
1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

1

A Non-iterative Online Bayesian Algorithm for the
Recovery of Temporally Correlated Sparse Vectors

Geethu Joseph and Chandra R. Murthy Senior Member, IEEE

Abstract—In this paper, we address the problem of online
(sequential) recovery of temporally correlated sparse vectors
sharing a common support, from noisy underdetermined linear
measurements. The temporal correlation of the sparse vectors is
modeled using a first-order autoregressive process. The online
algorithm is formulated using the sparse Bayesian learning
framework and is implemented using a sequential expectation-
maximization procedure. Our algorithm is non-iterative in na-
ture, and requires less computational and memory resources
compared to offline processing. We analyze the convergence of the
algorithm in the case when the sparse vectors are uncorrelated,
using tools from stochastic approximation theory. We show that
the sequence of the covariance estimates converge either to the
global minimum of the offline equivalent cost function or to the all
zero vector, regardless of the sparsity level of the signal. Through
numerical results, we demonstrate the efficacy of the proposed
online algorithm and compare it with its offline counterpart as
well as with existing online sparse vector recovery algorithms.

Index Terms—Sparse signal recovery, Kalman filter, multiple
measurement vectors.

I. INTRODUCTION

In many applications, such as wireless channel tracking
[1], radar signal processing [2], [3], and biomedical imaging
[4]–[7], the goal is to recover a sequence of sparse vec-
tors from their noisy underdetermined linear measurements.
Furthermore, the sparse signals exhibit additional structure,
such as a common support and temporal correlation. For
example, successive instantiations of a time-varying wireless
channel have the same power delay profile, and the nonzero
coefficients of these instantiations are temporally correlated,
and can be modeled using a first-order auto-regressive (AR)
process. Hence, our goal in this paper is to develop algorithms
that exploit the structure in the signal to reconstruct a sequence
of sparse vectors using multiple measurement vectors (MMV).
However, exploiting the additional structure can lead to higher
latency, memory, and computational complexity. Therefore,
we are particularly interested in developing non-iterative al-
gorithms with low complexity and bounded latency.

The extensions of popular sparse signal recovery algo-
rithms like the focal underdetermined system solver (FO-
CUSS) [8], iterative hard thresholding, orthogonal matching
pursuit (OMP) [9], compressive sampling matching pursuit
(CoSaMP) [10], approximate message passing (AMP) [11],
and sparse Bayesian learning (SBL) [12] to handle the MMV

The authors are with the Dept. of ECE at IISc, Bangalore, India,
Emails:{geethu, cmurthy}@ece.iisc.ernet.in

This work was financially supported in part by the Ministry of Electronics
and Information Technology (MEITY), Govt. of India. The work of G. Joseph
was financially supported in part by the Intel India PhD fellowship.

case have been shown to perform better than their single
measurement vector counterparts. The recovery performance
can be further enhanced if the algorithm exploits the temporal
correlation across the sparse vectors [1], [13], [14]. The
aforementioned algorithms are offline in nature, i.e., they
process the entire set of measurement vectors in a single batch.
Hence, when the data set is large, these algorithms suffer from
poor efficiency and scalability. On the other hand, online al-
gorithms process small batches of the measurement vectors at
a time and recover the sparse vectors sequentially, resulting in
low-complexity implementations. Online algorithms offer the
additional benefit of low latency between the measurement and
estimation, which may be necessary in certain applications.
For example, in a real-time broadband communication system
with high data rate and high mobility, offline estimation of the
wireless channel is infeasible.

Several sequential algorithms for sparse signal recovery
have been proposed in the literature [15]–[21]. An online
algorithm for recovery for sparse signal with comon support is
proposed in [15]. However, the algorithm does not account for
the temporal correlation in the signal. A non-iterative modified
OMP algorithm for sequential recovery of sparse signals is
proposed in [16] for the case when the coefficient in the
autoregression is unity. A combination of Kalman filtering and
dynamic programming is proposed in [17]. This algorithm is
slow because it runs l1 optimization multiple times for every
measurement vector. Another iterative sequential algorithm
that decouples the support recovery step from the Kalman
filtering-based amplitude estimation step is presented in [18].
However, the algorithm requires one to tune a number of
parameters beforehand. An alternate iterative online algorithm
that jointly estimates the amplitude and support is hierarchi-
cal Bayesian Kalman filtering [19]. This algorithm does not
require one to tune many parameters, but suffers from high
complexity. Another algorithm for the sequential recovery of
sparse signals is dynamic sparse coding [20]. The algorithm
executes an optimization procedure based on gradient descent,
and is also iterative in nature.

The above discussed algorithms do not allow one to improve
the current estimate using a small set of future measurements.
For scenarios that often arise in communication related ap-
plications (e.g., wireless channel estimation), a small delay
is allowed if the estimation performance can be improved.
An online algorithm that allows a bounded delay between
the measurement and estimation by combining the Kalman
smoothing and the SBL framework is proposed in [21]. How-
ever, the algorithm runs multiple rounds of the expectation-
maximization (EM) procedure for every measurement vector,

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

2

which defeats the purpose of online computations where the
main aim is a simple implementation with minimal resource
requirements. This motivates us to develop a non-iterative
online algorithm which does not require parameter tuning and
allows a small delay between the measurement and estimation,
for the reconstruction of temporally correlated sparse vectors
with common support. To be specific, by the term non-iterative
we mean that, as every measurement vector arrives, we do not
run an iterative procedure until convergence of some metric.
Our goal is to design an algorithm which does one round
of update using the measurement vector, and wait for the
next measurement vector. Also, the term online refers to the
processing of the measurement vectors in a serial fashion in the
order they arrive, without waiting for the entire input available
before the start of processing.

Our proposed online algorithm is based on the SBL frame-
work [22], [12]. The SBL approach offers superior perfor-
mance compared to other algorithms like l1 minimization
and OMP, and does not require one to tune the algorithm
parameters. Moreover, it naturally extends to incorporate the
temporal correlation structure in the signal model. However,
its complexity and memory requirements increase with the
number of measurements to be processed, which limits its
practical application. Our algorithm overcomes this drawback,
and is computationally efficient, while retaining the good
performance of SBL. Our main contributions are as follows:

• Algorithm Development: We present a non-iterative on-
line algorithm for recovering temporally correlated sparse
vectors, in Section III. We propose two schemes for
implementation: a fixed lag scheme and a sawtooth lag
scheme. We also discuss an efficient method to initialize
the algorithm.

• Complexity Analysis: We compare the proposed schemes
with their offline counterparts from [1], [12] in terms of
computational complexity and memory requirements, in
Section III-D.

• Convergence Guarantees: Using tools from stochastic
approximation theory, we prove the convergence of the
proposed algorithm for the case when the sparse vectors
are uncorrelated, in Section IV. This result holds irrespec-
tive of the sparsity level of the signal and the initialization
of the algorithm, both under noisy and noiseless cases.

• Empirical Validation: In Section V-A, we empirically
show that the convergence of the error in the signal co-
variance falls as a negative power of the number of mea-
surement vectors. Further, we illustrate the performance
of the algorithms through Monte Carlo simulations, in
terms of the MSE, support recovery rate and run time,
and compare them with the offline algorithms proposed in
[1], [12], in Section V-B. We also compare the proposed
scheme with the other online algorithms in the literature.

Overall, the algorithm proposed in this paper is useful when
the underdetermined linear measurements are to be processed
in real time, and when there is temporal correlation in the
signal of interest in addition to simultaneous sparsity.

Notation: In the sequel, boldface small letters denote vec-
tors and boldface capital letters denote matrices. The ith entry

of a vector a is represented as a[i], and the symbols ‖ · ‖
and ‖ · ‖∞ denote the l2 norm and the l∞ norm of a vector,
respectively. The symbols (·)T, | · |, (·)† and Tr {·} denote the
transpose, the determinant, the pseudo inverse, and the trace
of a matrix, respectively. Also, Diag {·} represents a vector
of diagonal entries of a square matrix or a diagonal matrix
with entries of the argument vector on the diagonal, depending
on the context. Also, � represents the Khatri-Rao product of
matrices. The notation I , 0, 1, and R+ represent the identity
matrix, the all zero matrix (or vector), the all ones vector,
and the set of all nonnegative real numbers, respectively.
Throughout the paper, Γ = Diag {γ}, Γk = Diag {γk} and
Γopt = Diag

{
γopt

}
, where γ, γk and γopt are vectors, and we

use the notations Γ and γ interchangeably.

II. PROBLEM SETUP AND BACKGROUND

Consider the MMV model given by

yk = Akxk +wk, k = 1, 2, . . . (1)

where Ak ∈ Rm×N is the known measurement matrix at the
kth time instant and yk ∈ Rm is the corresponding noisy
measurement. Here, wk is a zero mean Gaussian distributed
noise with a full rank covariance matrix Rk. The number of
measurements m is assumed to be smaller than the number of
unknowns N which makes the system underdetermined. The
unknown sequence of vectors {xk, k = 1, 2, . . .} are sparse,
i.e., the number of nonzero entries, S, is small compared to
the size of the vector, N . The xk are simultaneously sparse,
that is, they share a common support. This implies that the
indices of the nonzero entries of all the sparse vectors coincide.
Also, the nonzero entries of {xk, k = 1, 2, . . .} are temporally
correlated. The temporal correlation of the sparse vectors is
modeled using a first order AR process, and is given by

xk = Dxk−1 + zk. (2)

We define x0 , 0 and D ∈ [0, 1)N×N is the known diagonal
correlation matrix. Note that, in our model, the sparse vectors
are temporally correlated, but becauseD and the covariance of
zk are both assumed to be diagonal, there is no intra-vector
correlation. Also, the support of zk coincides with that of
{xk, k = 1, 2, . . .}.

A. Estimation Objectives

The objective of this work is to estimate the sparse vectors
on-the-fly, without storing all the measurement data and the
corresponding measurement matrices. The maximum delay
allowed between the measurement and estimation is ∆ <∞,
and therefore our goal is to recursively estimate xk using
the measurements up to time k + ∆, denoted by yk+∆.
Throughout the paper, we use subscripts to denote the value
of a variable at a particular time instant (e.g., yk denotes the
observation at time k), and superscripts to denote the sequence
of observations up to a particular time instant

(
e.g., y` denotes

the sequence of observations {yk, k = 1, 2, . . . , `}).
We design an online scheme inspired by the SBL algo-

rithm [22], [12]. The extension of SBL for the recovery
of simultaneous sparse vectors imposes a common prior on

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

3

the unknown vectors, namely, xk ∼ N (0,Γ) [12]. The
covariance matrix Γ ∈ RN×N+ is a diagonal matrix with N
hyperparameters γ ∈ RN+ along the diagonal. In SBL, we
compute the ML estimate γML of γ, which in turn gives the
MAP estimate of the sparse vectors.

