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Abstract—In this paper, we develop a distributed co-phasing
(DCP) technique for physical layer fusion of multiple data
streams in a wireless sensor network with multiple destination
nodes (DNs). The DNs can either be connected to a fusion center
(referred to as centralized data processing; CDP) or process
data independently and communicate with each other via a
rate limited link (referred to as distributed data processing;
DDP). In the first stage of this two-stage co-phasing scheme,
sensors estimate the channel to the DNs using pilot symbols
transmitted by the latter; following which they simultaneously
transmit multiple streams of data symbols by pre-rotating them
according to the estimated channel phases to the different DNs.
The achievable rates for both CDP and DDP are derived to
quantify the gains obtainable by multi-stream DCP. In order to
aid data detection at the receiver, we propose a least squares
based iterative algorithm for blind channel estimation in CDP-
DCP. Following this, we develop a message passing based blind
channel estimation algorithm for DDP-DCP. It is found using
Monte Carlo simulations that for the CDP system, the proposed
blind channel estimation algorithm achieves a probability of error
performance very close to that with perfect CSI at the DNs,
while using only a moderate number of unknown data symbols
for channel estimation. We also derive approximate expressions
for the error probability performance of the proposed system
for both CDP and DDP and validate their accuracy using Monte
Carlo simulations.

Index Terms—Distributed co-phasing, data fusion, MIMO,
blind channel estimation, message passing, distributed data
detection

I. INTRODUCTION

A. Motivation

In many wireless sensor network (WSN) applications, data
fusion from multiple sensors observing a phenomenon is
an important problem [2], [3]. Here, a set of distributed
sensor nodes (SNs) need to wirelessly send their common
data to one or more destination nodes (DNs) located far
away. Distributed transmit beamforming, and in particular,
distributed co-phasing (DCP), is a physical layer technique
that can be used to provide coherent combining gain as well
as spatial diversity gain for data fusion in WSNs [4]. In DCP,
multiple transmitting nodes form a virtual antenna array to
cooperatively send their data to the DNs. DCP also enjoys
the benefits of requiring a fixed power transmission from the
nodes, is robust to channel estimation errors, and it’s feasibility
in practical implementation is well established [5]. Further,
DCP is inherently secure: when multiple nodes transmit their
data such that it coherently combines over the channel at
a given destination, it gets incoherently combined at any
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unintended receiver, thereby making it hard to decode the
data. This work focuses on the problem of simultaneously
transmitting multiple data streams to a set of DNs using DCP.

In DCP, the communication between the SNs and DNs
occurs in two stages. In the first stage, the DNs transmit known
pilot symbols to the SNs in a round robin fashion, using which
the SNs estimate the channels between themselves and the
DNs. In the second stage, the SNs synchronously transmit
their data to the DNs by pre-rotating the data by the estimated
channel phase, thereby achieving coherent combining of the
data intended to each destination at the respective node. Such
a transmission scheme works when the channel is quasi-static
and reciprocal [5], [6]. Transmission of pilots from the DNs,
rather than the SNs, has multiple advantages: it saves power
at the SNs; the DNs are typically connected to the mains
and are capable of transmitting pilots at higher power than
the energy-starved SNs; and it is more efficient in terms
of training duration overhead when there are a significantly
larger number of sensors compared to destinations. However,
the key issue that occurs when multiple SNs simultaneously
transmit their data to the different DNs via DCP is the inter-
stream interference. The analysis and compensation of the
inter-stream interference under both distributed and centralized
processing at the DNs is the main focus of this paper.

B. Related Work

The problem of coherent communication from multiple
distributed transmitted antennas to a distant receive antenna
was first studied in [3], where a master slave architecture
was proposed to synchronize the clocks of the distributed
antennas under nonfading channels. The nonfading channel
model studied in [3] was extended to fading channels in [5].
Distributed transmit beamforming (DTB) systems require car-
rier frequency synchronization across the SNs; its feasibility
was experimentally demonstrated in [5] and [7]. Once carrier
frequency synchronization has been achieved, the SNs need
to transmit their data to the DNs in accordance with the DTB
scheme. DTB requires accurate knowledge of the channels at
the SNs. However, the effect of imperfect channel estimates on
DTB schemes is studied in [8]. Feedback based approaches for
DTB involving random and deterministic phase perturbations
in the data sent by the DNs are studied in [6] and [9],
respectively, and their convergence is studied in [10]. The
problem of DTB has also been studied in the context of relay
power allocation when multiple relays communicate with a
base station in [11]. In [12], the authors propose to use DTB in
a cellular system with a multi-antenna base station receiver and
a single-antenna user terminal. Multi-antenna fusion centers
for WSNs are considered in [13] and [14]. Asymptotic results
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are derived to show the effect of multiple antennas on a WSN
system in the presence of sensing and channel noise under
both full and phase only CSI at the sensors in [13]. In [14],
the authors compare the performance of two different decision
fusion schemes for a MIMO WSN system.

In [15], the BER performance of DCP with BPSK modula-
tion is compared against that of maximum ratio transmission,
censored transmission, and truncated channel inversion. It
is assumed in [15] that the CSI is not estimated at the
fusion center (FC), and therefore, the comparison is limited
to constant modulus constellations such as M-PSK. DCP is
extended to non-constant modulus constellations in [16], and
it is shown that higher order constellations can increase the rate
achievable per channel use. Moreover, [16] also develops the
notion of channel corruption for DCP systems to analytically
characterize the flooring in the error performance due to
channel estimation errors. All these works study DCP for a
single DN system; our focus in this paper is on the scenario
where the SNs wish to send multiple streams of data to
multiple DNs, with each SN having a single transmit antenna.

C. Contributions
In the present work, we generalize the single DN model

to a case where the SNs transmit independent data to mul-
tiple DNs. The DNs can either be connected to a central
processing entity similar to a FC, or each DN may possess
processing capabilities and be connected to the other DNs
via a rate-limited channel. These setups are referred to as
centralized data processing-DCP (CDP-DCP) and distributed
data processing-DCP (DDP-DCP), respectively. It is important
to note that it is not possible to pre-rotate the data so as to
coherently combine at multiple DNs simultaneously, since the
channels to the different DNs are independent.

The main objective of the present manuscript is to devise
schemes for collaboratively transmitting K common data
streams that are available at all the sensor nodes to K
corresponding destination nodes, as well as analyze their
performance. For this purpose we propose and analyze multi-
stream DCP (MS-DCP), where the nodes transmit multiple
independent data streams with each stream co-phased to
coherently combine at a different DN. The main contributions
of this work are as follows:

1) We derive the statistics of the effective MIMO channel
matrix arising due to MS-DCP with multiple DNs. (See
Section II.)

2) We compare the information rates achievable by MS-
DCP against single-stream DCP (SS-DCP) for both CDP
and DDP. The gains observed further motivate the need
to study the design and analysis of DCP based schemes
with multiple DNs. (See Section III.)

3) Inspired by the significant performance improvement
achievable even in the absence of CSI at the DNs,
we develop an iterative blind algorithm for channel
estimation at the DNs for CDP-DCP. (See Section IV.)

4) Motivated by the significant gap between performance of
CDP-DCP and DDP-DCP, we develop a message pass-
ing based channel estimation algorithm for interference
mitigation at the receivers. (See Section V.)
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Figure 1. The proposed system model with multiple DNs.

5) We derive approximate analytical expressions for the
probability of symbol error for both CDP-DCP and
DDP-DCP with M-PSK signaling. (see Section VI.)

6) Via detailed simulations, we prescribe the recommended
system parameters such as the data and pilot signal-
to-noise ratio (SNR), the number of DNs, and the
number of sensor nodes to achieve a desired rate and
reliability. (See Section VII.)

Therefore, MS-DCP along with the proposed blind channel
estimation algorithms is a strong candidate for reliable and
energy efficient data fusion in WSNs. Also, the proposed
blind channel estimation algorithms can be relevant in joint
data detection and channel estimation for other channels with
known signal structures.

