the approximation that
∑

j∈S(i)(x̂i−x̂j) ≈ 0. Using the above, the following

integral can be simplified as,

∑

j∈S(i)

d(x,Rx̂j) = B(x−Rx̂i)
TW(x−Rx̂i) +

∑

j∈S(i)

(x̂i − x̂j)
TRTWR(x̂i − x̂j)

∫

x∈Ri

(x−Rx̂i)
TW(x−Rx̂i)dx =

∫

x∈Ri

(x̂i + e−Rx̂i)
TW(x̂i + e−Rx̂i)dx

=

∫

x∈Ri

x̂T
i (I−R)TW(I−R)x̂idx+

∫

x∈Ei

eTW(I−R)x̂ide

+

∫

x∈Ei

x̂T
i (I−R)TWede+

∫

x∈Ei

eTWede. (A.12)

∫

x∈Ri

(x−Rx̂i)
TW(x−Rx̂i)dx =

[
x̂T
i (I−R)TW(I−R)x̂i

]
Vi

+

[

n

n+ 2

(
V 2
i |W|
κ2n

) 1
n

]

Vi. (A.13)



APPENDIX A. HIGH-RATE DISTORTION ANALYSIS 124

Substituting the above simplifications in (B.9), we can write the total distortion as

Ed
.
=

N∑

i=1

fx(x̂i)

(

[
x̂T
i (I−R)TW(I−R)x̂i

]
Vi +

[

n

n+ 2

(
V 2
i |W|
κ2n

) 1
n

]

Vi

+
1−Q

B




∑

j∈S(i)

(x̂i − x̂j)
TRTWR(x̂i − x̂j)



Vi



 . (A.14)

LetW = GTG denotes the Cholesky decomposition ofW. Using the Rayleigh quotient relation,

Λ =
xTRTWRx

xTWx

xTRTWRx ≈ 1

n
tr
(
W−1RTWR

)
xTWx (A.15)

Note that, the above approximation matches well when all the eigenvalues are equal and y = Gx

is one of the eigenvectors. For high rate quantization,
∫

e
ede = 0 and

∫

x∈Ri
dx = Vi. In order

to evaluate
∑

j∈Si
(x̂i − x̂j)

TRTWR(x̂i − x̂j), consider the region Gi whose volume is V ′
i which

is greater than Vi such that V ′
i = B

Nλ(x̂i)
. The above summation can be approximated as shown

below.

∑

j∈Si

(x̂i − x̂j)
TRTWR(x̂i − x̂j) ≈ 1

n
tr
(
W−1RTWR

)∑

j∈Si

(x̂i − x̂j)
TW(x̂i − x̂j)

=
4B

n
tr
(
W−1RTWR

)
(
V 2
i |W|
κ2n

) 1
n

,

where we have approximated the sum of W-MSE between the B codewords (x̂j ’s) surrounding

the ith codeword (x̂i) as 4B times the square of the average radius of the region Ri. Hence, the

average distortion for ideal IA can be written as follows:

Eideal
d

.
=

N∑

i=1

fx(x̂i)

(

[
x̂T
i (I−R)TW(I−R)x̂i

]
Vi +

[

n

n+ 2

(
V 2
i |W|
κ2n

) 1
n

]

Vi

+(1−Q)

[

4

n
tr
(
W−1RTWR

)
(
V 2
i |W|
κ2n

) 1
n

]

Vi

)

, (A.16)
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where Vi =
1

Nλ(xi)
and V ′

i = B. Now, substituting for Vi in terms of the point density function

λ(x) and converting the summation into integral using the Monte Carlo integration formula, we

get

Eideal
d

.
=

∫

x

fx(x)
[
xT (I−R)TW(I−R)x

]
dx+

nN
−2
n |W| 1n

(n+ 2)κ
2
n
n

[∫

x

fx(x)λ
−2
n (x)dx

]

+
4(1−Q)N

−2
n |W| 1n

n κ
2
n
n

tr
(
W−1RTWR

)
[∫

x

fx(x)λ
−2
n (x)dx

]

. (A.17)

A.4 Optimum Minimum-WMSE Filter

It should be noted that the optimum Rx filter Ropt for the weighted-MSE can be computed by

minimizing the WMSE with respect to the Rx filter R. That is,

∂J

∂R
= E[xTWx− yTRTWx− xTWRy + yTRTWRy] = 0

⇒ E[−WxyT −WTxyT +WTRyyT +WRyyT ] = 0,

⇒ −2W
(
E[xyT ]−RE[yyT ]

)
= 0, (A.18)

∂J

∂R
= E[xTWx− yTRTWx− xTWRy + yTRTWRy] = 0, (A.19)

where we can assumed that W is symmetric and used the standard derivative formulae.