In the following subsections, we contrast the offline and on-
line approaches to estimating the hyperparameters and sparse
vectors, which serves to bring out the primary estimation
objectives of this work. We start with the online case.

1) Online: Let γk−1 denote the sequence of estimates of
the hyperparameters γ till time k − 1. At time k, we want to
compute the estimate of the hyperparameter vector γk, using
yk+∆ and γk−1. Since we do not want to store the complete
set of past measurements, we recursively update γk using a
small set of measurements {yt, t = k, k + 1, . . . , k + ∆} and
γk−1. The update rule for γk is discussed in Section III.

Using γk, the online estimate of xk is computed as its
conditional mean given yk+∆, with Γt as the covariance of
xt for t = 1, 2, . . . , k− 1, and Γk as the covariance of xt for
t = k, k + 1, . . . , k + ∆. Mathematically,

x̂k = E
{
xk|yk+∆;γk−1,γk

}
. (3)

The estimate x̂k is obtained using fixed interval Kalman
smoothing on a data block of size ∆ + 1 [23]. That is, xk
is recursively updated using the set of measurement vectors
{yt, t = k, k + 1, . . . , k + ∆} and γk. Note that γk−1 is not
used in the estimation of xk.

We emphasize that, with the estimate of γk in hand, the
estimation of xk is a straightforward application of the Kalman
filtering principle. The key contribution of this paper is the
development of a recursive, online technique for estimating γk
and its convergence analysis. We next discuss the offline case.

2) Offline: In the offline setting, we find the ML estimate
γOFF of γ given the entire sequence yK , where K denotes
the total number of measurements [1], [12]. The estima-
tion procedure is detailed in Section II-B. The estimate of
xk is computed as its conditional mean given yK , using
Diag

{
γOFF

}
as the signal covariance matrix. Mathematically,

x̂OFF
k = E

{
xk|yK ;γOFF} , (4)

for k = 1, 2, . . . ,K. These estimates are computed efficiently
using fixed interval Kalman smoothing on the data block yK .

Thus, the primary goal in both the offline and online
algorithms is the estimation of γ. In the offline case, a single
estimate of γ is computed using the entire set of observations.
In the online version, a sequence of estimates are computed
using small batches of observations, and in a recursive manner.

In the next subsection, we first describe the offline SBL
algorithm for the correlated MMV problem, which we refer
to as the offline Kalman MMV SBL (KM-SBL) algorithm [1].

B. Offline KM-SBL Algorithm

The offline algorithm uses the expectation-maximization
(EM) procedure, which treats the unknowns xK as the hidden
data and the observations yK as the known data. The EM
procedure iterates between two steps: an expectation step
(E-step) and a maximization step (M-step). Let γ(r−1) be

the estimate of γ at the rth iteration.1 The E-step computes
Q
(
γ,γ(r−1)

)
, which is the marginal log-likelihood of the

observed data. The M-step computes the hyperparameters that
maximize Q

(
γ,γ(r−1)

)
.

E-step: Q
(
γ,γ(r−1)

)
= ExK |yK ;γ(r−1)

{
log p

(
yK ,xK ;γ

)}
M-step: γ(r) = arg max

γ∈RN×1
+

Q
(
γ,γ(r−1)

)
. (5)

Simplifying Q
(
γ,γ(r−1)

)
we get,

Q
(
γ,γ(r−1)

)
= cK−

K

2
log |Γ|− 1

2
Tr
{
Γ−1C1|K,γ(r−1)

}
− 1

2

K∑
t=2

Tr
{

Γ−1
(
I −D2

)−1
T t|K,γ(r−1)

}
. (6)

where the constant cK is independent of γ, and the N × N
matrices are defined as follows:

T t|K,γ(r−1) , Ct|K,γ(r−1) +DCt−1|K,γ(r−1)D

− 2DCt,t−1|K,γ(r−1)

Ct|K,γ(r−1) , P t|K,γ(r−1) + x̂t|K,γ(r−1) x̂
T
t|K,γ(r−1) (7)

Ct,t−1|K,γ(r−1) , P t,t−1|K,γ(r−1) +x̂t|K,γ(r−1) x̂
T
t−1|K,γ(r−1) ,

for t ≤ K. Here, the mean x̂t|K,γ(r−1) , E
{
xt|yK ;γ(r−1)

}
;

and the covariance P t|K,γ(r−1) and the cross-covariance
P t,t−1|K,γ(r−1) are defined as

P t|K,γ(r−1) , E
{
x̃tx̃

T
t

∣∣∣yK ;γ(r−1)
}

(8)

P t,t−1|K,γ(r−1) , E
{
x̃tx̃

T
t−1

∣∣∣yK ;γ(r−1)
}
, (9)

where x̃t = xt− x̂t|K,γ(r−1) . The calculation of the variables
x̂t|K,γ(r−1) , P t|K,γ(r−1) , and P t,t−1|K,γ(r−1) is implemented
using fixed interval Kalman smoothing [23]. Maximizing
Q
(
γ,γ(r−1)

)
with respect to γ, we get the following M-step:

γ(r)=
1

K
Diag

{(
I−D2

)−1
K∑
t=2

T t|K,γ(r−1)+C1|K,γ(r−1)

}
. (10)

We note that the latency in estimating xK is 0, that of xK−1

is 1, and so on. Hence, the average latency of the offline KM-
SBL algorithm is 1

K

∑K
t=1(K − t) = (K − 1)/2. We now

present our proposed online algorithm.

III. ONLINE ALGORITHM DEVELOPMENT

In the online version of KM-SBL, we process the data
sequentially, without waiting for the complete input to arrive
or storing all the data that has already arrived. Since we do not
store data, it is not feasible to compute the mean x̂t|K ,2 the
covariance P t|K , and the cross-covariance P t,t−1|K . Instead,
we approximate them with x̂t|t+∆, P t|t+∆, and P t,t−1|t+∆,
respectively. Then,

Qk
(
γ,γk−1

)
≈ ak −

k

2
log |Γ| − 1

2
Tr
{
Γ−1C1|∆

}
− 1

2
Tr

{
Γ−1

(
I −D2

)−1
k∑
t=2

T t|t+∆

}
(11)

1For ease of notation, we omit the superscript OFF here.
2For brevity, we drop γ from the subscript.

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

4

where the constant ak is independent of γ.
Maximizing Qk

(
γ,γk−1

)
with respect to γ, we have the

following recursion

γk =
1

k
Diag

{(
I −D2

)−1
k∑
t=2

T t|t+∆ +C1|∆

}
(12)

= γk−1 +
1

k
Diag

{(
I −D2

)−1
T k|k+∆ − Γk−1

}
.

(13)

Thus, γk can be estimated using γk−1 and T k|k+∆. We next
present a procedure to recursively estimate T k|k+∆.

A. Implementation of the Algorithm

In order to compute T k|k+∆, we need to recursively update
the mean x̂k|k+∆, the auto-covariance P k|k+∆, and the cross-
covariance P k,k−1|k+∆. We describe two implementations: a
fixed lag scheme and a sawtooth lag scheme.

1) Fixed Lag Scheme: We consider a Kalman filter de-
signed for the following state space model with state variables
as xk and measurement variable as ỹk , yk+∆. From (2),

ỹk = Ak+∆D
∆xk +Ak+∆

∆−1∑
i=0

Dizk+∆−i +wk+∆

= Ãkxk + w̃k (14)

where Ãk , Ak+∆D
∆ and w̃k ∼ N

(
0, R̃k

)
. Since the

covariance of zk+∆−i is (I −D2)Γ, it is easy to show that

R̃k = Ak+∆

(
I −D2∆

)
ΓAT

k+∆ +Rk+∆. (15)

The new state space model is given by (2) and (14). The
Kalman filter equations for the new system are given below:

x̂k|k+∆−1 = Dx̂k−1|k+∆−1 (16)

P k|k+∆−1 = DP k−1|k+∆−1D +
(
I −D2

)
Γ (17)

Jk = P k|k+∆−1Ã
T
k

(
ÃkP k|k+∆−1Ã

T
k+R̃k

)−1

(18)

x̂k|k+∆ = (I − JkÃk)x̂k|k+∆−1 + Jkyk+∆ (19)

P k|k+∆ = (I − JkÃk)P k|k+∆−1 (20)

P k,k−1|k+∆ = (I − JkÃk)DP k−1|k+∆−1. (21)

As every measurement vector yk+∆ arrives, the algorithm
updates γ using (13). Then, the online estimate of xk can be
computed using forward and backward recursions of a fixed
interval Kalman smoother on the block of data of size ∆ + 1,
at times t = k, k+1, . . . , k+∆, as described in Section II-A1.

Remark: The above scheme is not applicable when D = 0
and ∆ > 0, because yk+∆ is independent of xk in this case.
Also, the fixed lag scheme only uses the latest measurement
vector to update γ, while one can achieve better performance
by using all the available measurements in a window around
the time instant of interest.

In the following subsection, we propose a sawtooth lag
scheme that addresses the above issues.

∆+ 1− ∆̄

U
p
d
a
te

In
d
e
x

∆̄

∆̄

{ykl+1, . . . , yǩl−1
}

{ykl+1+1, . . . , yǩl}

∆+ 1

processing time window

declared output

kl−1 + 1 ǩl−1kl

kl + 1 kl+1 ǩl

kl+1 + 1

∆̄

l + 1

l − 1

l

l + 1

Figure 1. The sawtooth lag processing scheme: Each box represents a time
(sampling) instant with which it is indexed, and each row corresponds to an
update index, with the index indicated in blue. The set of y in red represents
the new measurement set processed in each update. A green box (with indices
kl + 1 = (l − 1)∆̄ + 1 to ǩl = (l − 1)∆̄ + ∆ + 1) indicates that the state
statistics corresponding to the index on box are updated, a yellow box (with
indices k ≤ kl = (l− 1)∆̄) indicates that the state statistics are not updated,
and a white box (with indices k ≥ ǩl = (l−1)∆̄+∆+1) indicates that the
state statistics have not been computed yet. The processing window indicated
by green is shifted by ∆̄ after every update.

2) Sawtooth Lag Scheme: In this scheme, we update γ as
every data block of size ∆̄ ≤ ∆ + 1 arrives; see Figure 1.
Consider k ∈ [kl+1, kl+∆̄] where kl , (l−1)∆̄ for the update
index l = 1, 2, We replace the fixed lag variables x̂k|k+∆,
P k|k+∆, and P k,k−1|k+∆ with variables x̂k|ǩl , P k|ǩl , and
P k,k−1|ǩl , respectively, where ǩl , kl + ∆ + 1. We compute
these variables using the estimate of γ obtained in the previous
update, γl−1. For the lth update, (12) modifies to

γl =
1

kl+1
Diag

(
I −D2

)−1
l∑
i=1

ki+1∑
t=ki+1,
t6=1

T t|ǩi +C1|∆

= γl−1 +

1

kl+1

kl+1∑
t=kl+1

Diag
{(
I −D2

)−1
T t|ǩl − Γl−1

}
.