Notation: Boldface lowercase and uppercase letters rep-
resent vectors and matrices, respectively. The kth column
and row of A are denoted by ak, and a(k), respectively.
(.)H represents the Hermitian operation on a vector or a
matrix, whereas (.)T denotes the transpose operation. ‖·‖2 and
‖·‖F respectively represent the `2 norm of a vector and the
Frobenius norm of a matrix. E[·] and var(·) represent the mean
and variance of a random variable.

II. SYSTEM MODEL AND CHARACTERIZATION OF THE
CHANNEL STATISTICS

We consider N distributed SNs that wish to transmit com-
mon data to K DNs. The DNs can either be connected to
an FC, or individually possess processing capabilities and be
connected to each other via a rate-limited channel. The system
model is illustrated in Fig. 1.

In DCP, communication between the SNs and the DNs takes
place in two time division duplexed stages. In the first stage,
each of the K DNs broadcast Mp pilot symbols in a round
robin fashion. These pilots are used by the N SNs to estimate
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the coefficients of the NK channels between themselves and
the DNs. In the second stage, all the SNs simultaneously
transmit their common data to the DNs for the next Md

channel uses. It is assumed that the channel coherence time
exceeds M = KMp + Md symbols [4], [5], and that the
channels between the DNs and the SNs are reciprocal [15].
Note that, with the proposed DCP scheme, coherent combining
at the DNs can be achieved only if the channels exhibit
reciprocity. In addition, it is assumed that the SNs are carrier
and frequency synchronized. It has been noted in [4] that the
phase of such a system once synchronized remains in sync
for durations much longer than the channel coherence time,
and therefore the cost of synchronization is not considered in
this work. The training signal received by the lth SN during
channel uses (k− 1)Mp + 1 through kMp, k = 1, . . . ,K, can
be written as

yl[n] = αk,le
jθk,l

√
Ep + wl[n]

n = (k − 1)Mp + 1, . . . , kMp (1)

where Ep is the pilot power of the DNs, αk,l is the Rayleigh
distributed channel gain with E[|αk,l|2] , Ωk,l, θk,l is the
uniformly distributed channel phase between the kth DN and
the lth SN and wl[n] is the zero mean circularly symmetric
complex additive white Gaussian noise with per dimension
variance N0

2 .
The maximum likelihood (ML) estimate of the phase of the

kth DN at the lth SN is [15]

θ̂k,l = tan−1

∑kMp

n=(k−1)Mp+1={yl[n]}∑kMp

n=(k−1)Mp+1<{yl[n]}

 (2)

where <{.} and ={.} denote the real and imaginary parts of
a complex number, respectively. After estimating the channel
phases for each of the K DNs, sensor l transmits xl[n], such
that

xl[n] =

K∑
i=1

si[n]e−jθ̂i,l n = KMp + 1, . . . ,M, (3)

where si[n] is the nth modulation symbol over the ith stream,
assumed to be the same for all the transmitting nodes (i.e.,
fully-correlated sensing field), and independent across the
streams. The transmit power of each SN is assumed to be
Es, such that

Es = E[|xl[n]|2] = KE[|si[n]|2]. (4)

The second equality arises from the assumption that all the
streams are allotted the same amount of power. During the
data transmission stage, the received signal on kth DN is

yk[n] =

N∑
l=1

αk,le
jθk,lxl[n] + vk[n], n = KMp + 1, . . . ,M

= N

K∑
i=1

hkisi[n] + vk[n]

= Nhkksk[n] +N

K∑
l=1,l 6=k

hklsl[n] + vk[n] (5)

where vk[n] is the zero mean circularly symmetric complex
Gaussian noise at the kth DN with a per dimension variance
N0

2 , and

hki =
1

N

N∑
l=1

αk,l exp
(
j
[
θk,l − θ̂i,l

])
(6)

is the effective channel between the ith data stream transmitted
from the N SNs to the kth DN. Note that hki is unknown at
the DNs. In a matrix-vector notation, (5) can equivalently be
expressed as

y[n] = NHs[n] + v[n], (7)

with y[n] = [y1[n] y2[n] . . . yK [n]]T , s[n] =
[s1[n] s2[n] . . . sK [n]]T , v[n] = [v1[n] . . . vK [n]]T , and
H ∈ CK×K , with its (k, i)th element hki as defined above.

A. Channel Matrix Under Perfect DCP

To characterize the statistical properties of the channel
matrix H, let us first consider the case with perfect DCP, i.e.,
θ̂k,l = θk,l. In this case, the diagonal entries of the channel
matrix can be written as hkk = 1

N

∑N
l=1 αk,l, where αk,l are

independent Rayleigh distributed random variables (r.v.s).
The (k, i)th off-diagonal entry, k 6= i, is hki =

1
N

∑N
l=1 αk,l exp (j [θk,l − θi,l]). As both θk,l and θi,l are

uniformly distributed, therefore, their difference also has a
uniform distribution. Hence, the (k, i)th entry, k 6= i, of the
effective channel matrix is a zero mean complex Gaussian r.v.
with variance 1

N2

∑N
l=1 Ωk,l.

B. Channel Matrix Under Imperfect DCP

At finite pilot SNR, the phase estimate θ̂k,l is imperfect.
The error in the phase estimate between the kth DN and the
lth sensor node is θ̃k,l , θk,l− θ̂k,l. In this case, the diagonal
entries of the channel matrix can be written as

hkk =
1

N

N∑
l=1

αk,l exp(jθ̃k,l). (8)

For the analysis to follow, we will need the first two moments
of the entries of the entries of the effective DCP channel
matrix H. These can be worked out, following the procedure
presented in [16], as follows:

E[αk,l cos(θ̃k,l)] =

√
Ωk,lπ

4

√
Ωk,lξ

1 + Ωk,lξ
, (9)

where ξ , MpEp
N0

is the downlink pilot SNR. Also,

E[αi,k sin(θ̃k,l)] = 0. (10)

Therefore,

E[hkk] =
1

N

N∑
l=1

√
Ωk,lπ

4

√
Ωk,lξ

1 + Ωk,lξ
. (11)

Further,

E[|hkk|2] =
1

N2

N∑
l=1

Ωk,l

1 +

N∑
m=1,m 6=l

π

4
· Ωk,mξ

1 + Ωk,mξ

 ,

(12)
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and therefore,

var(hkk) =
1

N2

N∑
l=1

Ωk,l

[
1− π

4

(
Ωk,lξ

1 + Ωk,lξ

)]
. (13)

Similarly, for the off-diagonal terms,

E[hki] =
1

N

N∑
l=1

E[αk,l exp(j(θk,l − θ̂i,l))]

= 0 (14)

and

var(hki) =
1

N2

(
N∑
l=1

E[α2
k,l]

+

N∑
m=1,m 6=l

∣∣∣E[αk,l exp(j(θk,l − θ̂i,l))]
∣∣∣2


=
1

N2

N∑
l=1

Ωk,l. (15)

In the above discussion, we have assumed that the entries
of the channel matrix between the SNs and the DNs are
independent and non-identically distributed. This leads to
complicated expressions for the first and second order statistics
of the effective channel matrix. In order to simplify these,
we assume in the remainder of this paper that the channels
between the SNs and the DNs are independent and identically
distributed (i.i.d.) such that E[|αk,l|2] = Ω. Consequently, the
moments of the channel matrix can be written as

E[hkk] =

√
Ωπ

4

√
ξΩ

1 + ξΩ
, (16)

E[|hkk|2] =
1

N
Ω

(
1 + (N − 1)

π

4

ξΩ

1 + ξΩ

)
, (17)

var(hkk) =
1

N
Ω

[
1− π

4

(
ξΩ

1 + ξΩ

)]
, (18)

and
var(hki) =

Ω

N
, i 6= k. (19)

The expressions for first two orders of channel statistics for
the i.i.d. and i.n.d. cases are tabulated in Table I. In the next
section, the achievable data rates for both CDP-DCP and DDP-
DCP are analyzed to show that a larger number of streams
in a DCP based communication system leads to significantly
improved achievable data rates compared to the SS-DCP case
due to the spatial multiplexing of multiple data streams.