∂aTXb

∂X
= abT

∂aTXTb

∂X
= baT

∂aTXTa

∂X
= aaT

∂bTXTDXc

∂X
= DTXbcT +DXcbT , (A.20)

Solving (A.18) we get the expression of Ropt as

Ropt = ΣxyΣ
−1
yy . (A.21)
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A.5 Average Distortion of Ideal IA-Semi Hard Decision

Assuming ideal IA, 2 the closest centroids differ in their indices by 1 bit. For high rate cod-

ing, when the shape of the source Voronoi regions are similar, the distortion between the new

centroids x̂j and the source vectors in region Ri can be upper bounded by sum of distortion

between the centroid of Ri and an offset vector E . That is,

d(x, x̂j) ≤ d(x,xi) + Ei,j , (A.22)

where Ei,j = d(xi, x̂j). Now, 1
B

∑

j∈S(i) Ei,j can be approximated by the average distortion

between the centroid xi and the boundary of the hyper-ellipsoid. 3 With high rate quantization,

it is known that the Voronoi regions Ri can be well approximated by using hyper-ellipsoids [27],

with the values of x satisfying

(x− xi)
TW(x− xi) ≤

(
V 2
i

|W|κ2n

) 1
n

, (A.23)

In [81], it is shown to be

E i ,
1

B

∑

j∈S(i)

Ei,j ≈
(

V 2
i

|W|κ2
n

) 1
n
. (A.24)

Substituting (A.24) and (A.22) in (2.58), it can be shown that

E1E
d,I ≈ ESO

d + (1− φE) κ
−2
n
n |W|−1

n

2B∑

i=1

fX(xi)V
2
n

i Vi, (A.25)

where Vi is the volume of the Voronoi region, which can be approximated as Vi ≈ 1/(2Bλ(xi)).

Hence,

E1E
d,I ≈ ESO

d +
(1− φE) κ

−2
n
n

2
2B
n |W| 1n

2B∑

i=1

fX(xi)

λ
2
n (xi)

Vi,

E1E
d,I ≈ ESO

d +
|W|−1

n (1− φE) κ
−2
n
n

2
2B
n

∫

x

fX(x)λ
−2
n (x) dx. (A.26)

2It is not guaranteed that such an index assignment is possible for all values of B and dimension n. However,
for any given values of B and n, this can be satisfied for a fraction of the centroids.

3since the new centroids for the erasure case can be expected to lie on the boundary of the hyper-ellipsoidal
region.
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Also, recognizing that the integral term in (A.26) is proportional to the ESO
d in (2.55),

E1E
d,I ≈ ESO

d

[

1 + (1− φE)

(
n+ 2

n

)]

. (A.27)



Appendix B

Alternate Receive Filter Derivation

In this section, we derive the optimum Rx filter which minimizes the expected distortion due

to noisy reception of the transmitted index in a conventional approach rather than the MMSE

approach presented in the Chapter 2. Here, we show that conventional approach also results in

similar optimum receive filter. 1

B.1 Rx Filter for Random IA

The expected distortion is obtained by taking a double expectation over the source density and

the channel transition probabilities, as follows:

Ed =
N∑

i,j=1

Pj|i

∫

x∈Ri

d(x,Rx̂j)fx(x)dx. (B.1)

Using high-rate analysis, x ∈ Ri can be expressed as x = x̂i + e, where e is a “small” vector.

Then, d(x,Rx̂j) can be expanded as d(x̂i,Rx̂j) + eTWe + 2eTW(x̂i − Rx̂j). Next, the quan-

tization cell Ri is approximated by an n-dimensional hyper-ellipsoid with the same volume as

Ri [27, 28]:

Ri ≈ R̂i , {x : d(x,Rx̂i) ≤ τ}. (B.2)

1The expressions given by MMSE analysis is marginally more accurate than the expression obtained by the
more conventional approach given here. The primary difference is that the influence of the source compression
error is missing in the conventional approach. However, when B is reasonably large, the difference between the
two solutions is negligible.
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Hence, the average distortion can be written as

Ed
.
= ǫN

N∑

i,j=1

d(x̂i,Rx̂j)fx(x̂i)Vi

+(1−NǫN )
N∑

i=1

x̂T
i (I−R)TW(I−R)x̂ifx(x̂i)Vi

+
N∑

i=1

fx(x̂i)

(∫

e∈Ēi

eTWe de

) N∑

j=1

Pj|i, (B.3)

where Vi , Vol(Ri) = (Nλ(x̂i))
−1, Ēi , {e : x̂i + e ∈ Ri} is the Voronoi region translated to

the origin. Using the quantization cell approximation (B.2), it can be shown that [27],

∫

e∈Ēi

eTWede ≈ n

n+ 2
|W| 1nVi(V

2
i κ

−2
n )

1
n , (B.4)

where |W| denotes the determinant of the matrix W. Also, using the definition of the point

density and converting summations into integrals using the Monte Carlo integration formula [29],

(B.3) can be reduced to

Ed
.
= NǫN

∫

x,y
(x−Ry)T W (x−Ry)λ(y)fx(x)dxdy

+(1−NǫN )

∫

x

xT (I−R)TW(I−R)xfx(x)dx

+
n

n+ 2
N

−2
n κ

−2
n
n |W| 1n

∫

x

λ
−2
n (x)fx(x)dx. (B.5)

The above expression reduces to known expressions (e.g., [29]) when R = W = I.