(22)

To compute T t|ǩl , we run the fixed interval Kalman smoothing
algorithm on overlapping blocks of data of size ∆ + 1, and
discard the last ∆+1−∆̄ values of every block (this is referred
to as sawtooth lag smoothing [24]). The processing window
is shifted by ∆̄ after every update. The update equations are
comprised of forward recursions and backward recursions. In
the forward recursions, we estimate x̂t|t and P t|t for t =
kl + 1, kl + 2, . . . , ǩl using a Kalman filter as given below:

x̂t|t−1 = Dx̂t−1|t−1 (23)

P t|t−1 = DP t−1|t−1D + (I −D2)Γ (24)

J t = P t|t−1A
T
t

(
AtP t|t−1A

T
t +Rt

)−1
(25)

x̂t|t = (I − J tAt)x̂t|t−1 + J tyt (26)
P t|t = (I − J tAt)P t|t−1 (27)

P ǩl,ǩl−1|ǩl =
(
I − J ǩlAǩl

)
DP ǩl−1|ǩl−1. (28)

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

5

In the backward recursions, we estimate x̂t|ǩl , P t|ǩl and
P t,t−1|ǩl in the reverse order. For t = ǩl, ǩl − 1, . . . , kl + 2
we get the following smoothing equations:

Gt−1 = P t−1|t−1DP
−1
t|t−1 (29)

x̂t−1|ǩl = x̂t−1|t−1 +Gt−1(x̂t|ǩl − x̂t|t−1) (30)

P t−1|ǩl = P t−1|t−1 +Gt−1(P t|ǩl − P t|t−1)GT
t−1 (31)

For t 6= ǩl

P t,t−1|ǩl = P t|tG
T
t−1+Gt

(
P t+1,t|ǩl−DP t|t

)
GT
t−1. (32)

The average latency of the fixed lag scheme is ∆, whereas
that of the sawtooth lag scheme is ∆ −

(
∆̄− 1

)
/2. In the

sawtooth lag scheme, ∆̄ also controls the frequency of update
of γ. If ∆̄ is large, the average latency decreases, but the γ
gets updated more slowly. So, there is a tradeoff between the
accuracy and the latency in selecting ∆̄.

Next, we discuss the special case of D = 0. We refer to
this algorithm as the online M-SBL algorithm, as there is no
role for Kalman filtering when D = 0.

Online M-SBL: When the sparse vectors are uncorrelated,
i.e., D = 0, (22) simplifies to the following recursion:

γl = γl−1 +
1

kl+1

kl+1∑
t=kl+1

Diag
{
P t(γl−1)

+x̂t(yt,γl−1)x̂t(yt,γl−1)T − Γl−1

}
. (33)

where

P t(γ) , Γ− ΓAT
t

(
AtΓA

T
t +Rt

)−1
AtΓ (34)

x̂t(y,γ) , P t(γ)AT
tR
−1
t y. (35)

We note that this implementation depends only on ∆̄, and
not on ∆, because

{
yt, t = kl+1 + 1, kl+1 + 2, . . . , ǩl

}
and

{xt, t = kl + 1, kl + 2, . . . , kl+1} are independent.
To summarize, we have presented a fixed lag scheme and a

sawtooth lag scheme, for computing T k|k+∆ recursively using
the data in batches. We next discuss the initialization of the
algorithm and several interesting special cases.
B. Discussion

1) Initialization: The initial estimate of γ can be obtained
from the first ∆ + 1 input measurements vectors using the
offline KM-SBL algorithm. The one round of the offline KM-
SBL algorithm can be interpreted as an estimation step, and
the recursive update of γ using (13) can be interpreted as a
tracking process. In fact, if γ is slowly varying over time, the
recursive update step (13) can track its temporal variations.

2) Special Cases: We make a few interesting observations
about the algorithm in the following special cases:
(a) When D = 0, the sparse vectors are uncorrelated and

thus x̂t|K = x̂t|t+∆, P t|K = P t|t+∆, and P t,t−1|K =
P t,t−1|t+∆. Hence, there is no approximation in (11). On
the other hand, as the correlation coefficient increases, the
approximation in (11) becomes loose.

(b) When D = 0 and ∆ = 0, the fixed lag and the sawtooth
lag schemes become identical.

(c) When ∆ = 0, the filter for the modified state space
reduces to the original Kalman filter equations [23].

Scheme Computational
cost

Memory
demand

KM-SBL
(D 6= 0)

Offline O(KN3) O
(
KN2

)
Fixed lag O

(
KN2m

)
O

(
∆N2

)
Sawtooth lag O(KN3) O

(
∆N2

)
M-SBL

(D = 0)

Offline O(KN2m) O
(
Km+N2

)
Online O(KN2m) O

(
∆m+N2

)
Table I

COMPARISON OF THE ONLINE SCHEMES WITH THE OFFLINE SCHEME
WHEN K OBSERVATIONS ARE AVAILABLE.

(d) When ∆̄ = 1, the latency of the sawtooth lag scheme
equals ∆ for all sparse vectors, similar to the fixed
lag scheme. Nonetheless, the two schemes are different,
because of the forward and backward recursions in the
sawtooth lag scheme.

C. Refinements

1) Different Learning Rates: Instead of 1/k in (13), any
sequence of positive numbers bk can be used in the recursive
algorithm as long as the following conditions are satisfied:

0 ≤ bk ≤ 1

∞∑
k=1

bk =∞
∞∑
k=1

b2k <∞. (36)

The modified algorithm is given by

γk = γk−1 +bkDiag
{(
I −D2

)−1
T k|k+∆ − Γk−1

}
. (37)

A good choice for the sequence is bk = 1/kα, 1/2 < α ≤ 1,
since

∑∞
k=1 1/kα converges if α > 1 and diverges otherwise.

In Section V, we empirically show that the modified algorithm
converges faster than the original version (see Figure 2).

2) Improved Online M-SBL: Notice that the online M-SBL
algorithm in (33) does not use the observations yt, t = kl+1 +
1, kl+1+2, . . . , ǩl, even though they are available at time kl+1.
Hence, we modify the update step in (33) to update γ using
all the available measurement vectors yǩl , and then estimate
the sparse vectors x̂kl+1 to x̂k(l+1)

, as follows:

γl = γl−1 +
1

ǩl

ǩl∑
t=ǩl−∆̄+1

Diag
{
P t(γl−1)

+ x̂t(yt,γl−1)x̂t(yt,γl−1)T − Γl−1

}
. (38)

Thus, for each update, we use only the latest available block
of size ∆̄, and not the past values which have already been
used. Hence, in this case, we need not store any of the past
measurements or the sparse vector estimates.

D. Complexity Analysis

We now briefly discuss the computational complexity and
memory requirements of the proposed algorithms.

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

6

1) Computational Cost: We assume that the multiplication
of a p×q matrix with a q×r matrix requires O(pqr) floating-
point operations (flops), and the inversion of a p× p positive
definite matrix requires O(p3) flops [25].

We note that the computational cost per update of γ in
the online scheme depends only on ∆ (which is � K),
although the overall computational complexity does depend on
the number of sparse vectors K. However, simulation results
show that the overall run time of our online algorithms grow
slowly with K when compared to their offline counterparts
(see Figure 3a). The order-wise complexity of the online M-
SBL algorithm (33) is similar to the online KM-SBL fixed-lag
scheme, but its run time is much smaller than KM-SBL since
it does not involve Kalman filtering or smoothing. Note that,
the computational cost of the offline algorithms correspond to
the complexity of a single iteration, while that of the online
algorithms correspond to the overall complexity, as they are
non-iterative in nature.

2) Memory Requirement: In the offline KM-SBL algorithm,
we need to save all measurement vectors, because of which,
the memory requirement grows linearly with K. For the online
KM-SBL schemes, we need to save data only over a small pro-
cessing time window of size ∆. Thus, the memory requirement
for the online schemes scales with ∆. The variables that need
to be stored are the statistics (mean and covariance) of the
sparse vectors which is of the order N2 values.

When the sparse vectors are uncorrelated (online M-SBL
algorithm), we need to store only the measurement vectors
of order m � N2 values, and not the statistics of the past
sparse vectors. Also, for the update of the hyperparameter γ,
we need an extra working memory of the order N2 to compute
the covariance matrices P k. Thus, the overall memory demand
for the offline M-SBL is of the order Km + N2, while that
for the online algorithm is of the order ∆m+N2.

We compare the computational demands and the memory
requirements of the three schemes in Table I.

IV. CONVERGENCE ANALYSIS

In the section, we study the convergence properties of the
proposed online algorithm under the following assumptions:

(A1) The measurement matrices are identical, i.e., Ak = A,
∀k, and without loss of generality, Rank {A} = m.

(A2) The noise covariance matrix is the same for all measure-
ments, i.e., Rk = R, ∀k.

(A3) The sparse vectors are uncorrelated, i.e., D = 0.
The above assumptions are standard in the MMV literature,
and are referred to as the joint sparsity model-2 (JSM-2) [8],
[10]–[12]. The assumptions simplify the recursive algorithm,
and make the analysis tractable. Since D = 0, the fixed lag
scheme discussed in Section III-A1 is not applicable, and we
focus our analysis on the sawtooth lag implementation. We
start with the case when ∆̄ = 1. A similar analysis follows
for ∆̄ > 1, and we discuss this case later in the sequel.

When Ak = A and Rk = R, (33)-(35) simplify to

γk = γk−1 +
1

k
Diag

{
P (γk−1)

}
+

1

k
Diag

{
x̂(yk,γk−1)x̂(yk,γk−1)T − Γk−1

}
(39)

where P (γ) and x̂(y,γ) are as defined in (34) and (35), with
At and Rt replaced by A and R, respectively. We can rewrite
(39) as a stochastic approximation recursion as follows:

γk = γk−1 +
1

k
f(γk−1) +

1

k
ek. (40)

Here, f(γ) is the mean field function, given by

f(γ), Diag
{
P (γ)+P (γ)ATR−1E

{
yyT}R−1AP (γ)

}
−γ,
(41)

where the expectation is over the distribution of y, and ek is
given by

ek , Diag
{
P (γk−1) + x̂(yk,γk−1)x̂(yk,γk−1)T}

− γk−1 − f(γk−1).