III. MUTUAL INFORMATION ANALYSIS OF MULTISTREAM
DCP

In this section, we derive the asymptotically achievable data
rates between the SNs and the DNs to quantify the potential
improvement in data rates that can be achieved by using
multiple data streams in DCP.

We start with the signal model in (7):

y[n] = NHs[n] + v[n]. (20)

The received signal covariance matrix for a given realization
of the channel matrix H is hence given as

Ryy|H , E[y[n]yH [n]|H]

= N2HRssH
H +N0IK , (21)

where Rss , E[s[n]sH [n]] is the transmit signal covariance
matrix. For independent data streams, this can be expressed as
Rss = Es

K IK . The achievable data rate for this channel with
a Gaussian codebook is therefore

RCDP(H) = log2

(
det

(
IK +

N2Es
KN0

HHH

))
. (22)

Letting Ψ , HHH , the kth diagonal element of Ψ is

ψkk =

K∑
i=1

|hki|2

= |hkk|2 +

K∑
i=1;i 6=k

|hkl|2

=
1

N2

N∑
l=1

α2
k,l

+
1

N2

N∑
l,m=1;l 6=m

αk,lαk,me
j(θ̃k,l−θ̃k,m)

+

K∑
i=1;i 6=k

(
1

N2

N∑
l=1

α2
il

+

N∑
l,m=1;m 6=l

αk,lαk,me
j(θk,l−θk,m−θ̂i,l+θ̂i,m)

 .(23)

For large N and K, using the law of large numbers, the above
expression concentrates around its mean with high probability,
and is given as

ψkk ≈ 1

N2
NE[α2

kl] +
(K − 1)

N2
NE[α2

il]

+
1

N2
N(N − 1)E2[αk,le

jθ̃k,l ]

+
K − 1

N2
N(N − 1)E2[αk,le

j(θk,l−θ̃i,l)]. (24)

Hence, ψkk can be approximated by its deterministic equiva-
lent

ψkk ≈ 1

N

(
KΩ + (N − 1)

π

4
× ξΩ2

1 + ξΩ

)
. (25)

Defining c , K
N , the limiting value of ψkk becomes

lim
N→∞

ψkk = Ω

(
c+

π

4
× ξΩ

1 + ξΩ

)
. (26)

Similarly, the (k, q)th element of Ψ can be expressed as

ψkq =

K∑
i=1

hkih
∗
qi. (27)

This is a zero mean r.v. with variance proportional to K2

N4 .
Consequently, its limiting value can be approximated as

lim
N→∞

ψkq ≈ 0. (28)
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Table I
EQUIVALENT CHANNEL STATISTICS FOR I.I.D. AND I.N.D. CHANNELS

i.n.d. i.i.d.

E[hkk] 1
N

∑N
l=1

√
Ωk,lπ

4

√
Ωk,lξ

1+Ωk,lξ

√
Ωπ
4

√
ξΩ

1+ξΩ

E[|hkk|2] 1
N2

∑N
l=1 Ωk,l

(
1 +

∑N
m=1,m 6=l

π
4
× Ωk,mξ

1+Ωk,mξ

)
1
N

Ω
(

1 + (N − 1)π
4

ξΩ
1+ξΩ

)
E[hki] 0 0

E[|hki|2] 1
N2

∑N
l=1 Ωk,l

1
N

Ω
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Figure 2. Comparison of achievable rates for DCP with different number of
streams (K), for N = 20 sensors.

Substituting (25) and (28) in (22), we can express the achiev-
able rate independently of the channel matrix realization as

RCDP = K log2

(
1 +

N2Es
KN0

(
cΩ +

π

4

ξΩ2

1 + ξΩ

))
. (29)

Defining η̄0 , NΩEs
N0

as the effective data SNR, the achievable
rate for large N and K becomes

RCDP = K log2

(
1 +

1

c

(
c+

π

4

ξΩ

1 + ξΩ

)
η̄0

)
. (30)

Now, for sufficiently large data and pilot SNR, the above can
be approximated as

RCDP ≈ K log2

(
1 +

1

c

(
c+

π

4

)
η̄0

)
. (31)

Since N � K, and consequently c� 1, therefore,

RCDP ≈ K log2

(
1 +

π

4c
η̄0

)
. (32)

This results in an SNR gain πN
4K , that grows with N and

decreases with K. However, in (32), K appears both inside
and outside the log term, resulting in a net increase in the
achievable rate with K. In Fig. 2, we plot the achievable rates
as a function of the effective data SNR (in dB) for different
number of data streams (K) in a N = 20 sensor node CDP-
DCP based system. It can be observed that the simulation
results closely follow the derived results. At moderate to
high SNR, the achievable rates grow almost linearly with the

number of streams. Thus, the use of multiple DNs can result
in significantly higher rates in a CDP-DCP based system.

Next, we consider the DDP-DCP scheme. Recall that the
received signal at the kth DN is given by (5). Defining
zk,l[n] , Nhklsl[n] as the interference in the kth stream due
to the lth stream, the interference in the kth stream due to all
the other streams can be written as zk[n] =

∑
l 6=k zk,l[n].

Now, since the channel coefficients as well as the symbols
sent over the different streams are zero mean i.i.d. r.v.s, we
have E[zk[n]] = 0, and

E
[
|zk[n]|2

]
= (K − 1)N2E[|hkl|2]E[|sl|2]

= (K − 1)
NΩEs
K

. (33)

Hence, the interference power scales linearly with the number
of SNs. The signal-to-interference-plus-noise-ratio (SINR) of
the kth stream can therefore be expressed as

ηk =
NΩ

(
1 + (N − 1)π4

ξΩ
1+ξΩ

)
Es
K

(K − 1)NΩEs
K +N0

. (34)

Further simplification of (34) leads to

ηk =

(
1
N + N−1

N
π
4

ξΩ
1+ξΩ

)
(K−1)
N + K

Nη̄0

. (35)

With c = K
N , and for an asymptotically large number of SNs,

ηk becomes

ηk =

π
4

ξΩ
1+ξΩ

c (1 + 1
η̄0

)
. (36)

The corresponding asymptotic sum rate with K independent
data streams can be written as

RDDP = K log2

(
1 +

π
4

ξΩ
1+ξΩ

c(1 + 1
η̄0

)

)
. (37)

Now, for large pilot SNR, ξ, and data SNR, η̄0, (36) reduces
to π

4
N
K . Consequently, the achievable rate in (37) reduces

to K log2

(
1 + π

4
N
K

)
, which is the limiting rate for a DDP

system. The achievable data rates for CDP-DCP and DDP-
DCP based systems for 25 and 50 SNs and different numbers
of DNs and hence different values of c are plotted in Fig. 3.
Again, the simulated results are observed to closely follow the
derived results.

The achievable data rates for CDP-DCP and DDP-DCP
based systems for 25 and 50 SNs in case of an i.n.d. channel
matrix are illustrated in Fig. 4. Here, the channel coefficients
are assumed to be complex Gaussian distributed with variances
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Figure 3. Comparison of achievable rates for CDP-DCP and DDP-DCP with
different number of streams (K), for N = 25 and N = 50 sensors.
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Figure 4. Comparison of achievable rates for CDP-DCP and DDP-DCP with
different number of streams (K), for N = 25 and N = 50 sensors in an
i.n.d channel.

depending on the path loss between the transmitting node and
the receiving node. The SNs and DNs are assumed to be
uniformly distributed over square regions with side 10m each.
The centers of the two squares are assumed to be separated
by 100m, and the path loss exponent is assumed to be 3. The
path loss is normalized such that the path loss coefficient of
the path connecting the center of the DN square to that of the
SN square is unity. Using a similar procedure as the above,
the approximate theoretical expressions for RCDP and RDDP

can be obtained as

RCDP =

K∑
k=1

log2

(
1 +

N2Es
KN0

(
N∑
l=1

(
K∑
i=1

Ωi,l

+

N∑
m=1;m6=l

ξΩk,m
1 + ξΩk,m

 , (38)

RDDP =

K∑
k=1

log2

(
1 +

N∑
l=1

N2Es∑K
i=1;i6=k Ωi,lEs +KN0

×

Ωk,l +

N∑
m=1;m 6=l

ξΩk,m
1 + ξΩk,m

 . (39)

It is observed for both i.i.d and i.n.d. cases at moderate to
high data SNR, there is a significant difference between the
achievable rates of CDP and DDP systems. This difference
arises due to the fact that at moderate to high SNR the
DDP-DCP based system becomes interference limited. This
motivates us to look for interference mitigation techniques
and the resultant information rates for multi stream DDP-DCP
networks.