Returning to (B.5), with a little manipulation, one obtains

Ed
.
= NǫN

[
tr(WΣx) + tr(WRΣλR

T )
]
+ (1−NǫN ) tr

(

W (I−R) Σx (I−R)T
)

+ ESO
d ,(B.6)

where Σx and Σλ are the covariance matrices of a random vectors x and y respectively, with

their corresponding probability density given by fx(x) and λ(x). Clearly, when ǫN = 0, (B.6) is

minimized by R = I as expected. Using straightforward differentiation, the R that minimizes

Ed above can be shown to be the following Minimum Mean Squared Error (MMSE)-type matrix

Ropt = Σx

(
NǫN

1−NǫN
Σλ +Σx

)−1

, (B.7)
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and the corresponding expected distortion can be found by substituting (B.7) into (B.6) as

Ed
.
= ESO

d + tr(WΣx) + (1−NǫN )tr

(

WΣx

(
NǫN

1−NǫN
Σλ +Σx

)−1

Σx

)

.

Interestingly, the optimum receive filter depends only on the second-order properties of the

source and the codebook. For the n-dimensional independent and identically distributed (IID)

Gaussian source, the optimum linear filter becomes

Ropt =
n(1−NǫN )

n+ 2NǫN
I,

and the corresponding distortion is given by

ERopt
d

.
= tr(W)NǫN +

NǫN (1−NǫN )n (n+ 2)

n+ 2NǫN
+ 2πN

−2
n κ

−2
n
n

(
n+ 2

n

)n
2

. (B.8)

B.2 Rx Filter for Ideal IA

For simplicity of presentation, we restrict the analysis to 1 bit error only, which dominates the

performance when the channel SNR is reasonably high, although it can be extended to multi-bit

errors. The expected distortion can be written as

Ed =
N∑

i=1

fX(xi)
N∑

j=1

Pj|i

∫

x∈Ri

d(x,Rx̂j)dx, (B.9)

where x ∈ Ri can be written as x̂i + e. If atmost one bit error occurs, channel transition

probabilities for the transmission of B, can be written as follows.

Pi|i = Q , (1− q)B

Pj|i =
1−Q

B
=

1− (1− q)B

B
∀j ∈ Si, (B.10)

where Si denotes the set of neighbours for the ith code vector considering all 1 bit errors in

the index corresponding to the ith code vector. The following relationships are used in the

simplification of the average distortion expression. By adding and subtracting Rx̂i in d(x,Rx̂j)
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one can simplify the following sum

∑

j∈S(i)

d(x,Rx̂j) = B(x−Rx̂i)
TW(x−Rx̂i) +

∑

j∈S(i)

(x̂i − x̂j)
TRTWR(x̂i − x̂j)

+ (x−Rx̂i)
TWR




∑

j∈S(i)

(x̂i − x̂j)



+




∑

j∈S(i)

(x̂i − x̂j)
T



RTW(x−Rx̂i),

d(x,Rx̂i) = d(x̂i,Rx̂i) + eTWe+ x̂T
i (I−R)TWe+ eTW(I−R)x̂i, (B.11)

where we have used the approximation that
∑

j∈S(i)(x̂i−x̂j) ≈ 0. Using the above, the following

integral can be simplified as,

∑

j∈S(i)

d(x,Rx̂j) = B(x−Rx̂i)
TW(x−Rx̂i)

+
∑

j∈S(i)

(x̂i − x̂j)
TRTWR(x̂i − x̂j)

∫

x∈Ri

(x−Rx̂i)
TW(x−Rx̂i)dx

∫

x∈Ri

(x̂i + e−Rx̂i)
TW(x̂i + e−Rx̂i)dx

=

∫

x∈Ri

x̂T
i (I−R)TW(I−R)x̂idx+

∫

x∈Ei

eTW(I−R)x̂ide

+

∫

x∈Ei

x̂T
i (I−R)TWede+

∫

x∈Ei

eTWede

=
[
x̂T
i (I−R)TW(I−R)x̂i

]
Vi +

[

n

n+ 2

(
V 2
i |W|
κ2n

) 1
n

]

Vi,

Substituting the above simplifications in (B.9), we can write the total distortion as

Ed
.
=

N∑

i=1

fx(x̂i)

(

[
x̂T
i (I−R)TW(I−R)x̂i

]
Vi +

[

n

n+ 2

(
V 2
i |W|
κ2n

) 1
n

]

Vi

+
1−Q

B




∑

j∈S(i)

(x̂i − x̂j)
TRTWR(x̂i − x̂j)



Vi



 . (B.12)

LetW = GTG denotes the Cholesky decomposition ofW. Using the Rayleigh quotient relation,

Λ =
xTRTWRx

xTWx
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It can be shown that

xTRTWRx ≈ 1

n
tr
(
W−1RTWR

)
xTWx. (B.13)

Note that, the above approximation matches well when all the eigenvalues are equal and y = Gx

is one of the eigenvectors.