Further, using P (γ) from (34),

P (γ)− Γ = −ΓAT (AΓAT +R
)−1

AΓ (42)

P (γ)ATR−1 = ΓAT (AΓAT +R
)−1

. (43)

Thus, we get (44) and (45) at the top of the next page.
We next present the convergence results of the algorithm.

We begin with a proposition which shows that the sequence
of γk generated by the proposed algorithm is bounded.

Proposition 1. If γ0 is a nonnegative vector, the sequence γk
generated by (39) remains in a compact subset of RN+ almost
surely (a.s.).

Proof: See Appendix A.
The next question to be answered is about the values to

which the sequence γk could converge. The following theorem
characterizes the asymptotic behavior of the algorithm.

Theorem 1. Assume that the nonzero entries of x are or-
thogonal, and the diagonal matrix Γopt , E

{
xxT

}
. If γ0 is

a nonnegative vector, then the sequence γk of the proposed
online M-SBL algorithm given by (39) converges to the set
{0} ∪ {γ ∈ RN+ : A (Γ− Γopt)A

T = 0} a.s. Further, if
Rank {A�A} = N , the sequence γk converges to a point in
the two-element set {0,γopt} a.s.

Proof: See Appendix B.
We make the following observations from Theorem 1.
• The results are independent of the following parameters:
(a) sparsity level of the unknown vectors
(b) initialization of the algorithm (however, γ0 ∈ RN+)
(c) distribution of the sparse vectors (even though the al-

gorithm is designed assuming a Gaussian distribution),
as long as the entries are orthogonal

(d) properties of A, such as its restricted isometry constant
or mutual coherence

(e) construction of A, i.e., it can be deterministic or
random, with normalized or unnormalized columns.

• The convergence guarantee of the original M-SBL algo-
rithm in [12] holds only in the noiseless case. However,
our generalized result applies whether noise is present or
not. Hence, the result is practically more useful.

• The condition that the nonzero entries of x should
be orthogonal is similar to the orthogonality condition

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

7

f(γ) = Diag
{

ΓAT (AΓAT +R
)−1 (E {yyT}−AΓAT −R

) (
AΓAT +R

)−1
AΓ
}

(44)

ek = Diag
{

Γk−1A
T (AΓk−1A

T +R
)−1 (

yky
T
k − E

{
yyT}) (AΓk−1A

T +R
)−1

AΓk−1

}
. (45)

required for the convergence guarantee of the original
M-SBL algorithm in the noiseless case [12]. In fact, the
orthogonality condition in [12] is hard to achieve since
the number of sparse vectors to be estimated is finite. In
that sense, ours is a more reasonable assumption.

• The M-SBL cost function [12] is defined as

VM-SBL (γ) = lim
k→∞

[
1

k

k∑
t=1

yT
t

(
AΓAT +R

)−1
yt

+ log |AΓAT +R|
]

= Tr
{(
AΓAT +R

)−1 (
AΓoptA

T +R
)}

− log
∣∣∣(AΓAT +R

)−1
∣∣∣ . (46)

We note that VM-SBL (γ)− log |AΓoptA
T +R|−m is the

Kullback-Leibler (KL) divergence between two Gaussian
distributions: N (0,AΓAT + R) and N (0,AΓoptA

T +
R). The global minimum of VM-SBL (γ) is therefore
achieved at {γ ∈ RN+ : A (Γ− Γopt)A

T = 0}. Hence,
the set to which our algorithm converges contains all the
points achieving the global minimum of VM-SBL (γ).

• Since VM-SBL (γ) is a function of AΓAT, the smallest
set to which M-SBL can converge is {γ ∈ RN+ :
A (Γ− Γopt)A

T = 0}. The γk output by the proposed
algorithm converges to the union of this set with 0.

• It can be shown that the algorithm is guaranteed to
converge to a sparse solution, where, by sparse solution,
we mean one with no more than m nonzero entries. Given
any s-sparse vector γopt and sensing matrix A, we can
always construct a pair (xc,yc) such that yc = Axc and
xc = Γ

1/2
opt (AΓ

1/2
opt)†yc. By [26, Theorem 1], γopt is the

global minimizer of the SBL cost function constructed
under a noiseless measurement model using yc and A.
Further, from [26, Theorem 2], it is known that every
local minimum of the SBL cost function is achieved at a
sparse solution (even in the presence of noise). Now, the
SBL cost is a function of Γ only through AΓAT. Hence,
the set {γ ∈ RN+ : A (Γ− Γopt)A

T = 0} consists of
local minima of this SBL cost function, which implies
that the elements of the set are all sparse. Therefore, the
algorithm is guaranteed to converge to a sparse solution.

We can extend the above convergence results to the refined
algorithm given by (37) using the following corollary.

Corollary 1. Consider the modified online M-SBL algorithm
given by (37) and having learning rates satisfying (36). Under
the assumptions of Theorem 1, the sequence γk converges to
a point in the set {0}∪{γ ∈ RN+ : A (Γ− Γopt)A

T = 0} a.s.
Further, if Rank {A�A} = N , the sequence γk converges
to a point in the set {0,γopt} a.s.

The proof of the above is similar to that of Theorem 1
because the only properties of the sequence 1/k (in (13)) that

are used in Theorem 1 are the ones listed in (36).
We now consider to the more general case where ∆̄ ≥ 1.

As in the previous case, the algorithm can be rewritten as a
stochastic approximation recursion as follows:

γl = γl−1 +
1

l
f(γl−1) +

1

l
ẽl, (47)

where f(γ) is as defined in (41), and

ẽl , −f(γl−1) +
1

∆̄

kl+∆̄∑
t=kl+1

Diag
{
P (γl−1)

+ x̂(yt,γl−1)x̂(yt,γl−1)T
}
. (48)

The following theorem characterizes the asymptotic behavior
of the above algorithm. Using the theorem, we can also derive
a corollary similar to Corollary 1. However, we omit the
statement to avoid repetition.

Theorem 2. Under the assumptions of Theorem 1, the se-
quence γl output by the online M-SBL algorithm given by (47)
converges to the set {0} ∪ {γ ∈ RN+ : A (Γ− Γopt)A

T = 0}
a.s. Further, if Rank {A�A} = N , the sequence γl con-
verges to a point in the set {0,γopt} a.s.

Proof: The algorithm given by (47) differs from the
algorithm given by (40) only in the last term. The only place
where this term plays a role in the proof in Appendix B is via
Lemma 1. Hence, it suffices to show that liml→∞

∑l
i=1

1
i ẽi

exists and is finite. From (48), we get

ẽl = Diag
{

Γl−1A
T (AΓl−1A

T +R
)−1

E {yyT}− 1

∆̄

ki+1∑
t=ki+1

yty
T
t

(AΓl−1A
T +R

)−1
AΓl−1

}
.

Now the result follows by replacing ek in the proof of
Lemma 1 with ẽl.

We can also get similar convergence results for the improved
M-SBL algorithm given by (38), as follows.

Corollary 2. Under the assumptions of Theorem 1, the
sequence γl output by the improved online M-SBL algo-
rithm given by (38) converges to {0} ∪ {γ ∈ RN+ :
A (Γ− Γopt)A

T = 0} a.s. Further, if Rank {A�A} = N ,
the sequence γl converges to a point in the set {0,γopt} a.s.

Proof: Under the assumptions of Theorem 1, the im-
proved online algorithm given by (38) is equivalent to the orig-
inal algorithm given by (33) except that it uses ∆̄ measurement
vectors

{
yt, t = ǩl − ∆̄ + 1, ǩl − ∆̄ + 2, . . . , ǩl

}
instead of

∆̄ measurements {yt, t = kl + 1, kl + 2, . . . , kl+1} used by
the original version. Since the measurement vectors are in-
dependent and identically distributed, the rest of the proof is
the same as that of Theorem 1.

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

8

Algo.
Rademacher Dist. Gaussian Dist.

∆̄ = 1 ∆̄ = 3 ∆̄ = 5 ∆̄ = 1 ∆̄ = 3 ∆̄ = 5

α = 0.6 1.69 1.30 1.17 1.18 1.09 0.96

α = 0.8 0.87 0.79 0.72 0.86 0.78 0.71

α = 1.0 0.49 0.47 0.43 0.49 0.47 0.43

Table II
VALUE OF ERROR-FIT POWER FUNCTION PARAMETER p WHEN D = 0.

V. SIMULATION RESULTS

We use the following setup to evaluate the performance
of the algorithm and corroborate the theoretical results. We
generate sparse signals of length N = 60, each with s = 6
nonzero entries. The locations of nonzero coefficients are
chosen uniformly at random, and the nonzero entries are
independent and identically distributed with zero mean and
unit variance. The length of measurement vector is chosen as
m = 20. The measurement matrices Ak are generated with
independent and Gaussian distributed entries with zero mean,
and the columns are normalized to have unit Euclidean norm.

We study the properties of the algorithm for both uncorre-
lated and highly correlated cases in the following subsections.
For the uncorrelated case, we consider the improved online
algorithm given by (38).

A. Convergence

To study the convergence of the algorithm, we consider
three different learning rates bk = 1/kα: α = 0.6, 0.8 and 1.
The maximum delay between the measurement and estimation
is taken as ∆ = 5. To highlight the convergence behavior,
we initialize the hyperparameters with a fixed value 4 · 1,
irrespective of the measurements. The SNR is chosen as 20 dB
for all the results in this subsection.

1) Uncorrelated Case: We generate the sparse vectors from
two distributions: Gaussian and Rademacher distribution. The
mean squared error (MSE) in the estimated hyperparameters
when ∆̄ = 3 are plotted in Figure 2a. The curves labeled Fit
are the fitted curves on the error using the function: f(x) =
ax−p where a and p are parameters. The result for other values
of ∆̄ is similar, and we summarize the values of p in Table II.
Our observations from the results are as follows:

Convergence: The algorithm converges to the true γ, and
not to the other equilibrium point, γ = 0, in all cases. This
happens even if we initialize the algorithm with very small
values such as 10−2 · 1.

Sparse vector distribution: The algorithm works equally
well for both Gaussian (which is continuous) and Rademacher
distribution (which is discrete), as guaranteed by Theorem 2.

Learning rate: The smaller the α, the larger the learning rate
bk, and hence the larger the weightage given to the update term
Diag

{(
I −D2

)
T k|k+∆ − Γk−1

}
in (37), leading to faster

convergence. Since 1/2 < α ≤ 1 is required for theoretical
convergence guarantee, a value of α close to 1/2 ensures the
fastest convergence. However, we have also observed from our
experiments that α ≤ 1/2 leads to even faster convergence.
Hence, in practice, one could try using α ≤ 1/2, but the
convergence would not be guaranteed by our analysis.

