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Physical Layer Security in Wireless Sensor
Networks Using Distributed Co-Phasing

Ribhu Chopra, Chandra R. Murthy, and Ramesh Annavajjala

Abstract—In this paper, we consider physical layer secu-
rity in wireless sensor networks (WSNs) using distributed
co-phasing (DCP) based transmissions. For this protocol,
we first analyze the achievable ergodic secrecy rate of a
single stream DCP system in the presence of one or more
eavesdroppers. We show that the coherent combining gain
offered by DCP leads to the signal to interference plus noise
ratio (SINR) over the main channel increasing as the square
of the number of SNs N , and that over the eavesdropper
channel increasing linearly with N . This results in a strictly
positive ergodic secrecy rate that increases as logN . We
then analyze the performance of multi-stream DCP and
show that using K data streams in DCP leads to a K
fold increase in the achievable secrecy rate at high SNRs.
We also discuss an alternative power allocation scheme for
multi-stream DCP, viz. distributed maximal ratio trans-
mission with a per user power constraint, and show that
this improves the achievable secrecy rates as compared
to standard multi-stream DCP. Finally, we analyze the
role of artificial noise in improving the achievable secrecy
rates. We validate the accuracy of these derived results
and illustrate the efficacy of DCP in ensuring secure data
fusion in WSNs using Monte Carlo simulations.

I. INTRODUCTION

There has been a renewed research interest in wire-
less sensor networks (WSNs) due to the emergence
of the internet of things (IoT) [1], [2]. Traditionally,
a WSN comprises a set of spatially distributed sen-
sor nodes (SNs) observing a physical phenomenon of
interest, and reporting the observed data to a fusion
center (FC) [3]. Secure communication of the observed
data from the SNs to the FC is a challenging problem
mainly due to the constraints on the capabilities of the
SNs [4]–[6]. The goal in secure communications is to
ensure that the transmissions by the SNs can be decoded
only at the FC. Distributed Co-Phasing (DCP) is a form
of distributed transmit beamforming (DTB), where the
assumption of the SNs sensing a common field is used
to achieve reliable data fusion [7]. Due to the common
data being transmitted, the multiple SNs in DCP act as a
distributed antenna array, resulting in both diversity gain
and coherent combining gain at the FC. Also, since DCP
signals are precoded to coherently combine at the FC,
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they naturally combine incoherently at any unintended
location, thereby making DCP inherently secure. In this
paper, we quantify this inherent security of DCP systems
in terms of the achievable ergodic secrecy rates in the
presence of eavesdroppers.

During the first stage of the two stage DCP, the FC
transmits known pilot symbols to the SNs. The SNs use
these pilots to estimate the respective channels to the
FC. In the second stage, the SNs synchronously transmit
their data symbols to the FC. The data symbols are pre-
rotated to compensate for the estimated channel phase,
resulting in coherent combining of the signals at the
FC. The reverse link training of the SNs by the FC
offers several benefits. Firstly, the FC is connected to the
mains and can transmit at higher power compared to the
power starved SNs, resulting in better channel estimates.
Secondly, reverse link training requires a smaller training
overhead compared to forward link training, where the
training duration is proportional to the number of SNs.
Thirdly, and most relevant to this paper, by initiating the
training from the FC, the channel states from the SNs
remain unknown at the eavesdroppers’ locations.

DCP works under the assumption that the channel
is quasi static and reciprocal [8], [9]. The feasibility
of DCP in practical implementations, as well as its
resilience to channel estimation errors has been well
established in the literature [8], [10]. However, while
DCP ensures that the symbols transmitted by the SNs
can be recovered at the FC with high fidelity, their
ability to secure the transmission against reception by an
eavesdropper is yet to be studied. In a practical setting,
an eavesdropper may exist in the network, and may
attempt to access sensitive private information intended
for the FC. Therefore, it is interesting to investigate the
conditions under which secrecy of the transmitted data
can be ensured. In this work, our main focus is to analyze
the maximum rates at which the SNs can transmit to the
FC, while ensuring secrecy in the presence of one or
more eavesdroppers within the network.

A. Related Work

The basic model for DCP, i.e., a DTB system involv-
ing multiple SNs transmitting coherently to an FC, was
first discussed in [4] using a master slave architecture.
Following this, the experimental feasibility of achieving



2

carrier frequency synchronization among multiple dis-
tributed SNs was demonstrated in [8] and [11]. Since
DTB schemes involve a phase compensation operation
at the SNs, accurate channel state information (CSI)
is required. The effects of inaccurate CSI on the per-
formance of DTB systems was investigated in [12].
Various CSI acquisition approaches, such as reverse link
training [10], and feedback based approaches [9], [13],
[14] have also been discussed in the literature. In [15],
asymptotic results are used to evaluate the performance
of a WSN system with an multi-antenna FC, under both
full and phase only CSI at the SNs.

The BER performance of DCP is compared against
distributed maximal ratio transmission, censored trans-
mission and truncated channel inversion in [10] for
constant modulus constellations under generalized fading
channels. The spectral efficiency of non-constant modu-
lus constellations along with an associated blind channel
estimation technique was discussed in [16]. The spectral
efficiency of DCP systems was further enhanced in [17],
wherein it is proposed that the SNs can simultaneously
transmit multiple data streams to a multiantenna FC.
Further, the channel gain information available at the
SNs has been used in [18] to provide unequal error
protection to different data bits using autonomous con-
stellation selection at the SNs. However, these works
disregard the physical layer security requirements of
WSNs. In many applications, it is important to consider
the performance of DCP systems in the presence of one
or more eavesdroppers in the network. As we will show,
DCP natively supports information theoretically secure
communications between the SNs and the FC.