A. DDP-DCP with Mitigated Interference

In the above discussion, CDP-DCP represents the case
where all the DNs have perfect knowledge of the interfering
channel coefficients, and perfect information about the data
sent over all the other streams, whereas DDP-DCP represents
the case where the DNs neither have any information about
the data received by the other DNs nor about the interfering
channel coefficients. Here, we consider a general case where
all the DNs have limited erroneous estimates of both the data
received at the other DNs, as well as the interfering channel
coefficients. This information can be used to mitigate inter-
stream interference at different DNs, and hence improve the
overall system performance.

The estimate of the coefficient of lth interfering stream at
the kth DN, ĥkl, can be expressed as

ĥkl = hkl + h̃kl, (40)

where h̃kl is the channel estimation error with zero mean and
a variance σ2

h̃
. Similarly, the estimate of the symbol received

by the lth node at the nth instant, and shared by all the nodes
can be expressed as

ŝl[n] = sl[n] + s̃l[n] (41)

with s̃[n] being the zero mean symbol error independent of
the transmitted symbol whose variance σ2

s̃ is a function of the
probability of symbol error over the lth stream, Pe,l, and the
average transmit energy.

Using these, an estimate of the interference at the kth DN
due to the lth stream can be expressed as

ẑk,l[n] = Nĥklŝl[n]. (42)

Defining ẑk[n] ,
∑K
l=1,l 6=k ẑk,l[n] as the total estimated

interference, we can write the received signal with mitigated
interference, ŷk[n] , yk[n]− ẑk[n], as

ŷk[n] = Nhkksk[n] + z̃k[n] + vk[n], (43)

with z̃k[n] = zk[n]− ẑk[n] as the residual interference whose
lth component can be expanded as

∑K
l=1,l 6=k z̃k,l[n] where

z̃k,l[n] = Nhklsl[n]−Nĥklŝl[n]. (44)

Substituting (40) and (41) in (44), we arrive at

z̃k,l[n] = −N(h̃klsl[n] + hkls̃l[n]− h̃kls̃l[n]). (45)
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Assuming channel and symbol errors to be independent, it
follows that E[z̃k,l[n]] = 0, and

E[|z̃k,l[n]|2] = N2E[|hkl|2]E[|s̃l[n]|2]

+N2E[|h̃kl|2]E[|sl[n]|2]

+N2E[|h̃kl|2]E[|s̃l[n]|2]. (46)

But, E[|h̃kl|2] = σ2
h̃

and E[|s̃l[n]|2] = σ2
s̃ . Therefore,

E[|z̃k,l[n]|2] = σ2
s̃NΩ +

N2σ2
h̃
Es

K
+N2σ2

h̃
σ2
s̃ . (47)

Defining µ , E[|z̃k,l[n]|2]
E[|zk,l[n]|2] as the interference mitigation factor,

we can write

µ =
Kσ2

s̃

Es
+
σ2
h̃

Ω
N

+
Kσ2

h̃
σ2
s̃

Ω
N Es

. (48)

The first term in this equation corresponds to the ratio of the
signal error power to the overall signal power. As shown in
Appendix A, this term is of the order of the probability of
symbol error and therefore much smaller than unity for a
well designed system. The second term corresponds to the
ratio of the channel estimation error to the channel gain.
The channel estimation error for our proposed DDP scheme
with interference mitigation is derived in Section V-A. At a
moderate SNR and about Md = 200 data symbols per frame,
this term is at least one order of magnitude below unity (see
Fig. 6). The third term being a product of the first two terms
will also be much less than 1. Therefore, for moderate to high
SNR, the value of µ can safely be bounded as µ ≤ 1.

Using this, the SINR of the received signal with mitigated
interference can be expressed as

η̂k =
N2E[|hkksk[n]|2]

E[|z̃k[n]|2] + E[|vk[n]|2]
. (49)

From (17), and using E[|z̃k[n]|2] = µE[|zk[n]|2], it can
be shown that for a large number of sensor nodes, η̂k is
asymptotically approximated as

η̂k =

π
4

ξΩ
1+ξΩ

c
(
µ+ 1

η̄0

) . (50)

Therefore, the overall achievable data rate for transmission
of K streams with DDP-DCP and mitigated interference
becomes

RDDP-IM = K log2

1 +

π
4

ξΩ
1+ξΩ

c
(
µ+ 1

η̄0

)
 . (51)

This equation reduces to (30) for µ = 0 and (37) for µ = 1.
Therefore, by accurately estimating the interference in a DDP-
DCP based scheme, we can achieve information rates similar
to a CDP-DCP based system. This motivates us to develop
message passing based distributed channel estimation and data
detection schemes for DDP-DCP in Section V.

B. Information Rates with Finite Symbol Constellations

In the above discussion, we derived the rates achievable
using a Gaussian codebook. However, practical communi-
cation systems use finite symbol codebooks. Therefore, we
now derive the mutual information achievable for CDP-DCP
based systems with finite symbol constellations. We focus on
the CDP-DCP based schemes here because they outperform
the DDP-DCP based schemes. Moreover, as will be shown
later, the performance of the DDP-DCP based systems can
be made to approach that of the CDP-DCP based systems
using limited-rate cooperation between the DNs via a message
passing algorithm. Another benefit of considering the mutual
information with finite constellations is that it allows us to
study the effect of the lack of channel knowledge at the DNs
on the achievable rates.

If the symbol constellation for each data stream is repre-
sented by S, the overall symbol constellation for K streams
is the Cartesian product SK with each symbol having a
probability mass 1

|S|K . The MI of the system model discussed
above can be evaluated with perfect, erroneous, or no channel
knowledge at the DN cluster as follows [17]:
• With perfect CSI at the DN cluster

ICSI(y; s)=EH

[ ∑
s∈SK

1

|S|K

∫
y∈CK
p(y|H, s)

log
p(y|H, s)

p(y|H)
dy

]
(52)

where CK is the K dimensional complex field, and EH

represents the expectation over the distribution of the
effective channel matrix. Due to the additive nature of
noise, p(y|H, s) is a K dimensional circularly symmetric
complex Gaussian with mean Hs and a per dimension
variance N0

2 . Also, p(y|H) =
∑

s∈SK
1
|S|K p(y|H, s).

• With erroneous CSI at the DN cluster

Iest-CSI(y; s)=EĤ

[ ∑
s∈SK

1

|S|K

∫
y∈CK
p(y|Ĥ, s)

log
p(y|Ĥ, s)

p(y|Ĥ)
dy

]
. (53)

Here, Ĥ is the channel estimate at the DN cluster, such
that Ĥ = H+H̃, with H̃ being the channel estimation er-
ror. If we model the estimation error as complex Gaussian
with variance depending on the training signal SNR, then,
p(y|Ĥ, s) is zero mean circularly symmetric complex
Gaussian, and p(y|Ĥ) =

∑
s∈SK

1
|S|K p(y|Ĥ, s).

• With no CSI

Ino-CSI(y; s)=
∑
s∈SK

1

|S|K

∫
y∈CK
p(y|s) log

p(y|s)

p(y)
dy (54)

where p(y|s) = EH[p(y|H, s)], and p(y) =∑
s∈SK

1
|S|K p(y|s)

Closed form solutions for the above expressions are hard to
obtain, we therefore use Monte Carlo simulations to evaluate
them.
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Figure 5. Comparison of mutual information for DCP with different amounts
of channel knowledge at the DN cluster for different constellations and
different number of DNs (K) and 10 SNs.