For high rate quantization,
∫

e
ede = 0 and

∫

x∈Ri
dx = Vi. In order to evaluate

∑

j∈Si
(x̂i −

x̂j)
TRTWR(x̂i − x̂j), consider the region Gi whose volume is V ′

i such that V ′
i = B

Nλ(x̂i)
. The

above summation can be approximated as shown below.

∑

j∈Si

(x̂i − x̂j)
TRTWR(x̂i − x̂j) ≈ 1

n
tr
(
W−1RTWR

)∑

j∈Si

(x̂i − x̂j)
TW(x̂i − x̂j)

=
4B

n
tr
(
W−1RTWR

)
(
V 2
i |W|
κ2n

) 1
n

.

where we have approximated the sum of W-MSE between the B centroids (x̂j ’s) surrounding

the ith centroid (x̂i) as 4B times the square of the average radius of the region Ri. Hence, the

average distortion for ideal IA can be written as follows:

Eideal
d

.
=

N∑

i=1

fx(x̂i)

(

[
x̂T
i (I−R)TW(I−R)x̂i

]
Vi +

[

n

n+ 2

(
V 2
i |W|
κ2n

) 1
n

]

Vi

+ (1−Q)

[

4

n
tr
(
W−1RTWR

)
(
V 2
i |W|
κ2n

) 1
n

]

Vi

)

. (B.14)

Now, substituting for Vi in terms of the point density function λ(x) and converting the summa-

tion into integral using the Monte Carlo integration formula, we get

Eideal
d

.
=

∫

x

fx(x)
[
xT (I−R)TW(I−R)x

]
dx

+
nN

−2
n |W| 1n

(n+ 2)κ
2
n
n

[∫

x

fx(x)λ
−2
n (x)dx

]

+
4(1−Q)N

−2
n |W| 1n

n κ
2
n
n

tr
(
W−1RTWR

)
[∫

x

fx(x)λ
−2
n (x)dx

]

. (B.15)
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After some manipulations, the average distortion can be written as

Eideal
d = tr

(
W(I−R)Σx(I−R)T

)
+ ESO

d

[

1 +
4(1−Q)(n+ 2)

n2
tr
(
WRW−1RT

)
]

. (B.16)

Now, straight forward differentiation of the above with respect to R results in the optimum Rx

filter matrix Ropt.

[
WTRΣT

x +WRΣx −WTΣT
x −WΣx

]

+
4(1−Q)(n+ 2)ESO

d

n2

[
WTRW−T +WRW−1

]
= 0. (B.17)

For symmetric W and Σx, a closed form expression for Ropt can be obtained as

Ropt =

(

Σx +
4(1−Q)(n+ 2)ESO

d

n2
W−1

)−1

Σx. (B.18)

Clearly, when the channel is error free, i.e., Q = 1, the optimum filter matrix turns out to be an

identity matrix R = I.

B.3 Rx Filter for Specific IA

In this section, we model the expected distortion for a given IA as a convex combination of the

expected distortion for the ideal IA and expected distortion for the Random IA. The weighing

constant used in the combination is determined using simulation later.

EIA
d

.
= ηEideal

d + (1− η)Erandom
d

= η

{

tr
(
W(I−R)Σx(I−R)T

)
+ ESO

d

[

1 +
4(1−Q)(n+ 2)

n2
tr
(
WRW−1RT

)
]}

+ (1− η)
{
NǫN

[
tr(WΣx) + tr(WRΣλR

T )
]

+ (1−NǫN ) tr
(

W (I−R) Σx (I−R)T
)}

+ (1− η)ESO
d

= [1− (1− η)NǫN ] tr
(
W(I−R)Σx(I−R)T

)

+ ESO
d

(

1 + η

[
4(1−Q)(n+ 2)

n2
tr
(
WRW−1RT

)
])

+ (1− η)NǫN
[
tr(WΣx) + tr(WRΣλR

T )
]
. (B.19)
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Using straightforward differentiation with respect to R and equating to zero, we get

(1− (1− η)NǫN ) [WRΣx −WΣx] +

(
4η(1−Q)(n+ 2)ESO

d

n2

)
[
WRW−1

]

+ (1− η)NǫN [WRΣλ] = 0. (B.20)

Ropt = Σx

[

Σx +
(1− η)NǫN

1− (1− η)NǫN
Σλ +

4η(1−Q)(n+ 2)ESO
d

[1− (1− η)NǫN ]n2
W−1

]−1

. (B.21)

The proportionality constant η can be obtained by simulations for the given IA. For a Gaussian

i.i.d. source with variance per dimension σ2 = 1, the optimum Rx filter is given by

Ropt =

[
n+ 2(1− η)NǫN
n(1− (1− η)NǫN )

I+
4η(1−Q)(n+ 2)ESO

d

[1− (1− η)NǫN ]n2
W−1

]−1

.