Value of ∆̄: As ∆̄ increases, the exponent p slightly de-
creases. This is because when ∆̄ increases, the hyperparameter
γ gets updated less frequently. Hence, a lower ∆̄ improves the
convergence rate and estimation accuracy, but at the cost of
higher average latency and computational complexity. This is
further illustrated in the following subsections.

2) Highly Correlated Case: Figures 2b and 2c show the
MSE in the hyperparameter estimates when ∆̄ = 3, for
the fixed lag and sawtooth lag schemes, respectively. A few
interesting observations from the figures are as follows:

Correlation coefficient: As the correlation coefficient in-
creases, the convergence becomes slower. This is because
the approximation in (11) becomes loose as the correlation
increases, as discussed in Section III-B.

Implementation scheme: We see that the convergence be-
havior of the fixed lag and sawtooth lag schemes are similar.
However, the gap between the curves when the correlation
coefficient is 0.9 and 0.95 is smaller for the fixed lag scheme
compared to the sawtooth lag scheme. Further discussion about
this is provided in Section V-B2.

Learning rates: As observed in the uncorrelated case, the
convergence is faster for small values of α. However, the gap
between the curves for the two correlation coefficients is wider
for smaller values of α. This is because as α decreases, the
weightage given to the update term in (37) increases, and thus,
it becomes more sensitive to the approximation in (11).

B. Algorithm Performance: Varying Paramters

We evaluate the performance of the proposed algorithm
using the three metrics defined below. We let x̂k and xk denote
the estimate and true value of the sparse vector, respectively.

(i) Relative mean square error (RMSE)

RMSE ,
∑K
k=1 ‖x̂k − xk‖2∑K

k=1 ‖xk‖2
. (49)

(ii) Support recovery rate (SRR)

SRR,1− 1

K

K∑
k=1

|Supp{x̂k − xk}|
N

. (50)

(iii) Run time, which is the time required to complete the
computations. It measures the computational complexity.

We refer to the RMSE and SRR metrics jointly as the recovery
performance of the algorithm. We consider two methods to
initialize the hyperparameter vector γ for the online schemes,
which we term proper initialization and fixed initialization.
Proper initialization refers to initializing γ with its estimate
obtained from the first ∆ + 1 measurements using the offline
KM-SBL algorithm. Fixed initialization refers to initializing
γ with a fixed vector (which we take as 4 · 1).

1) Uncorrelated Case: Figures 3a-3f show the performance
of the different schemes when D = 0. The curves labeled
Offline correspond to the performance of the offline M-
SBL algorithm, which is our benchmark, and all other curves
correspond to the improved online sawtooth lag scheme dis-
cussed in Section III-C2. The curves labeled Init ∆̄ = 1,
Init ∆̄ = 3 and Init ∆̄ = 5 correspond to the online
algorithm with proper initialization, while the curves labeled

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

9

0 50 100 150 200 250 300
10

−1

10
0

10
1

10
2

10
3

M
S

E
 i
n

 I
te

rt
a
te

Number of Sparse Vectors K

Fit: Rademacher

Fit: Gaussian

Error: Rademacher

Error: Gaussian

α=0.8

α=0.6

α=1

(a)

0 100 200 300 400 500 600
10

−1

10
0

10
1

10
2

10
3

M
S

E
 i
n

 I
te

rt
a
te

Number of Sparse Vectors K

Fit: ρ = 0.9 Error: ρ = 0.9

Fit: ρ = 0.95 Error: ρ = 0.95

α=0.8

α=1

α=0.6

(b)

0 100 200 300 400 500 600
10

−1

10
0

10
1

10
2

10
3

Number of Sparse Vectors K

M
S

E
 i
n

 I
te

rt
a
te

Fit: ρ = 0.9 Error: ρ = 0.9

Fit: ρ = 0.95 Error: ρ = 0.95

α=1

α=0.6

α=0.8

(c)

Figure 2. Convergence of the hyperparameters to the true value for different learning rates bk = 1/kα, α = 0.6, 0.8 and 1 when ∆ = 5. For (2a) we
choose D = 0, and for (2b) and (2c) D = ρI , and the value of ∆̄ = 3 is chosen as for (2a) and (2c). Further, (2b) corresponds to the fixed lag scheme and
(2c) corresponds to the sawtooth lag scheme. The markers show the error value corresponding to the two distributions and the dotted line shows the curve
fitted on the error using a power function. We infer that the procedure converges to the true value with the MSE in estimation being a power function of K.
The rate of convergence improves as the value of α is decreased.

No Init ∆̄ = 1, No Init ∆̄ = 3 and No Init ∆̄ = 5
correspond to the online algorithm with fixed initialization.
Our observations from the results are as follows:

Initialization: The online scheme with proper initialization
closely matches with the offline scheme in terms of the
recovery performance. On the other hand, the online scheme
with fixed initialization requires significantly smaller time for
execution, but the convergence is slower.

Number of sparse vectors K: As K increases, the quality
of the covariance estimate improves (as seen in Section V-A),
and this, in turn, leads to better recovery performance; see
Figures 3a and 3b. From Figure 3c, we see that the run
time increases almost linearly with K for the offline scheme
and the online scheme with fixed initialization. With proper
initialization, the run time is roughly constant with K, as most
of execution time is spent in computing the initialization of γ.

SNR: The recovery performance of all algorithms improve
with increase in SNR, see Figures 3d and 3e. Also, the gap
between the online scheme with proper initialization and the
offline scheme virtually closes beyond an SNR of 10 dB. From
Figure 3f, the run time remains almost constant with SNR,
even though the offline scheme and the online scheme with
proper initialization use an iterative step to estimate γ.

Sparsity level: The recovery performance of all algorithms
degrade with increase in sparsity level (number of non-zero en-
tries), see Figures 3g and 3h. However, the SRR performance
of the algorithm with fixed initialization degrades significantly
with the increase in the sparsity level. From Figure 3i, the run
time remains almost constant with sparsity level, since the
complexity does not depend on the sparsity level.

Output batch-size ∆̄: The performance of online schemes
do not vary much with ∆̄, as can be seen from Figures 3a-3f.
However, the recovery performance is slightly better and the
run time is slightly worse for smaller values of ∆̄, as γ is
updated more frequently.

Maximum delay ∆: The performance of the algorithm with
varying maximum delay ∆ is similar to that of the highly
correlated case as shown in Figure 3j-Figure 3l. We omit
the plot due to lack of space. The performance of the online
schemes improve as ∆ increases, and the proper initialization

can greatly improve the recovery performance compared to
fixed initialization. The run time of the online scheme with
proper initialization increases with ∆, because the number of
measurement vectors used to initialize γ increases. However,
the behavior the run time of the online schemes for the
uncorrelated case is different from that of the highly correlated
case, as discussed in Section III-D. This is because the online
algorithms use Kalman smoothing in the correlated case, and
the complexity of Kalman smoothing increases with ∆. In the
uncorrelated case, the complexity is independent of ∆, thus
the run time remains constant for all values of ∆.

2) Highly Correlated Case: Figures 3j-3m show the perfor-
mance of the different algorithms when the sparse vectors are
highly correlated (D 6= 0). The curves labeled Init Fixed
and No Init Fixed correspond to the fixed lag scheme
with proper and fixed initialization, respectively, while the
other labels are as in the previous plots. Our observations from
the results are as follows:

Implementation schemes: As discussed in Section III-A, for
the same output batch-size of ∆̄ = 1, the sawtooth lag scheme
outperforms the fixed lag scheme, at the cost of a higher
run time. This is because the sawtooth lag scheme uses all
the available measurements for updating the hyperparameters,
while the fixed lag scheme uses only the latest available mea-
surement. Comparing the fixed lag scheme with the sawtooth
lag scheme with higher output batch-sizes (∆̄ = 3 and 5), the
fixed lag scheme is slower but more accurate, as it updates the
hyperparameters more frequently.

Correlation coefficient ρ: The performance of the algorithms
with varying correlation coefficient ρ (recall D = ρI) is
shown in Figures 3m-3o. As ρ increases, the recovery per-
formance of the sawtooth lag scheme decreases, while that of
the fixed lag scheme improves. This seemingly counterintuitive
behavior can be explained as follows. In the offline case,
an increase in ρ can worsen the support recovery of the
sparse vectors, but helps the estimation of the amplitude of
the nonzero entries. A combination of these effects determine
the overall performance of the algorithm, and we see that the
recovery performance slightly degrades as the ρ increases. A
similar trend was observed in the SRR for the temporal MMV-

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

10

0 100 200 300
10

−3

10
−2

10
−1

10
0

No. of sparse vectors K

R
M

S
E

(a)

0 100 200 300
10

−2

10
−1

10
0

No. of sparse vectors K

S
R

R

(b)

0 100 200 300
10

−2

10
−1

10
0

10
1

10
2

10
3

No. of sparse vectors K

R
u

n
 T

im
e

(c)

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

10
0

SNR

R
M
S
E

(d)

0 10 20 30 40

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

S
R
R

SNR

(e)

0 10 20 30 40
10

−2

10
−1

10
0

10
1

10
2

R
u

n
 T

im
e

SNR

(f)

2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

R
M

S
E

Sparsity Level

(g)

2 4 6 8 10

10
−0.8

10
−0.6

10
−0.4

10
−0.2

S
R

R

Sparsity Level

(h)

2 4 6 8 10
10

−2

10
−1

10
0

10
1

10
2

R
u

n
 T

im
e

Sparsity Level

(i)

0 10 20 30 40 50
10

−2

10
−1

10
0

R
M

S
E

Maximum Delay ∆

(j)

0 10 20 30 40 50
10

−2

10
−1

10
0

S
R

R

Maximum Delay ∆

(k)

0 10 20 30 40 50
10

−1

10
0

10
1

10
2

R
u

n
 T

im
e

Maximum Delay ∆

(l)

0.5 0.6 0.7 0.8 0.9
10

−2

10
−1

10
0

R
M

S
E

Correlation Coefficient ρ

(m)

0.5 0.6 0.7 0.8 0.9
10

−2

10
−1

10
0

S
R

R

Correlation Coefficient ρ

(n)

0.5 0.6 0.7 0.8 0.9
10

−1

10
0

10
1

10
2

R
u

n
 T

im
e

Correlation Coefficient ρ

(o)

Figure 3. Performance of the proposed algorithms relative to the offline algorithm. Unless otherwise mentioned in the plot K = 150, ∆ = 5, ρ = 0.9 and
SNR = 20 dB. For (3a)-(3f) D = 0 (uncorrelated case, where we use the M-SBL based algorithm), and for (3j)-(3o) D = ρI (correlated case, where we
use the KM-SBL algorithm). The performance of the proposed algorithm is comparable to the offline algorithm, but it requires significantly lower run time
for all the settings shown here. Initializing the algorithms from the first ∆ + 1 measurements using the offline KM-SBL algorithm offers better RMSE but at
the cost of increased run time.