Fig. 5 plots the MI between 10 SNs and a DN cluster
for different transmit constellations and numbers of DNs as
a function of the transmit SNR (in dB). The average downlink
pilot SNR for all these cases was assumed to be 10 dB. It can
be seen that an increase in the number of DNs as well as in
the constellation order results in improved information rates.
Also, the use of larger constellations and a greater number
of DNs improves the system performance when the CSI is
imperfectly known or even unknown at the DN cluster. This
motivates us to develop blind channel estimation techniques
to recover both the transmitted symbols and estimate the CSI
at the DNs to improve data detection performance without
explicitly transmitting known pilot symbols from the power-
starved SNs.

IV. BLIND CHANNEL ESTIMATION FOR CDP-DCP

It was shown above that higher order constellations and
a larger number of DNs results in higher information rates
for a CDP-DCP based system. However, in order to employ
techniques such as ML detection or sphere decoding [18] on
the received signal, the DNs need an estimate of the matrix
channel H.

There exists a substantial body of literature on blind channel
estimation techniques, a good review of which can be found
in [19], [20]. It can be observed that the effective channel
matrix for the system model discussed in this paper has a
special structure due to the diagonal entries being positive real
numbers with high probability. This structure can be exploited
to perform joint channel estimation and data detection without
requiring any training symbols to be sent from the SNs to the
DNs. In the sequel, we propose two blind channel estimation
techniques for our system model.

A. Covariance Method

The finite sample approximate of the covariance matrix
of the received signal for a channel realization H and Md

received symbols can be defined as

R̂yy|H =
1

Md

M∑
n=KMp+1

y[n]yH [n]. (55)

We can now define

P̂yy = R̂yy|H −N0IK , (56)

such that,
E[P̂yy] = N2HE[ssH ]HH . (57)

Using the eigenvalue decomposition of P̂yy , the effective
DCP channel can be estimated as

Ĥ =
1

N
Q̂yΛ̂

1/2

y Q̂H
y (QsΛ

1/2
s QH

s )−1 (58)

where Q̂y and Λ̂y are, respectively, the K × K eigenvector
and eigenvalue matrices of P̂yy, and Qs and Λs are the
eigenvector and eigenvalue matrices of the transmitted signal
covariance matrix E[ssH ]. Note that the diagonal entries of
the effective DCP matrix are real and positive with high
probability. Therefore, only the real, positive square roots
of the eigenvalues of P̂yy and E[ssH ] are considered for
estimating Ĥ.

B. Iterative Minimization Based Method

Here, we present an iterative algorithm that works with
multiple DNs. The joint ML estimate of the effective DCP
channel and the transmitted data can be written as

(Ĥ, Ŝ) = arg min
H,S
‖Y −NHS‖2 (59)

where the matrices Y and S are defined as Y = [y[KMp +
1] . . .y[M ]] and S = [s[KMp+1] . . . s[M ]]. Since the data and
the channel matrices are independent, the above expression can
be minimized iteratively with respect to each of these variables
while keeping the other fixed. This problem can therefore be
written as

ŝ[n] = arg min
s[n]∈SK

‖Y −NĤs[n]‖2 (60)

Ĥ = arg min
H∈CK×K

‖Y −NHŜ‖2. (61)

Equation (60) can be viewed as a symbol detection problem
for a MIMO receiver with a known channel matrix Ĥ. This
can be solved via a search over the constellation SK or
via sphere decoding [18]. If a linear receiver is desired,
one can compute, for a linear zero-forcing receiver, Ŝ =

round
(

(ĤHĤ)−1ĤHY/N
)

, where round(.) quantizes each
entry of the matrix passed as the argument to the nearest
constellation point. To find a minimizer for equation (61), we
observe that the objective function is a convex function in H.
Differentiating it w.r.t. H, setting the derivative to zero and
solving, we obtain the well-known linear least-squares solution

Ĥ =
1

N
YŜ†, (62)

where the superscript † represents the Moore-Penrose inverse
of a matrix. The value of Ĥ obtained in (58) could act
as a reasonable initial estimate of H to solve (60). Then,
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equations (61) and (60) can be solved iteratively to obtain
estimates of the channel matrix as well as the transmitted
symbols. A modified K-means algorithm was proposed for
blind channel estimation with DCP in [16]. However, that
algorithm is restricted to a single antenna at the FC, whereas
the algorithm discussed above can be used to obtain a channel
estimate for both single as well as multiple DN CDP-DCP
based systems.

Convergence: The above algorithm alternately minimizes
an objective function that is lower bounded by 0, with respect
to the two variables H and s. Further, the objective function
is guaranteed to reduce in every iteration, since each sub-
problem is solved optimally. Hence, the iterative procedure
is guaranteed to converge to a local optimum. This is a
characteristic shared by all the algorithms of this nature.

V. MESSAGE PASSING BASED BLIND CHANNEL
ESTIMATION FOR DDP-DCP

It was observed in Section III that the DDP-DCP based sys-
tem becomes interference limited for moderate to high SNR.
However, the interference can be canceled out if each node is
aware about the symbols received by the other nodes, along
with the corresponding channel coefficients. It is shown in
this section that a node can use the knowledge of the symbols
sent to other nodes to estimate the channel coefficients for
the corresponding streams. Since all streams of data but the
kth constitute interference for the kth node, we can therefore
use the knowledge of the signals sent over other streams to
estimate the inter-stream interference at a given node. For
this purpose, we develop a message passing [21] based blind
channel estimation algorithm for joint channel estimation and
data detection at the DNs. It is assumed that the nodes can
exchange their decoded symbols over a rate-limited channel
to allow the other nodes to estimate and subsequently subtract
the inter stream interference. The received signal at the kth
node can be written as

y(k) = Nh(k)S + v(k) (63)

where y(k) and h(k) represent the kth rows of Y and H,
respectively.

Defining h
′(k) = [hk1, . . . , hk(k−1), hk(k+1), . . . , hkK ],

s′k[n] = [s1[n], . . . , sk−1[n], sk+1[n], . . . , sK [n]], and S
′(k) =[(

s
′

k[1]
)T

. . .
(
s
′

k[Md]
)T]

we can express the inter stream

interference as

z(k) = [zk[1], . . . , zk[Md]] = Nh
′(k)S

′(k) (64)

where S
′(k) ∈ S(K−1)×Md is the matrix containing all but the

kth stream of transmitted symbols. Then, (63) becomes

y(k) = Nhkks
(k) + z(k) + v(k). (65)

Now, if the kth DN receives the estimates Ŝ
′(k) =

[̂s(1)T . . . ŝ(k−1)T ŝ(k+1)T ŝ(K)]T , then the joint channel esti-
mation and data detection problem can be formulated as

[ĥ(k)ŝ(k)] = arg min
h(k),s(k)

‖y(k) −Nh
′(k)Ŝ

′(k) −Nhkks(k)‖2.
(66)

Algorithm 1 Message passing based blind channel estimation
for MS-DCP

Initialize: i = 0; fk = 1;

ĥkk =

[
max

(
1

Md

∑Md
n=1|yk[n]|2−N0

Es , 0

)] 1
2

∀k

ŝ(k) = arg mins(k)‖y(k) −Nĥkks(k)‖
Calculate: C0,k = ‖y(k) −Nĥkkŝ(k)‖2 ∀k
while

∑
k fk 6= 0 do

Exchange: s(k), fk across the DNs
i := i+ 1
for k = 1→ K do

ĥ(k) = 1
N y(k)Ŝ†

ŝ(k) = arg mins(k)‖y(k) −N ĥ
′(k)Ŝ

′(k) −Nĥkks(k)‖
Ci,k = ‖y(k) −N ĥ(k)Ŝ‖2
if Ci,k < Ci−1,k then
fk = 1

else
fk = 0

end if
end for

end while

This can be solved iteratively by alternately minimizing over
h(k) and s(k) as follows. For minimization over h(k), we have