It is interesting to note that even if the weight matrix is identity W = I, there appears a

correction term corresponding to contribution from the ideal IA. That is, the Rx filter output

is a scaled version of the received codevector. The scale value reduces as ESO
d increases (i.e.,

less bits used in the quantization) or η increases. Evaluating the average distortion for this

optimal filter matrix is mathematically intractable. Hence, we evaluate (B.19) numerically for

the computedRopt in (B.21). Next, we will describe another Rx filtering technique for mitigating

the channel noise.



Appendix C

TCBC: Proofs of Lemmas and

Theorem 2

C.1 Proof of Lemma 2

Let C0 be a linear uniform code with distance du. Since C0 is non-trivial and linear, there exist

c0, c1, c2 ∈ C0 such that c2 = c0 + c1 and ci 6= 0 for i = 0, 1, 2. Now, the Hamming weight of

c2 is can be expanded as follows:

WH(c2) = WH(c0) +WH(c1)− 2WH(c0 ∗ c1) (C.1)

Since the Hamming weight of c0, c1 and c2 are all equal to du, the above equation simplifies to

du = 2[du −WH(c0 ∗ c1)], (C.2)

and hence du is even. Moreover, WH(c0 ∗c1) = du/2. To show the converse, let C0 be a uniform

code with du = 2WH(c0 ∗ c1). Then,

WH(c0 + c1) = 2[du −WH(c0 ∗ c1)] = du, (C.3)

and hence c2 ∈ C0. This proves that C0 is linear with respect to the code-words c0, c1, c2.
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C.2 Proof of Lemma 3

Consider the sum c0 + c1 + c2. Using Lemma 2, one can write

WH(c0 + c1 + c2) = du + du − 2WH(c0 ∗ (c1 + c2))

= 2du − 2WH(c0 ∗ c1 + c0 ∗ c2)

= 2[du − du + 2WH(c0 ∗ c1 ∗ c2)]

= 4WH(c0 ∗ c1 ∗ c2), (C.4)

which shows that if WH(c1 ∗ c2 ∗ c3) = 0, then c0 = c1 + c2. For the converse, let c2 = c0 + c1.

Substituting for c2, we get

WH(c0 ∗ c1 ∗ c2) = WH(c0 ∗ c1 + c0 ∗ c1) = WH(0),

which establishes the result.

C.3 Proof of Lemma 4

First, we show that a non-trivial uniform sub-code Cu ⊂ F
n
2 exists with distance du given in

(3.2) and then show that a linear subset CF
0 can be obtained from this sub-code. Let Mn=4k+i

denote the cardinality of the uniform set with code-words of length n = 4k+ i for various integer

values of k ≥ 1, and i = 0, 1, 2, 3. Since Hadamard matrices exist for n = 1, 2 and 4k [82], there

exist uniform codes with distance du = n/2 with atleast n code-words for these values of n.

That is, M4k ≥ n and du = n/2. Moreover, the Hadamard code has the all zero vector as one

of its columns. Hence, the Hadamard code can be shortened by 1 bit corresponding to the all

zero column, without loss of the distance properties1 of the code. This implies that M4k+3 ≥ n

and du = n+1
2 . When du = n+1

2 , the Plotkin bound

MPlotkin ≤ 2

⌊
du

2du − n

⌋

,

1The Hadamard code of length n = 4k + 4 has 4k + 4 codewords. Even after it is shortened by 1 bit, we have
n = 4k + 4 codes and the Hamming distance between the codes is not altered, since we shorten only an all-zero
column in the code matrix. Hence, M4k+3 ≥ n.
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is known to achieve the equality for uniform codes [83], and therefore M4k+3 = n + 1. To

compute a bound on the cardinality for n = 4k + 1, consider appending any non-zero column

of the Hadamard code for n = 4k to the same code. The appended code has n code-words

with code length (n + 1). Since each column of the Hadamard code has n/2 non-zero values,

n/2 code-words of the extended code with n = 4k + 1 have du = n−1
2 . Thus, M4k+1 ≥ n

2 . To

compute the cardinality for n = 4k+2, consider the 1 bit shortened code from n = 4k+3. From

Theorem. 2 in [84], it follows that M4k+2 ≥
⌈
duM4k+3

n

⌉

=
⌈
n+1
2

⌉
and du = n+2

2 . For n ≥ 4, this

lower bound is ≥ 2. Thus, we have shown that a uniform sub-code of Cu exists with even-valued

du given by (3.2) and that the cardinality of the sub-code is at least 2 for k ≥ 1.