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

11

0 100 200 300
10

−2

10
−1

10
0

R
M

S
E

No. of Sparse Vectors K

(a)

50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

S
R

R

No. of Sparse Vectors K

(b)

0 100 200 300
10

−1

10
0

10
1

10
2

10
3

R
u

n
 T

im
e

No. of Sparse Vectors K

(c)
Figure 4. Comparison of RMSE, SRR and run time of the proposed algorithm with the existing online schemes, when D = 0.9I , ∆ = 0 and SNR =
20 dB. The proposed algorithm requires one order of magnitude lower run time than all the other schemes to which it is compared, for achieving a similar
performance, while achieving a similar SRR and slightly superior RMSE.

SBL (TM-SBL) algorithm for recovering correlated sparse
vectors [27, Figure 2]. In case of the sawtooth lag scheme,
in addition to the above, an increase in ρ also makes the
approximation in (11) loose. Due to this, the degradation in
the recovery performance of the sawtooth lag scheme is large
compared to the offline algorithm. In case of the fixed lag
scheme, apart from the effects discussed above, an increase
in ρ also improves ρ∆, the correlation between the state and
the observation in the new state space model (described by (2)
and (14)). This improves the quality of the estimate output by
the Kalman filter, and in turn helps the recovery. The overall
effect of these is an improvement in the recovery performance
of the fixed lag scheme. A more rigorous study of the effect
of ρ an interesting topic for future work.

The run time of the algorithm remains the same for all
values of ρ for the fixed initialization case, as its complexity is
independent of ρ. However, the run time of the online schemes
with proper initialization is higher in the highly correlated
case. This is because, when data is highly correlated, the ini-
tialization phase using the offline scheme takes more iterations
to converge. We can see a similar slight increase in the run
time of the offline scheme in the highly correlated case.

Maximum delay ∆: As the delay increases, the recovery
performance of the online schemes increases for both methods
of initialization. The change is more evident for the fixed
initialization case, as the recovery performance of with proper
initialization is very close to that of the offline scheme. We
also observe that the improvement in recovery performance
is small for the fixed lag scheme compared to the sawtooth
lag scheme. This is because of the reduced correlation

(
D∆

)
between the state and the observation of the new state space
model given by (2) and (14). Also as pointed out earlier, the
run time of the online schemes increases with ∆.

Output batch-size ∆̄: The performance of the online algo-
rithms remains constant with ∆̄ for both the correlated and
uncorrelated case. However, the gap between the run time
curves is wider for the correlated case. This is because each
update of γ is computationally more expensive due to the
Kalman smoothing in the correlated case.

The performance of the online algorithms with K and SNR
in the highly correlated case is similar to that observed in the
uncorrelated case. We omit these plots due to lack of space.

C. Comparison with Existing Algorithms

In Figure 4a-Figure 4c, we compare the proposed algorithm,
labeled Non-iterative KMSBL, with the following algo-
rithms (labels in brackets):

(i) Offline KM-SBL [1] (Offline KMSBL)
(ii) Reweighted l1 dynamic filtering [17] (RL1-DF)

(iii) Iterative online KM-SBL [21] (Iterative KMSBL)
(iv) Standard l1 minimization based algorithm on each mea-

surement vector [28] (Regular l1 Norm)
(v) Kalman compressed sensing [18] (KF-CS)

(vi) Least squares compressed sensing [15] (LS-CS)
Here, we choose ∆ = 0, as the other online schemes except
the iterative online KM-SBL algorithm are not designed for
∆ > 0. We also note that we extended the Kalman compressed
sensing algorithm in [18] to handle a first-order AR process
with correlation matrix D ∈ [0, 1]N , while the original
algorithm only considers D = I . The recovery performance
of the proposed scheme is comparable with the other online
schemes algorithms, and approaches the offline performance
as K increases. However, the run time of the proposed scheme
is significantly lower than all the other schemes. Moreover, the
rate of increase of the run time of the proposed scheme with
K is much smaller than the other schemes. The significant
reduction in the run time is primarily due to the non-iterative
nature of the proposed scheme. Since all other algorithms
are iterative in nature, their complexity and hence run time
depends linearly on the number of iterations which, in turn,
depends on N , m, K, the threshold used for stopping the
iterations, etc. This brings out the major difference between
the other algorithms and the proposed online non-iterative
schemes. Thus, our scheme is both fast and accurate, as
promised in Section I.

D. Sparse Orthogonal Frequency Division Multiplexing Chan-
nel Estimation

In this subsection, we consider the sparse orthogonal fre-
quency division multiplexing (OFDM) channel estimation
problem as an application of our proposed algorithm [1]. We
list the simulation parameters in Table III. The sparse channel
is of length N = 59, which taken as the length of the cyclic
prefixing (CP), with s = 6 nonzero entries for each channel
instantiation (PedB channel model [29]). In each OFDM
symbol, m = 20 pilot symbols are placed uniformly, and the
number of OFDM symbols K is taken as 150. We assume that

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

12

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E
R

SNR

(a)

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

R
M
S
E

SNR

(b)

0 10 20 30 40
10

−1

10
0

10
1

10
2

R
u

n
 T

im
e

SNR

(c)
Figure 5. Comparison of the BER, RMSE and run time of the proposed algorithm with existing schemes, namely, the offline KM-SBL [1] (Offline),
iterative online KM-SBL [21] (Online Iterative), a receiver with perfect knowledge of channel (Genie), for sparse OFDM channel estimation. The
proposed algorithm requires over one order of magnitude lower run time than the existing schemes, and achieves similar or better BER and RMSE.

the algorithms estimate the channel once in every OFDM slot,
which gives ∆ = 6. We consider both coded3 and uncoded
scenarios and three metrics for the performance comparison:
BER, MSE in channel estimation, and run time per channel
vector estimation. We estimate the channel using the pilot
symbols, and decode the data using the channel estimate (for
details, refer to [1]). In Figure 5a-Figure 5c, we compare
the performance of the proposed algorithm, labeled Online
Non-iterative, with the following three schemes (labels
in brackets):

(i) Offline KM-SBL [1] (Offline)
(ii) Iterative online KM-SBL [21] (Online Iterative)

(iii) Receiver with perfect knowledge of channel (Genie)
As mentioned earlier, the other online schemes are not appli-
cable here, as we take ∆ > 0. From the figure, we infer
that the BER and the MSE performance of the proposed
algorithm is better than the offline algorithm which was
originally proposed for the channel estimation problem [1].
This is because the offline algorithm processes the data in
blocks of size 6, and does not reuse the past measurements
blocks, whereas our algorithm uses information from all past
measurement blocks to estimate the channel vectors for the
current block. Moreover, our algorithm has an added advantage
of significantly reduced run time.

VI. CONCLUSIONS

In this work, we introduced an online algorithm for re-
covering a sequence of temporally correlated joint sparse
vectors from noisy linear underdetermined measurements. The
temporal correlation is modeled using a first-order AR process.
We developed the algorithm by combining the sequential
EM procedure and the SBL framework, and proposed two
schemes for implementation: the fixed lag and sawtooth lag
schemes. Our algorithm is non-iterative in nature, and does
not require any parameter tuning. We also provided a rigorous
convergence analysis of the proposed algorithm. Simulations
showed that the performance of the proposed algorithm is
close to that of the offline algorithm, but it demands less
memory and computational resources, both when the sparse
vectors are uncorrelated and highly correlated. However, the
unit correlation coefficient is a case where the proposed
approach fails to effectively recover the single sparse vector;

3For the Turbo code generation, we use the publicly available software [30].

Parameter Value

OFDM
(3GPP/LTE
broadband

standard [31])

Transmission bandwidth 2.5 MHz
Sub-frame duration 0.5 ms
Subcarrier spacing 15 kHz

Sampling frequency 3.84 MHz
FFT size 256

No. of data subcarriers 200
OFDM symbol/slot 6

CP length 16.67 µs

Channel
Environment Pedestrian B [29]

Model Jakes model [32]

Norm. Doppler freq. 10−3

Coding and modulation rate 1/2 Turbo code
and QPSK

Pulse shaping
Raised cosine
with rolloff

factor= 0.5 [33]

Table III
SIMULATION PARAMETERS FOR OFDM CHANNEL ESTIMATION

devising online algorithms for this scenario is an interesting
line for future work. It would also be interesting to extend the
convergence analysis to the correlated sparse vector case.

APPENDIX A
PROOF OF PROPOSITION 1

We first prove a lemma to show that the noise term ek is
bounded, which then enables us to establish the required result.

Lemma 1. In the proposed online algorithm given by (40),
limk→∞

∑k
t=1

1
t et exists and is finite.

Proof: We define lk =
∑k
t=1

1
t et, and Fk as

the σ−algebra generated by yk. Then, E {lk|Fk−1} =
E {lk−1|Fk−1} + 1

kE {ek|Fk−1} = lk−1. Thus, lk−1 is
a martingale. Further, using the orthogonality property of
martingales [34],

E
{
‖lk‖2

}
=

k∑
t=1

E
{
‖lt − lt−1‖2

}
=

k∑
t=1

1

t2
E
{
‖et‖2

}
. (51)

We note that ‖y‖∞ <∞ a.s., thus (45) shows that ‖et‖ <∞
a.s., if ‖γk−1‖∞ < ∞. When ‖γk−1‖∞ → ∞, from (45), it

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

13

can be shown that

lim
‖γ‖∞→∞

ΓAT (AΓAT +R
)−1

= lim
‖γ‖∞→∞

‖γ‖−
1
2∞ Γ

1
2

[
R−

1
2A
(
‖γ‖−1

∞ Γ
)
ATR−

1
2

]†
R−

1
2. (52)

Hence, all entries of limγ→∞ ΓAT (AΓAT +R
)−1

are finite,
and ‖et‖ < ∞ with probability one. Thus, E

{
‖et‖2

}
is bounded, and hence by Jensen’s inequality and (51),
the martingale is bounded in L1. Applying Doob’s for-
ward convergence theorem [34] to each coordinate of the
martingale lk[i], i = 1, 2, . . . , N , the limit limk→∞ lk =
limk→∞

∑k
t=1

1
t et exists, and is finite.

We now formally prove Proposition 1.
Proof: Using (40), we have,

γk =
k − 1

k
γk−1 +

1

k
Diag

{
P (γk−1)

+x̂(yk,γk−1)x̂(yk,γk−1)T} . (53)

All entries of Diag
{
P (γk−1) + x̂(yk,γk−1)x̂(yk,γk−1)T

}
are nonnegative. This ensures that γk[i] ≥ 0 for i =
1, 2, . . . , N and ∀k, if γ0 is a nonnegative vector. Thus, the
sequence γk is bounded from below.