ĥ(k) = arg min
h(k)
‖y(k) −Nh(k)Ŝ‖2. (67)

This can be solved to yield

ĥ(k) =
1

N
y(k)Ŝ†. (68)

This value of ĥ(k) can be then used to update the received
symbol estimates at the kth node as

ŝk[n] = arg min
sk[n]∈S

|yk[n]−N ĥ
′(k)ŝ

′(k)[n]−Nĥkksk[n]|
(69)

It is easy to find the estimate of ŝ(k)[n] from the above, since
its complexity is at most linear. The complexity of solving the
problem is at most linear in the constellation size. An initial
approximation for the diagonal entries of the channel matrix
can be obtained using the power method described in [16] as

ĥkk ≈
∣∣∣ĥkk∣∣∣ =

[
max

(
1
Md

∑Md

n=1|yk[n]|2 −N0

Es
, 0

)] 1
2

,

(70)
where the max(·, ·) operation prevents the channel amplitude
from taking imaginary values. Using the above estimate, the
nodes can assume the initial channel matrix to be diagonal, and
form the initial estimate of their data symbols for exchanging
with the other nodes over the rate limited channel. A quantized
version of the cost function for each node after every channel
estimation and data detection step can be augmented with
the decoded data symbols being sent over the rate limited
communication channel. The nodes can then combine the
values of cost functions of all the nodes and arrive at a
consensus for stopping the iterations. A pseudo-code for this
procedure is provided in Algorithm 1.
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Figure 6. MSE in the channel estimate versus the data SNR for 2 DNs with
BPSK and 20 SNs for different number of data symbols per frame.

A. Mean Squared Error (MSE) in Channel Estimation

The channel estimate derived above can also be written as

ĥ(k) = h(k)SŜ† +
1

N
v(k)Ŝ†. (71)

Assuming symbol errors to be negligibly small, S ≈ Ŝ and
therefore h̃(k) ≈ v(k)S†. Asuming the symbols across differ-
ent streams to be uncorrelated, SSH ≈ MdEs

K IK , consequently,
h̃(k) ≈ K

NMdEs v(k)SH .
Now,

h̃kl =
K

NMdEs

Md∑
n=1

vk[n]s∗l [n]. (72)

therefore,

E[|h̃kl|2] =
K2

N2M2
dE2

s

Md∑
m=1

Md∑
n=1

E[vk[m]sl[m]v∗k[n]s∗l [n]].

(73)
Assuming the signal and noise to be independent,

E[|h̃kl|2] =
K2

N2M2
dE2

s

Md∑
n=1

E[|vk[n]|2]E[|sl[n]|2]

=
KN0

N2MdEs
. (74)

Hence
E[|h̃kl|2]

E[|hkl|2]
=

KN0

N3MdEsΩ
. (75)

Fig. 6 plots the ratio ρ = ‖H−Ĥ‖2

‖Ĥ‖2 averaged over 10000
independent channel realizations for different number of data
symbols under both the data processing architectures for a 2
DN, 20 SN system employing for both CDP-DCP and DDP-
DCP. It can be observed that for moderate to high signal SNR
the ratio of the MSE to the channel gain reduces linearly with
increase in both the data SNR as well as the number of data
symbols. However, at lower SNR, the SER is not small enough
to be neglected, therefore, the assumption that the Ŝ can be
approximated by S does not hold, resulting in a higher MSE.

Also, in general, CDP-DCP based systems are seen to perform
better than DDP-DCP based systems, which is as expected.

VI. ERROR PROBABILITY ANALYSIS

In this section, we analyze the probability of error per-
formance for both CDP-DCP and DDP-DCP based systems.
Here, we drop the time index of different signals for the sake
of simplicity.

A. Symbol Error Rate for CDP-DCP

Considering the received signal as defined in (7), the union
bound on the probability of symbol error is

Pe ≤
∑

si∈SK

P (si)
∑

sj∈SK ,j 6=i

P (si → sj) (76)

where P (si → sj) is the probability of detecting the trans-
mitted symbol si as sj , which, in case of an accurate blind
channel estimate at the receiver, is given by

P (si → sj) = EH[P (si → sj |H)] (77)

where P (si → sj |H) is the pairwise error probability for a
given channel realization and is given as

P (si → sj |H) = Q

(
‖NH(si − sj)‖2√

N0

)
(78)

where Q(.) is the Gaussian-Q function [22]. To obtain ex-
pressions for the probability of error, we need to average
the above over the distributions of H and Ĥ, which is
analytically intractable. However, approximate expressions of
the probability of symbol error can be derived by using the
fact that for a large number of transmitting SNs, due to
channel hardening, the off-diagonal terms will be negligible
compared to the diagonal terms. Hence, the channel matrix
can be approximated as diagonal and the signal received over
the kth stream can be written as

yk = Nhkksk + vk. (79)

Let us define Pe,k as the probability of symbol error for the
kth stream. A symbol error occurs when the symbol received
over any one of the streams is in error. Therefore, the overall
probability of error becomes

PCDP
e = 1−

K∏
k=1

(1− PCDP
e,k ). (80)

For the entries of the channel matrix being i.i.d. this becomes

PCDP
e = 1− (1− PCDP

e,k )K . (81)

In (79), while estimating the channel blindly from the un-
known data symbols, we assume the channel coefficients to be
real positive numbers. However, as discussed in [16], low pilot
SNR can cause the channel estimates at different nodes to be
erroneous. This results in an increased value of the residual
channel phase θ̃k,l leading to the phase of hkk being large.
Whenever the phase of hkk is large enough to exceed the
rotational symmetry of the constellation, catastrophic detection
errors occur due to the phase ambiguity at the receiver. This
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problem, referred to as channel corruption, is common to all
blind channel estimation based detection schemes operating on
rotationally symmetrical constellations [16]. In the event of a
channel corruption, all the received symbols will be decoded
incorrectly. The probability of symbol error in the event of
a channel corruption at the receiver can therefore be upper
bounded by 1. The probability of symbol error over the kth
stream can therefore be expressed as

PCDP
e,k ≈ Pcc,k + (1− Pcc,k)PCDP

e,CSIR,k (82)

where Pcc,k represents the probability of channel corruption
over the kth stream, and PCDP

e,CSIR,k represents the probability
of error over the kth stream with perfect CSI at the receiver.
It is safe to assume perfect CSI here, as it has been shown
that for a sufficiently large number of data symbols being sent
over the channel, a reasonably good estimate of the channel
can be had at the receiver when channel corruption does not
occur.

1) Derivation of Pe,CSIR,k for M-PSK signalling: It was
observed in [15] that SNs are generally low cost and employ
power amplifiers with small dynamic ranges, consequently
making the use of constant modulus constellations such as M-
PSK is preferable in these systems. Therefore, in this section
we analyze Pe,CSIR,k for a DCP based system employing M-
PSK modulation, however, the symbol error rate (SER) ex-
pressions for QAM constellations are derived in Appendix C.
From (79), probability of error for BPSK with perfect CSI at
the receiver is [22]

PCDP
e,CSIR,k = E

Q
|hkk|

√
2N2Es
KN0

 (83)

and for an M-PSK (M ≥ 4) constellation, PCDP
e,CSIR,k becomes

PCDP
e,CSIR,k ≈ 2E

Q
|hkk|

√
2
N2Es
KN0

sin
( π
M

) . (84)

The above expectation is over |hkk| whose distribution is
not available in closed form. However, similar to the approach
followed in [16] we can approximate hkk =

∑N
l=1 αk,l as a

Nakagami-m distributed r.v. [23] with its parameters mR and
γ̄R chosen using the moment matching method as [24], [25]

mR =

⌈
E2[|hkk|2]

var(|hkk|2)

⌋
(85)

γ̄R,BPSK =
2N2Es
KN0

E[|hkk|2] (86)

γ̄R,MPSK =
2N2Es sin2

(
π
M

)
KN0

E[|hkk|2]. (87)

In the above equations, the estimated Nakagami parameter mR

is rounded (denoted by d.c) to the nearest integer for simplicity.
Using the results derived in Section II and [16], PCDP

e,CSIR,k can
be obtained for BPSK as [26]

PCDP
e,CSIR,k =

φ(γ̄R,BPSK,mR)

2
√
π

Γ(mR + 1
2 )

ΓmR + 1

2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄R,BPSK

)
. (88)

and for M-PSK (M ≥ 4) as

PCDP
e,CSIR,k ≈

φ(γ̄R,MPSK,mR)√
π

Γ(mR + 1
2 )

ΓmR + 1

2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄R,MPSK

)
. (89)

In the above equation,

φ(γ̄R,t,mR) ,

(
1 +

γ̄R,t
2mR

)−mR− 1
2

(90)

for both BPSK and M-PSK, Γ(n) is the gamma function, and
2F1(a, b; c; d) is the Gauss hypergeometric function [27].