Now, consider any two non-zero code-words and their sum. This creates a non-trivial uniform

code. Moreover, c0, c1, c0 + c1 and 0 can be used to form CF
0 , which is now a non-trivial linear

uniform sub-code of Fn
2 with uniform distance du given by (3.2). Therefore, CF

0 has a cardinality

of atleast 4 including the all zero code-word 0. Hence, the dimension of the vector space spanned

by CF
0 is at least 2.

C.4 Proof of Theorem 2

We first prove (i). Note that C0 is linear and its cosets tile C, as C0 is an intersection of C and

a linear set. Let Cmax
0 represent a subset of C that is both linear and a maximal uniform set,

and has the same uniform distance as C0. Then, there exists a unitary transform between the

basis vectors of Cmax
0 and C0. Therefore, without loss of generality, we can transform the code

words in Cmax
0 such that it forms a superset of C0 and preserves the uniform distance property.

That is, C0 ⊆ Cmax
0 . Then, if |C0| < |Cmax

0 |, there exists atleast one coset of C0 such that its

union with C0 preserves the uniform distance property. This can be achieved by picking any

code word c ∈ Cmax
0 , c /∈ C0. Now, c +C0 forms a coset of C0 and the coset belongs to Cmax

0

since it is linear. Thus, C0 ∪ (C0 + c) is still a linear uniform set. One can now repeat this

procedure of combining the cosets of C0 to obtain Cmax
0 .

The bounds on the cardinality of C0 in (ii) follow from the arguments presented in the proof

of Lemma 4. The lower bound follows since C0 is a non-trivial uniform set. The upper bound

follows from the Plotkin bound and using the fact that the number of elements is a power of 2.
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To show (iii), it can be seen from (C.1) in the proof of Lemma 2 that

WH (c0 + c1 + . . .+ cj∗) =

j∗
∑

k=1

2k(−1)k+1

(
j∗

k

)
du
2k

, (C.5)

where the first 2k arises because of the number of levels of the recursive expansion of the

Hamming weight using (C.1), and the 2k in the denominator arises because of the conditions in

(3.3) and (3.4). Since
∑n

k=1(−1)k+1
(
n
k

)
= 1, the above summation equals du. This shows that

the Hamming weight of the sum of c0, c1, . . . , cj∗ is du. Using a similar procedure, we can show

the uniform distance property of any linear combination of the code-words c0, c1, . . . , cj∗ . The

cardinality of the set comprising all linear combinations of these j∗ + 1 vectors is 2j
∗+1.

C.5 Proof of Lemma 5

Let XN ∈ CL be code sequence of length N = nL generated by a TCB encoder. Let YN be

the received code sequence after possible corruption by noise. The signal model for YN is given

by YN = XN ⊕ZN , where ZN represents the noise sequence and the operator ⊕ represents the

XOR operation in the BSC and real/complex addition in the AWGN channel.

The MLSD decoder chooses a sequence X̂N such that X̂N = argmaxXN
Pr(YN |XN ). For

a given channel error probability, the MLSD decoder will pick XN which differs from YN in

the least number of bit positions (or Euclidean distance for the AWGN channel). Since XN is

a concatenation of code-words from the parent code, and the noise samples are i.i.d., one can

write Pr(YN |XN ) =
∏L

i=1 Pr(y
i
n|xi

n), where y
i
n and xi

n, 1 ≤ i ≤ L are the individual code-words

used to construct YN and XN , respectively.

The TCB decoder employs minimum distance decoding to decide on the individual code-

words xn once the sequence of sub-code indices are known from the Viterbi decoder. Hence,

Pr(yi
n|xi

n) are maximized by the TCB decoder for every n−tuple. Moreover, note that the

Viterbi decoder finds the maximum likelihood sequence of sub-code indices. Hence, we need

to only show that the branch metric used for the Viterbi decoder is optimum. Recall that

the branch metric used for each transition of the trellis is the smallest distance of the received

n−tuple yn from each of the uniform sub-codes. Let xn ∈ C be the codeword that is at the

least distance from yn. The minimum distance between xn and yn is the same as the minimum

distance between the closest codeword to yn in Ci, the sub-code containing the code-word xn.
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Hence, the chosen branch metric is optimum in the sense of maximum posteriori probability,

and the decoder is an MLSD decoder.



Appendix D

Applications of TCBC

In this section, three different applications of TCBC are presented to demonstrate the usefulness

of the proposed codes.

D.1 FEC Codes Based on TCBC

The construction of codes for applications such as deep-space missions, storage in magnetic/optical

medium, etc require very large minimum distance codes, so that they can operate at very low

SNRs and/or the target Pb is very small, of the order 10−10. TCB codes provide a systematic

way for constructing codes with such large minimum distance by choosing the right sub-set

partitioning from the underlying parent code and a trellis code whose minimum distance is the

same or larger than that of the uniform sub-set obtained from the partitioning.