Next, we use [35, Theorem 7] to show that the sequence is
bounded from above, and hence it remains in a compact set.
For that, we check if the conditions below hold in our case:

(i) The function f is Lipschitz
(ii) limk→∞

∑k
t=1

1
t et exists

(iii) The function f∞(γ) = limc→∞ f(cγ)/c is continuous,
and the ordinary differential equation (ODE)

d

dt
γ(t) = f∞(γ(t)) (54)

has the origin as its unique globally asymptotic stable
equilibrium.

Since P (γ) and ΓAT (AΓAT +R
)−1

AΓ are positive
semidefinite, all of their diagonal entries are nonnegative.
Hence, using (41),

f(γ) ≥ −γ + Diag
{
P (γ)ATR−1E

{
yyT}R−1AP (γ)

}
≥ −γ, (55)

where a ≥ b denotes that every entry of a is greater than or
equal to the corresponding entry of b. Further, since the ma-
trix ΓAT (AΓAT +R

)−1
AΓ is positive semidefinite, every

diagonal entry of P (γ) = Γ − ΓAT (AΓAT +R
)−1

AΓ is
less than the corresponding diagonal entry of Γ. Thus, we get

f(γ) ≤ Diag
{
P (γ)ATR−1E

{
yyT}R−1AP (γ)

}
≤ λDiag

{
P (γ)ATR−2AP (γ)

}
(56)

where λ is the largest eigenvalue of the positive semidefinite
matrix E

{
yyT

}
, and a ≤ b denotes an entry-wise inequality.

Thus,

−γ[i] ≤ f(γ)[i] ≤ λDiag
{
P (γ)ATR−2AP (γ)

}
[i], (57)

for i = 1, 2, . . . , N. To further bound the last term of the
inequality, we use (43) to get

P (γ)ATR−2AP (γ) = Γ
1
2B

(
AΓAT +R

)−1
BTΓ

1
2 .
(58)

where B , Γ
1
2AT (AΓAT +R

)− 1
2 . This implies

Diag
{
P (γ)ATR−2AP (γ)

}
[i]

= γ[i]B[i]T
(
AΓAT +R

)−1
B[i] (59)

≤ γ[i]B[i]TR−1B[i], (60)

where B[i] ∈ RN is the ith column of BT. Then, we have

BBT = Γ
1
2AT (AΓAT +R

)−1
AΓ

1
2

= I −
(
I + Γ

1
2ATR−1AΓ

1
2

)−1

. (61)

This shows that I − BBT is a positive semidefinite matrix,
and its diagonal entries are nonnegative. Thus, B[i]TB[i] ≤ 1,
for i = 1, 2, . . . , N . Hence, we get

Diag
{
P (γ)ATR−2AP (γ)

}
[i] ≤ λ̄γ[i], (62)

where λ̄ is the largest eigenvalue of R−1. Substituting this
relation in (57), we get

−γ[i] ≤ f(γ)[i] ≤ λ̄λγ[i]. (63)

Thus, (i) is satisfied. The assumption (ii) is true by Lemma 1.
To check (iii), we start with (44) to get

f∞(γ) = lim
c→∞

1

c
Diag

{
c2ΓAT(cAΓAT +R

)−1(E {ykyT
k

}
−cAΓAT −R

) (
cAΓAT +R

)−1
AΓ
}

(64)

= − lim
c→∞

Diag
{

Γ
(
R−

1
2AΓ

1
2

)T [
R−

1
2AΓ

1
2

(
R−

1
2AΓ

1
2

)T
+ I/c

]−1

R−
1
2AΓ

1
2

}
(65)

= −Diag
{

Γ
(
R−

1
2AΓ

1
2

)† (
R−

1
2AΓ

1
2

)}
. (66)

Note that Rank{(R− 1
2AΓ

1
2)} = min{Rank {Γ} ,m}. When

Rank{(R− 1
2AΓ

1
2)} = Rank {Γ}, f∞(γ) = −γ. Since 0 is

the only globally asymptotically stable equilibrium of the ODE
d
dtγ(t) = −γ(t), (iii) holds. When Rank{R− 1

2AΓ
1
2 } = m,(

R−
1
2AΓ

1
2

)†
= Γ

1
2ATR−

1
2

(
R−

1
2AΓATR−

1
2

)−1

, (67)

which implies the following:

(R−
1
2AΓ

1
2)†(R−

1
2AΓ

1
2) = Γ

1
2AT (AΓAT)−1

AΓ
1
2 .

Since the diagonal entries of AT (AΓAT)−1
A are positive,

the only possible equilibrium for the ODE is 0. However, when
γ = 0, Rank{R 1

2AΓ
1
2 } 6= m which is a contradiction. Hence,

there is no equilibrium point with Rank{R 1
2AΓ

1
2 } = m.

Thus, (iii) holds, and the proof is complete.

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

14

APPENDIX B
PROOF OF THEOREM 1

Before we prove the main theorem, we need two lemmas.

Lemma 2. The solution set of f(γ) = 0 is {0} ∪ {γ ∈ RN :
AΓAT = AΓoptA

T}, when E
{
yyT

}
= AΓoptA

T +R.

Proof: From (44), we get

f(γ) = Diag
{
ΓAT (AΓAT +R

)−1
A (Γopt − Γ)

AT (AΓAT +R
)−1

AΓ
}
. (68)

Clearly, γ = 0 is a zero of f(γ). Let us consider the
solutions whose support is the vector s ∈ {0, 1}N and
s 6= 0, and let the number of nonzero entries in s be
denoted by s. The union of the solutions over all possible
supports gives the solution set. Let γs ∈ Rs×1 be the vector
of nonzero entries of γ and As ∈ Rm×s be the matrix
formed by restricting A to the s columns corresponding to
the support s. Let Bs =

(
AΓAT +R

)− 1
2 As ∈ Rm×s, and

B =
(
AΓAT +R

)− 1
2 A ∈ Rm×N . Then, the reduced set of

equations corresponding to f(γ) = 0 is given by

Diag
{
BT
sBsΓsB

T
sBs

}
= Diag

{
BT
sBΓoptB

TBs
}
, (69)

where Γs = Diag {γs} is an invertible matrix. We note
that the above system of equations is linear in the vector
γs, for any given fixed matrices Bs and B. However,
Diag

{
BT
sBsΓsB

T
sBs

}
=
(
BT
sBs

)
◦
(
BT
sBs

)
γs, where

◦ represents the Hadamard product of matrices. Thus, the
solution set of the system of equations is an affine space Us
of dimension given by

dim(Us) = s− Rank
{(
BT
sBs

)
◦
(
BT
sBs

)}
(70)

= s− Rank
{

(Bs �Bs)T
(Bs �Bs)

}
(71)

= s− Rank {Bs �Bs} . (72)

We now consider another affine space Ws of dimension s −
Rank {Bs �Bs} given by the set of γs satisfying

vec
{
BsΓsB

T
s

}
= (Bs �Bs)γs = vec

{
BΓoptB

T} . (73)

It is easy to see that Ws ⊆ Us and dim(Us) = dim(Ws),
which implies Ws = Us. Rearranging, we get, for γs ∈ Us,(

AΓAT +R
)− 1

2 AsΓsA
T
s

(
AΓAT +R

)− 1
2

=
(
AΓAT +R

)− 1
2 AΓoptA

T (AΓAT +R
)− 1

2 . (74)

Thus, AΓAT = AsΓsA
T
s = AΓoptA

T, and Us ⊆ {γ :
AΓAT = AΓoptA

T}, for all support sets s 6= 0. From (68),
it is easy to see that {γ ∈ RN : A (Γ− Γopt)A

T = 0}
satisfies f(γ) = 0. Therefore, ∪

s∈{0,1}N\0
Us = {γ : AΓAT =

AΓoptA
T}. Thus, we get that the solution set of f(γ) = 0 is

{0} ∪ {γ ∈ RN : A (Γ− Γopt)A
T = 0}.

We define some notation to state the next lemma. The
notation X � 0 denotes that X is a positive definite matrix
and X < 0 denotes that X is a positive semidefinite matrix.

Lemma 3. The set O = {γ ∈ RN : AΓAT +R � 0} is an
open set and its closure is {γ ∈ RN : AΓAT +R < 0}.

Proof: Let γ ∈ O. Then, uT(AΓAT +R)u > 0 ∀u ∈
Rm \ {0}, and the minimum eigenvalue of AΓAT + R is
strictly greater than some β > 0. We need to show that there
exists an ε > 0 such that AΓ̃AT +R is positive definite for
all γ̃ in the ε-neighborhood of γ, i.e., ‖γ − γ̃‖ < ε.

For a given u ∈ Rm \ {0}, if uT(AΓ̃AT + R)u ≥
uT(AΓAT +R)u, then uT(AΓ̃AT +R)u > 0. Otherwise,

uT
(
AΓ̃AT +R

)
u = uT (AΓAT +R

)
u

−
∣∣∣uTA

(
Γ− Γ̃

)
ATu

∣∣∣ (75)

≥
(
β − ‖Γ− Γ̃‖2‖A‖22

)
‖u‖2 (76)

≥
(
β − ε‖A‖22

)
‖u‖2, (77)

where ‖ · ‖2 denotes the induced l2 norm. We can always find
an ε > 0 such that

(
β − ε‖A‖22

)
> 0. Therefore, uT(AΓ̃AT +

R)u > 0∀u ∈ Rm \ {0}, and thus O is an open set.
To prove the second part of the lemma, suppose the

sequence γk ∈ O converges to γ. Then, for any vec-
tor u ∈ Rm \ {0}, uT

(
AΓkA

T +R
)
u converges to

uT
(
AΓAT +R

)
u by the continuity of the function. There-

fore, uT
(
AΓAT +R

)
u ≥ 0 since uT

(
AΓkA

T +R
)
u >

0, and thus AΓAT + R < 0. Conversely, if there is exists
a γ ∈ Rm such that AΓAT + R < 0, the sequence
γk = γ + (1/k)1 converges to γ. We also note that
AΓkA

T +R = AΓAT +R + (1/k)AAT � 0 since A has
full row rank. Thus, there exists a sequence {γk} ∈ O that
converges to γ. Hence, the proof is complete.