2) Derivation of Pcc,k: If each sensor node employs the
constellation S with a rotational symmetry ϕ, for M-PSK ϕ =
2π/M , channel corruption occurs whenever ]hkk >

ϕ
2 . The

probability of channel corruption hence becomes

Pcc,k = Pr
{
|]hkk| >

ϕ

2

}
. (91)

It is shown in Appendix B that the above can be expressed as

Pcc,k = Q

(
µR
σR

)
+ 2Q

 µR√
σ2
I

tan2 ϕ
2

+ σ2
R


×
(

1−Q
(
µR
σR

))
1{ϕ<π} (92)

where

µR =

√
Ωπ

4

√
ξΩ

1 + ξΩ

σ2
R =

Ω(2 + (4− π)ξΩ)

N(1 + ξΩ)

σ2
I =

Ω

2N(1 + ξΩ)
. (93)

Using the expression for PCDP
e,CSIR,k from (83)/(84) and Pcc from

(92), the symbol error probability for CDP-DCP can now be
computed in closed form.

B. Symbol Error Rate for DDP-DCP

In the case of DDP-DCP, a symbol error occurs if the
symbol transmitted on any of the streams is decoded in error.

Looking at (43), a symbol error can be caused either
due to channel corruption or due to the additive noise and
interference. The probability of error is therefore approximated
as a sum of the probability of channel corruption and that of an
error due to noise and interference in the event of no channel
corruption, and can be written as

PDDP
e,k ≈ Pcc,k + (1− Pcc,k)PI,k, (94)

where Pcc,k is the probability of channel corruption for the
kth stream and has been derived in the previous subsection,
and PI,k is the probability of symbol error due to additive
noise and interference.

As discussed previously, the average interference power
can be expressed as E

[
|z̃k[n]|2

]
= µN (K−1)ΩEs

K . Here, the
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interference mitigation factor, µ, is dependent on the perfor-
mance of the message passing based blind channel estimation
algorithm. For example, when there is no communication
between the SNs, and therefore no interference mitigation,
µ = 1. In case of perfect interference mitigation, i.e., when the
symbols and channels on the interfering streams are perfectly
known at each DN, µ = 0. The noise plus interference power
therefore becomes µ(K−1)ΩEs/K+N0. Considering BPSK
signaling by the sensor nodes, PI,k can be expressed as

PI,k = E

[
Q

(
|hkk|

√
2N2Es

µN(K − 1)ΩEs +KN0

)]
, (95)

and for M-PSK signaling this becomes

PI,k = 2E

[
Q

(
|hkk|

√
2N2Es

µN(K − 1)ΩEs +KN0
sin
( π
M

))]
.

(96)
This can again be solved using a Nakagami-m approximation
for hkk with the parameter γ̄R being given as

γ̄R,BPSK =
2N2EsE[|hkk|2]

µN(K − 1)ΩEs +KN0
(97)

γ̄R,MPSK =
2N2Es sin2

(
π
M

)
E[|hkk|2]

µN(K − 1)ΩEs +KN0
. (98)

Following this, (85) and (88) can be used to calculate PDDP
I,k ,

which can be used, along with the probability of channel
corruption, to compute PDDP

e,k in closed form.

VII. SIMULATION RESULTS

In this section, we use numerical results based on Monte
Carlo simulations to corroborate the analytical expressions
derived previously and to demonstrate the performance of
various channel estimation and data detection schemes.

Similar to the model used in [16], we assume that 10 train-
ing symbols are sent from each DN to the SNs followed by Md

data symbols from the SNs to the DNs using DCP based on
the estimated channel phase. Simulations are then carried out
for different values of pilot and data SNR, different numbers
of SNs and DNs, etc. DCP uses reverse link training, that is,
the pilots are transmitted by the DNs, which are connected to
the mains and can transmit at higher power compared to the
power-starved SNs. In view of this, we assume the pilot SNR
(ξ) to be 10 dB, unless specified otherwise. Also, the total
power radiated from the SNs is kept fixed, so as to keep the
comparison fair. The SER and the MSE in channel estimation
are obtained by averaging over 20, 000 independent channel
realizations.

In Fig. 7, the performance of CDP-DCP based on different
blind channel estimation techniques are compared against
ideal DCP and the derived theoretical approximations. It is
seen that the performance of DCP based on the proposed
iterative blind channel estimation technique closely follows
the performance of ideal DCP and is in agreement with the
theoretical approximations. It is also observed that iterative
blind channel estimation based DCP results in a performance
improvement of nearly 3 dB over the covariance method based
DCP for a two DN QPSK system at an SER of 10−3.

-10 -5 0 5 10 15 20
Data SNR (dB)

10-4

10-3

10-2

10-1

100

P
e

K=2 QPSK
K=2 BPSK
K=1 BPSK

Solid: Blind Channel Estimation
Dashed: Covariance Method
Dotted: Genie aided detection
Dash Dot: Theoratical Approximation

Figure 7. Probability of symbol error versus the data SNR for different
communication setups for 10 SNs with K = 1, 2 DNs using CDP-DCP.
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Soild : Message Passing 
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Dotted : Perfect CSI with no message passing

Figure 8. Probability of symbol error versus the data SNR (η0) for different
number of DNs and 10 SNs.

In Fig. 8, the performance of DDP-DCP employing message
passing based blind channel estimation is compared against
streamwise decoding without message passing with perfect
and estimated CSI at the receiver. In case of streamwise
decoding without message passing, the K-means based blind
channel estimation and decoding method proposed in [16] is
employed, and is depicted by dashed line curves in the figure.
The dotted lines in the figure represent the case where the
diagonal entries of the channel matrix are perfectly known at
the receiver, however there is no sharing of messages among
the DNs, and therefore no interference cancellation. Message
passing is seen to significantly improve the performance of
the DDP-DCP system in all cases. It is observed that for a
two DN QPSK system, the probability of error floor is almost
one order of magnitude lower than that for systems without
message passing.

Fig. 9 compares the performance of CDP against DDP
schemes with and without message passing for 2 DNs and
10 SNs. As expected, the CDP scheme performs better than
DDP with message passing which in turn outperforms DDP
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Figure 9. Probability of symbol error versus data SNR for 2 DNs employing
BPSK at pilot SNR = 10 dB for N = 20 SNs and different reception schemes.
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Figure 10. Probability of symbol error versus the SNR for 3 DNs employing
BPSK at pilot SNR = 10 dB for different number of sensor nodes.

without message passing. In the above figure, all the curves
marked with the caption DDP refer to DDP without message
passing. The gap between the theoretical and actual values of
DDP without message passing can be attributed to the fact that
the theoretical error performance is computed approximating
the interference as Gaussian noise, which is somewhat inac-
curate when there is only one interfering stream and BPSK
modulation is employed.