As an example construction, a 9
23 = 0.39 rate TCB (23q, 9q, 12) code is built using the

binary Golay (23, 12, 7) code as parent code along with a rate 6
9 trellis code1 with dCC

free = 3 and

constraint length K = 7 (See Figure D.1). Here, q is an integer > 1 which denotes the number

of code-word sequences used to build the long-length code. The asymptotic coding gain from

this new Forward Error Correction (FEC) code is 10 log10(
12×9
23 ) = 6.7 dB which is 1.5 dB higher

than the coding gain CL of the parent code. Similarly, one can construct a TCB (31q, 10q, 16)2

code of rate 0.32, using the BCH (31, 11, 11) code as parent code and a rate 7
8 CC, offering an

asymptotic coding gain of 10 log10(
16×10
31 ) = 7.12 dB. Thus, one can construct FECs with a

1CC(9, 6) is a special type of CC with feedback shift register where delay of 3 is guaranteed for every input
bit. That is, for the input with 1 non-zero element followed by all zeros does not bring the state back to all-zero
state, but a specific input in non-zero state can bring the shift register to all-zero state.

140
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Figure D.1: Encoder structure for TCBC-based FEC Using binary Golay code(23,12,7).

desired minimum distance and rate by uniform sub-set partitioning of the LBC and using a CC

with the required constraint length and rate to build the TCBC.

D.2 Low Rate Quasi-Orthogonal TCB Codes

Low rate orthogonal (LRO) codes are used in the uplink of a CDMA system, where they provide

tolerance against co-channel interferers. LRO codes have rate of 2−K , where K is the constraint

length of the code. They can be considered as Hadamard codes indexed by the contents of a

shift register. Recognizing that Hadamard codes are maximal uniform codes, LRO codes can be

viewed as TCBC with trivial uniform sub-set partitioning (i.e, with 1 element in each sub-code).

That is, the contents of a K-bit shift register selects a sub-set index, and the corresponding row

of Hadamard matrix is transmitted.

However, one can build a low rate quasi-orthogonal code using the principles of TCBC. We

describe such a code construction for illustration, which has a coding gain advantage as well as a

rate advantage, when compared to an LRO code of the same length. Consider a (16, 3.5)2 code

constructed with quasi-Hadamard code-words by concatenating Hadamard-8 (LRO-8 denoted

as H8) and Hadamard-4 (LRO-4 denoted as H4) code words as shown below.

H16,12 =











H8 HT
4

HT
4

HT
4

HT
4 H8











The columns of this matrix can be treated as 12 code-words of length 16 and can be partitioned



APPENDIX D. APPLICATIONS OF TCBC 142

into 4 orthogonal sub-sets with 3 elements in each. This code and the uniform sub-set parti-

tioning can be used to build a (16q, 2.5q) TCBC, which provides a coding gain over the LRO-16

code. For the above calculation of coding gain of TCBC, a rate 1
2 CC with dCC

free = 3 is assumed

and 1 trit is assumed to be equivalent to 1.5 bits. In the encoder, the output of the CC selects

the sub-set index and the 1 trit input selects one of the 3 code-words in the selected sub-set.

The coding gain of a LRO-16 code is 10 log10(8 × 4/16) = 3 dB. However, with the proposed

quasi-orthogonal code, one can get 10 log10(16 × 2.5/16) = 3.97 dB, i.e, an additional coding

gain of 0.97 dB as well as a higher coding rate (2.516 instead of 1
16) compared to the LRO-16 code.

D.3 TCBC Based Lattice Codes

Lattice codes are capacity achieving coset codes for the AWGN channel [85], obtained by set

partitioning of a lattice into cosets and using a trellis code to select the cosets. Using the

Lemma 3 in [43], one can associate a lattice with every linear block code. Here, we illustrate

such an 8-dimensional lattice code construction with a TCB (8q, 3q) code that uses an extended

Hamming (8, 4) code as parent LBC and the QPSK constellation. The TCBC (8q, 3q) is con-

structed using a rate 2
3 CC whose output selects one of the code-word (uniform sub-code) pairs,2

and one uncoded bit selects one of the code-words in the pair. To construct the lattice code,

we need to partition both the lattice as well as the code-words of the extended Hamming code.