Proof of Theorem 1

We prove the convergence using [36, Theorem 2] which
states that: Suppose f(·) is a continuous vector field defined
on an open set O ⊂ RN such that G = {γ ∈ O : f(γ) = 0}
is a compact subset of O. Then the distance of the sequence
γk given by (40) to the set G converges to 0 a.s. provided:

(i) There exists a C1 function V : O→ R+ such that
a) V (γ)→∞ if γ → the boundary of O or ‖γ‖ → ∞
b) 〈∇γV (γ) ,f(γ)〉 < 0, ∀γ /∈ G.

(ii) γk belongs to a compact set of O.
(iii) limk→∞

∑k
t=1

1
t et exists and is finite.

To check whether assumptions (i)-(iii) hold in our case, we
define the set O = {γ : Rank

{
AΓAT +R

}
= m} which is

an open set by Lemma 3. Note that f is a continuous function
of γ. Also, the inverse image of the compact set {0} by f(γ)
is compact, and hence, G is a compact subset of O.

We define the C1 function in (i) as follows:

V (γ) = Tr
{(
AΓAT +R

)−1 (
AΓoptA

T +R
)}

− log
∣∣∣(AΓAT +R

)−1 (
AΓoptA

T +R
)∣∣∣ . (78)

Note that V (γ) − m gives the KL divergence between
N (0,AΓAT + R) and N (0,AΓoptA

T + R). Therefore,
V (γ) ≥ m > 0. By Lemma 3, if γ is on the boundary of O,
at least one eigenvalue of AΓAT +R is zero. Hence, (ia) is

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

15

satisfied. The gradient of V (γ) is given by

∇γV (γ) = Diag
{
AT∇{AΓAT+R}V

(
AΓAT +R

)
A
}

= Diag
{
AT (AΓAT +R

)−1
A (Γ− Γopt)

AT (AΓAT +R
)−1

A
}
. (79)

Substituting this relation in (44) gives f (γ) = −Γ2∇γV (γ).
Therefore, for γ ∈ O \ G, we have 〈∇γV (γ) ,f(γ)〉 < 0.
Thus, (ib) is satisfied.

Assumptions (ii) and (iii) holds because of Proposition 1
and Lemma 1, respectively. Hence, γk converges to the set
G. Further, Proposition 1 shows that γk ≥ 0, and hence,
we get that γk converges to the set {0} ∪ {γ ∈ RN+ :
A (Γ− Γopt)A

T = 0}. Finally, if Rank {A�A} = N , then{
γ ∈ RN+ : A (Γ− Γopt)A

T = 0
}

=
{
γopt

}
. Thus, the proof

is complete. �

REFERENCES

[1] R. Prasad, C. Murthy, and B. Rao, “Joint approximately sparse channel
estimation and data detection in OFDM systems using sparse Bayesian
learning,” IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3591–3603,
Jul. 2014.

[2] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays,” IEEE Trans.
Signal Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[3] J. H. G. Ender, “On compressive sensing applied to radar,” Signal
Processing, vol. 90, no. 5, pp. 1402–1414, May 2010.

[4] I. F. Gorodnitsky, J. S. George, and B. D. Rao, “Neuromagnetic source
imaging with FOCUSS: a recursive weighted minimum norm algorithm,”
Electroencephalogr. Clin. Neurophysiol., vol. 95, no. 4, pp. 231–251,
Oct. 1995.

[5] D. Wipf, J. Owen, H. Attias, K. Sekihara, and S. Nagarajan, “Robust
Bayesian estimation of the location, orientation, and time course of
multiple correlated neural sources using MEG,” NeuroImage, vol. 49,
no. 1, pp. 641–655, Jan. 2010.

[6] U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in
dynamic MRI,” Magn. Reson. Med., vol. 59, no. 2, pp. 365–373, Feb.
2008.

[7] Z. Zhang, T.-P. Jung, S. Makeig, Z. Pi, and B. D. Rao, “Spatiotemporal
sparse Bayesian learning with applications to compressed sensing of
multichannel physiological signals,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 22, no. 6, pp. 1186–1197, Nov. 2014.

[8] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse
solutions to linear inverse problems with multiple measurement vectors,”
IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477–2488, Jul. 2005.

[9] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simulta-
neous sparse approximation. part I: Greedy pursuit,” Signal Processing,
vol. 86, no. 3, pp. 572–588, Mar. 2006.

[10] J. D. Blanchard, M. Cermak, D. Hanle, and Y. Jing, “Greedy algorithms
for joint sparse recovery,” IEEE Trans. Signal Process., vol. 62, no. 7,
pp. 1694–1704, Apr. 2014.

[11] J. Ziniel and P. Schniter, “Efficient high-dimensional inference in the
multiple measurement vector problem,” IEEE Trans. Signal Process.,
vol. 61, no. 2, pp. 340–354, Jan. 2013.

[12] D. Wipf and B. Rao, “An empirical Bayesian strategy for solving
the simultaneous sparse approximation problem,” IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3704–3716, Jul. 2007.

[13] R. Zdunek and A. Cichocki, “Improved M-FOCUSS algorithm with
overlapping blocks for locally smooth sparse signals,” IEEE Trans.
Signal Process., vol. 56, no. 10, pp. 4752–4761, Oct. 2008.

[14] Z. Zhang and B. D. Rao, “Sparse signal recovery in the presence of
correlated multiple measurement vectors,” in Proc. ICASSP, Mar. 2010.

[15] N. Vaswani, “LS-CS-residual (LS-CS): Compressive sensing on least
squares residual,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4108–
4120, Aug 2010.

[16] X. Zhu, L. Dai, W. Dai, Z. Wang, and M. Moonen, “Tracking a dynamic
sparse channel via differential orthogonal matching pursuit,” in Proc.
MILCOM, Oct. 2015.

[17] A. S. Charles, A. Balavoine, and C. J. Rozell, “Dynamic filtering of
time-varying sparse signals via l1 minimization,” IEEE Trans. Signal
Process., vol. 64, no. 21, pp. 5644–5656, Nov 2016.

[18] N. Vaswani, “Kalman filtered compressed sensing,” in ICIP, Oct. 2008.
[19] E. Karseras, K. K. Leung, and W. Dai, “Tracking dynamic sparse signals

using hierarchical Bayesian Kalman filters,” in Proc. ICASSP, May 2013.
[20] R. Chalasani and J. C. Principe, “Dynamic sparse coding with smoothing

proximal gradient method,” in Proc. ICASSP, May 2014.
[21] G. Joseph, C. R. Murthy, R. Prasad, and B. D. Rao, “Online recovery

of temporally correlated sparse signals using multiple measurement
vectors,” in Proc. Globecom, Dec. 2015.

[22] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–214, Sep. 2001.

[23] B. Anderson and J. Moore, Optimal filtering. Courier Dover, 2005.
[24] V. Krishnamurthy and J. B. Moore, “On-line estimation of hidden

markov model parameters based on the Kullback-Leibler information
measure,” IEEE Trans. Signal Process., vol. 41, no. 8, pp. 2557–2573,
Aug. 1993.

[25] R. Hunger, “Floating point operations in matrix-vector calculus,” Munich
University of Technology, TUM-LNS-TR-05-05, Tech. Rep. TUM-LNS-
TR-05-05, Sep. 2007.

[26] D. Wipf and B. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[27] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally
correlated source vectors using sparse Bayesian learning,” IEEE Trans.
Signal Process., vol. 5, no. 5, pp. 912–926, Sep. 2011.

[28] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, Jan. 2001.

[29] “Guidelines for evaluation of radio transmission technologies (RTTs) for
IMT-2000,” ITU, Tech. Rep. M.1225, Feb. 1997.

[30] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and
implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE
J. Solid-State Circuits, vol. 46, no. 1, pp. 8–17, Jan. 2011.

[31] J. Zyren and W. McCoy, “Overview of the 3GPP long term evolution
physical layer,” Freescale Semiconductor, Inc., Austin, TX, USA, Tech.
Rep. 3GPPEVOLUTIONWP, Jul. 2007.

[32] Y. Zheng and C. Xiao, “Simulation models with correct statistical prop-
erties for Rayleigh fading channels,” IEEE Trans. Commun., vol. 6,
no. 51, pp. 920–928, Jun. 2003.

[33] “Universal mobile telecommunications system (UMTS), selection pro-
cedures for the choice of radio transmission technologies of the UMTS,”
ETSI, Sophia-Antipolis, France, Tech. Rep. UMTS 21.01 version 3.0.1,
Nov. 1997.

[34] D. Williams, Probability with martingales. Cambridge University Press,
1991.

[35] V. S. Borkar, Stochastic Approximation: A Dynamical Systems View-
point. Cambridge University Press, 2008.

[36] B. Delyon, “General results on the convergence of stochastic algo-
rithms,” IEEE Trans. Autom. Control, vol. 41, no. 9, pp. 1245–1255,
Sep. 1996.

Geethu Joseph received the B. Tech. degree in
Electronics and Communication Engineering from
National Institute of Technology, Calicut, India, in
2011, and the M.E. degree in Signal Processing
from Indian Institute of Science, Bangalore, India,
in 2014. She was awarded the Prof. I. S. N. Murthy
medal for the year 2012-2014 for being the best
M.E. student (signal processing) in the Department
of Electrical Communication Engineering, IISc. She
is currently working towards the Ph.D degree at
the Department of Electrical Communication Engi-

neering, Indian Institute of Science, Bangalore, India. Her research interests
include statistical signal processing, adaptive filter theory, sparse Bayesian
learning and compressive Sensing.

1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2725220, IEEE
Transactions on Signal Processing

16

Chandra R. Murthy received the B.Tech. degree
in Electrical Engineering from the Indian Institute
of Technology Madras, Chennai, India, in 1998, the
M.S. and Ph.D. degrees in Electrical and Computer
Engineering from Purdue University, West Lafayette,
IN and the University of California, San Diego, CA,
in 2000 and 2006, respectively.

From 2000 to 2002, he worked as an engineer for
Qualcomm Inc., San Jose, USA, where he worked on
WCDMA baseband transceiver design and 802.11b
baseband receivers. From 2006 to 2007, he worked

as a staff engineer at Beceem Communications Inc., Bangalore, India on
advanced receiver architectures for the 802.16e Mobile WiMAX standard.
Currently, he is working as an Associate Professor in the department of
Electrical Communication Engineering at the Indian Institute of Science,
Bangalore, India. His research interests are in the areas of Cognitive Radio,
Energy Harvesting Wireless Sensors and MIMO systems with channel-state
feedback. He is an associate editor for the IEEE Transactions on Signal
Processing, an editor for the IEEE Transactions on communications, an elected
member of the IEEE SPCOM Technical Committee for the years 2014-16,
and has been re-elected for the years 2016-19. He is currently the Chapter
Chair of the IEEE Signal Processing Society, Bangalore Chapter. He served
as an associate editor for the IEEE Signal Processing Letters during the years
2012-16.