Fig. 10 compares the performance of a three DN BPSK
based system for different number of sensor nodes. The
performance of the blind channel estimation based system is
again found to be close to the theoretical approximation. It
can be observed that the theoretical approximates get closer
to the true error performance as the number of SNs increases
and consequently the channel hardens. Increasing the number
of sensor nodes from 15 to 60 is observed to result in an data
SNR gain of approximately 8 dB at an error rate of 10−3.

The performance of CDP-DCP and DDP-DCP is compared

-10 -5 0 5 10 15 20
data SNR (dB)
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100

P
e

ξ=0dB
ξ=5dB
ξ=10dB
ξ=15dB

Solid : CDP
Dashed: DDP with Message Passing

Figure 11. Probability of symbol error versus the data SNR for 2 DNs with
BPSK and 10 sensor nodes at different pilot SNR.
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Figure 12. Probability of symbol error versus the data SNR for 2 DNs with
BPSK and 10 SNs for different number of data symbols.

for different pilot SNR (ξ) in Fig. 11. CDP-DCP is again seen
to outperform DDP-DCP with a margin of more than 2 dB for
a symbol error rate of 10−3 at a pilot SNR of 15 dB.

In Fig. 12 the symbol error rates for CDP and DDP schemes
are plotted against the data SNR for different number of uplink
data symbols per frame. The dependence of symbol error rates
on the number of data symbols arises due to the fact that the
quality of the channel estimate depends on the number of data
symbols. It is observed that in CDP-DCP, 200 data symbols
are sufficient to obtain a performance close to perfect CSI at
the DNs.

In Fig. 13, the symbol error rates for CDP and message
passing based DDP schemes are plotted against the data SNR
for i.n.d. channel coefficients. The distributions of the channel
coefficients are same as those in Fig. 4. The plots for both
CDP and DDP systems are observed to closely follow the
derived theory for the i.i.d. case, thus showing that the results
derived in this work extend well to a system with i.n.d. channel
coefficients.
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Figure 13. Probability of symbol error verus the data SNR for different
communication setups for 10 SNs with K=2 DNs under both CDP and DDP
for i.n.d. distributed channel coefficients.

VIII. CONCLUSIONS

In this work, we showed that using multiple DNs im-
proves the achievable rates for a DCP based system both
for centralized as well as distributed processing. We then
proposed a blind channel estimation algorithm to estimate the
effective DCP channel for the CDP-DCP case. A message
passing version of this algorithm was then developed for use
in the DDP-DCP case. We developed approximate expressions
to analyze the performance of the proposed systems. These
expressions were then verified using an extensive simulation
study. It was shown through simulations that the proposed
blind channel estimation algorithm can perform almost as
good as a detector with perfect CSI at the DNs. Hence uplink
pilots are not necessary. Future work could consider design
and analysis of diversity reception techniques for the proposed
system.

APPENDIX A
BOUND ON THE MEAN SQUARED SYMBOL ERROR

The symbol error s̃k is defined as s̃k = sk− ŝk for sk, ŝk ∈
S. The mean squared value of s̃k becomes

E[|s̃k|2] =
∑
sk∈S

∑
ŝk∈S

P (sk)P{sk → ŝk}[|sk − ŝk|2]. (99)

Considering all the symbols to be equally likely, the above
can be written as

E[|s̃k|2] =
1

|S|
∑
sk∈S

∑
ŝk∈S,sk 6=ŝk

P{sk → ŝk}[|sk − ŝk|2].

(100)
Defining Pe,max as the probability of mis-detecting a symbol
as one of its adjacent symbols, P (sk → ŝk) ≤ Pe,max. Also,
for constant envelope signal constellations, we have

|sk − ŝk|2 ≤ 4
Es
K
. (101)

Using these, (100) becomes

E[|s̃k|2] ≤ 1

|S|
∑
sk∈S

∑
ŝk∈S,ŝk 6=sk

Pe,max4
Es
K

= 4(|S| − 1)Pe,max
Es
K
. (102)

Hence,
KE[|s̃k|2]

Es
≤ 4(|S| − 1)Pe,max. (103)

The above is is less than unity when Pe,max <
1

4(|S|−1) , which
will be the case for a well designed system.

APPENDIX B
DERIVATION OF Pcc,k

Considering the fact that the maximum rotational symmetry
of a constellation is π, and therefore, a channel corruption will
result whenever hkk lies in the right half plane. Based on this,
we can split (91) as

Pcc,k = Pr
{
]|hkk| >

π

2

}
+
(

Pr
{
]|hkk| >

ϕ

2

∣∣∣]|hkk| < π

2

})
(

1− Pr
{
]|hkk| >

π

2

})
1{ϕ<π}. (104)

Here, 1{A} is the indicator function that evaluates to 1 when
the event A is true, and evaluates to 0 when A is false.

Now, as ]hkk = tan−1
(
={hkk}
<{hkk}

)
, the above equation can

be rewritten as

Pcc,k = Pr {<{hkk} < 0}

+2
(

Pr
{
={hkk} > tan

(ϕ
2

)
<{hkk}

})
(1− Pr {<{hkk} < 0})1{ϕ<π}. (105)

Using the fact that both <{hkk} and ={hkk} are real
valued Gaussian r.v.s, Pr

{
={hkk} > tan

(
ϕ
2

)
<{hkk}

}
can

be expressed as

Pr
{
]hkk ≥

ϕ

2

}
= Q

 µR,k√
σ2
I,k

tan2 ϕ
2

+ σ2
R,k

 (106)

where µR,k = E[<{hkk}], σ2
R,k = var(<{hkk}) and σ2

I,k =
var(={hkk}). Using (11) and (13), we can write

µR =

√
Ωπ

4

√
ξΩ

1 + ξΩ

σ2
R =

Ω(2 + (4− π)ξΩ)

N(1 + ξΩ)

σ2
I =

Ω

2N(1 + ξΩ)
. (107)

It is shown in [15] that

Pr {<{hkk} < 0} = Q

(
µR
σR

)
. (108)

These expressions can be substituted in (91) to obtain (92).
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APPENDIX C
SYMBOL ERROR RATE FOR QAM CONSTELLATIONS

From (79), the probability of error for the M -PAM constel-
lation with perfect CSI at the receiver and CDP-DCP is given
by [22]

PCDP,PAM
e,CSIR,k = E

[
2(M − 1)

M
Q

(√
6Es

(M2 − 1)N0
|hkk|

)]
(109)

This can again be solved using a Nakagami-m approximation
for the argument of the Q-function, to obtain

PCDP,PAM
e,CSIR,k =

M − 1

M

φ(γ̄R,PAM,mR)

2
√
π

Γ(mR + 1
2 )

Γ(mR + 1)

2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄R,PAM

)
. (110)

where
γ̄R,PAM =

6N2Es
K(M2 − 1)N0

E[|hkk|2], (111)

and φ(γ̄R,PAM,mR) can be calculated using (90). For DDP,
the above expressions modify to

PDDP,PAM
I,k = E

[
2(M − 1)

M

Q

(√
6Es

(M2 − 1)(µN(K − 1)ΩEs +KN0)
|hkk|

)]
(112)

This can also be calculated using the Nakagami-m approxi-
mation with a form similar to (110), and

γ̄R,PAM =
6N2Es

(M2 − 1)(µN(K − 1)ΩEs +KN0)
E[|hkk|2].

(113)
Now, since the QAM constellation can be viewed as a super-
position of two orthogonal PAM constellations, therefore,

PCDP,QAM
e,CSIR,k = 2PCDP,PAM

e,CSIR,k − (PCDP,PAM
e,CSIR,k )2. (114)

The overall probabilities of error for PAM and QAM become,

PCDP,PAM
e,k = P PAM

cc,k + (1− Pcc,k)PCDP,PAM
e,CSIR,k (115)

PCDP,QAM
e,k = PQAM

cc,k + (1− Pcc,k)PCDP,QAM
e,CSIR,k (116)

where P PAM
cc,k and PQAM

cc,k can be calculated using the facts that
the rotational symmetries of PAM and QAM are φ = π

2 , and
φ = π

4 , respectively.
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