First, we partition the extended Hamming code into pairs at the maximum distance (d̃ = 8)

from each other as described above. Second, the lattice is partitioned into 32 sub-lattices with

8 elements each. Since the QPSK constellation is employed (4 consecutive QPSK symbols make

1 lattice point in the R
8 lattice), the total number of lattice points available is 44 = 256. As

an illustration, the coset-0 (lattice Λ) in an 8-dimensional real vector space (R8) is given by

{(s0,s0,s0,s0), (s0,s0,s3,s3), (s0,s3,s1,s1), (s0,s3,s2,s2), (s1,s1,s1,s2), (s1,s1,s2,s1), (s1,s2,s0,s3),
(s1,s2,s3,s0) }, where the modulation symbol mapping is given by s0 = (−1, 1), s1 = (1, 1), s2

= (−1,−1) and s3= (1,−1), corresponding to the QPSK constellation points. It can be verified

that the minimum distance of the lattice (coset-0) is 8. Although there are 32 sub-lattices, only

16 of them are employed here for ease of implementation. In the next section, a performance

comparison between the conventional (CC-based) lattice code and the proposed TCBC-based

2The uniform cosets for the extended Hamming code are given by {0, 15}, {1, 14}, {2, 13}, {3, 12}, {4, 11},
{5, 10}, {6, 9} and {7, 8}.
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Figure D.2: Encoder structure for (a) CC-based and (b) TCBC-based lattice encoders.

lattice code is shown. The two codes use the same set of sub-lattices and have identical data

rates, but it will be seen that the TCBC-based lattice code offers a better BER performance.

The conventional lattice code is CC-based, and consists of a rate 3
4 CC followed by TCM

which generates a code with overall rate 6
8 (see Figure D.2a). Thus, the 8 bits after the CC are

mapped to 4 QPSK symbols represented by a point in 8-dimensional lattice. In the above, an

alternate construction via a TCBC (8, 3) code was described, which gives out the coset leads and

3 additional bits select the constellation symbols as in the conventional case (see Figure D.2b)

(i.e., 8 input bits select the code-word to be transmitted). The reason for the better performance

exhibited by the TCBC is that it is driven by a rate 2
3 CC which offers a higher dCC

free than the

rate 3
4 CC in the conventional lattice code.



Appendix E

Statistics of χK and χ2K Random

variables

E.1 Mean of the Inverse of a χ2
K Distributed Random Variable

Consider a central χ2−distributed random variable with K degrees of freedom, with PDF given

by

fX(x) =
x

K
2
−1e

−x
2

2
K
2 Γ(K2 )

, x ≥ 0. (E.1)

It is straightforward to show that the mean of the inverse of X can be written as

E

[
1

X

]

=
1

K − 2
, for K > 2. (E.2)

When the channel coefficients are circularly symmetric complex Gaussian with zero mean and

unit variance, the square of the ℓ2 norm of the channel is a scaled χ2
2K random variable. If X

denotes the square of the ℓ2 norm of the channel, the mean of 1/X can be shown to be

E

[
1

X

]

=
1

K − 1
, for K > 1. (E.3)
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E.2 Mean of the Inverse of the Maximum of Two χ2
K Distributed

Random Variables

The CDF of the random variable X , max(X1, X2), where Xi’s are χ2−distributed with K

degrees of freedom, can be written as

FX(x) =

(

1

Γ
(
K
2

)

)2

γ2
(
K

2
,
x

2

)

, (E.4)

where γ(s, x) is the lower-incomplete Gamma function [75]. The PDF of X can be obtained by

differentiating the above with respect to x, as

fX(x) =
2

Γ
(
K
2

)γ

(
K

2
,
x

2

)
2−

K
2 x

K
2
−1e−

x
2

Γ
(
K
2

) , x ≥ 0. (E.5)

We expand γ(s, x) into an infinite series as

γ(s, x) = xsΓ(s)e−x
∞∑

i=0

xi

Γ(s+ i− 1)
. (E.6)

Substituting in (E.5) and taking expectation of 1
X , it is easy to show that

E

[
1

X

]

=
21−K

Γ
(
K
2

)

∞∑

i=0

Γ(K − 1 + i)

2iΓ
(
K
2 + i

) , for K > 2. (E.7)

E.3 Mean of the Inverse of a χK Distributed Random Variable

Consider a central χ distributed random variable with K degrees of freedom, with PDF

fX(x) =
1

Γ
(
K
2

)21−
K
2 xK−1e−

x2

2 , x ≥ 0. (E.8)

The mean of 1/X can be written as

E

[
1

X

]

=
21−

K
2

Γ
(
K
2

)

∫ ∞

0
xK−2e

−x2

2 dx

=
21−

K
2

Γ
(
K
2

)
Γ
(
K−1
2

)

21−
K−1

2

=
Γ
(
K−1
2

)

Γ
(
K
2

)√
2
. (E.9)
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When the channel coefficients are circularly symmetric complex Gaussian with zero mean and

unit variance, the square of the ℓ2 norm of the vector is a scaled χ2
2K random variable. For this

scaled random variable, if X denotes the ℓ2 norm of the channel, we have

E

[
1

X

]

=
Γ
(
2K−1

2

)

Γ(K)
, for K > 1. (E.10)
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