Since DCP is essentially a multi-antenna technique,
the metrics used for quantifying its security performance
need to be similar to those for other multi-antenna
systems. The issue of physical layer security for mul-
tiantenna systems was first discussed in [19], wherein,
the secrecy performance of a 2×2 MIMO channel in the
presence of a single antenna eavesdropper was evaluated.
A comprehensive survey on multi-antenna techniques for
physical layer security can be found in [20]. Similar to
the standard wiretap channel model, the security per-
formance of a MIMO wiretap channel is also measured
in terms of the secrecy rate [21] when all the channel
coefficients are known. However, practical systems need
to work with estimated CSI, which makes the assumption
of perfect knowledge of CSI at the SNs/FC untenable.

Recently, physical layer security for MISO systems
has been studied in terms of the secrecy outage prob-
ability [22]–[25], lower bound on the sum secrecy
rate [26], ergodic secrecy rate [27], [28], and secrecy
energy efficiency [25], [29], [30]. However, all these
works focus exclusively on the physical layer security
aspects of centralized MISO systems. To the best of our

knowledge, the secrecy performance of a DTB system
has not been analyzed till date. In this work, we use the
ergodic secrecy rate [31], [32] as a metric of the secrecy
performance of DCP. Further, we account for channel
estimation errors in our performance analysis.

B. Contributions

In this paper, we consider distributed transmission
from the SNs to an FC using the co-phasing approach,
as opposed to centralized beamforming considered in the
past literature, for secure communications. Our analysis
accounts for channel estimation errors at the SNs and
the resulting phase errors. We derive the achievable
ergodic secrecy rates of both single and multistream DCP
systems in the presence of one or more eavesdroppers.
Our contributions are as follows:

1) We derive the ergodic secrecy rates for a single
antenna DCP system with N SNs, with a single
eavesdropper, and under both ideal and practical
DCP. (See Section II)

2) We extend the results derived in Section II to L
eavesdropper, and observe that, under conditions
stated later, positive secrecy rates can be achieved
using single stream DCP, even with multiple col-
luding eavesdroppers. (See Section III.)

3) We then consider the more general case of multi-
stream DCP with K streams, and show that it
results in a K-fold increase in the achievable
ergodic secrecy rates. (See Section IV.)

4) We consider an MRT-like transmission scheme
for multi-stream DCP with a per antenna power
constraint. We show that the use of this scheme
further increases the achievable rates over the main
channel, and, consequently, the secrecy rate of
multi-stream DCP, in the presence of multiple
eavesdroppers. (See Section V.)

5) We consider the addition of artificial Gaussian
noise to the proposed system. We derive an ex-
pression for the optimal fraction of power to be
transmitted from the SNs as artificial noise for
maximizing the secrecy rate. (See Section VI).

6) Via detailed simulations, we validate the derived
theory and evaluate the achievable ergodic secrecy
rates under finite constellations. (See Section VII.)

The take-away from this study is that DCP can be
used to provide secure physical layer communication
for a wireless sensor network under practical channel
estimation at the SNs, and in both single stream and
multi-stream setups.

Notation: Boldface lowercase and uppercase letters
represent vectors and matrices, respectively. The kth
column of the matrix A is denoted by ak. (·)H represents
the Hermitian of a vector or a matrix. ‖·‖2 and ‖·‖F
respectively represent the `2 norm of a vector and the
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Frobenius norm of a matrix. <{.} and ={.} represent
the real and imaginary parts of a complex number
respectively. [x]+ is defined as max(x, 0). E[·] and var(·)
represent the mean and variance of a random variable.

In the next section, we derive the achievable ergodic
secrecy rate of single stream DCP in the presence of a
single eavesdropper.

II. SINGLE STREAM DCP WITH A SINGLE
EAVESDROPPER

We consider a WSN consisting of N single-antenna
SNs communicating with a single antenna FC, with an
eavesdropper (EVE) in the vicinity of this network. In
DCP, the SNs first estimate the channels to the FC
using training signals broadcast by the latter. Then, the
nodes transmit their data symbols simultaneously by pre-
rotating them using the estimated channel phase, such
that they combine coherently at the receiver. For the
data detection at the FC, the FC can perform blind
channel estimation using the data symbols transmitted
by the SNs [16]. Note that, for constant envelop mod-
ulation schemes, data can be detected even without
blind channel estimation, albeit with a small loss of
performance. Throughout this paper, we assume that
the communication takes place over a quasi-static block
fading narrowband channel [33]. That is, we assume that
the channel coefficients remain constant over a block
consisting of M channel uses. The channel coefficients
vary in an independent and identically distributed (i.i.d.)
fashion across blocks. Out of the M channel uses within
a block, the first Mp instants are used for reverse link
training The next Md = M −Mp channel uses are used
for data transmission from the SNs to the FC.

The received signal at the ith SN during the downlink
training stage (n ∈ {1, 2, . . . ,Mp}) is

qi[n] = a1,i
√
Ep + wi[n] = α1,ie

jθ1,i
√
Ep + wi[n] (1)

with a1,i being the zero mean circularly symmetric
complex Gaussian distributed channel coefficient for
the channel between the FC and the ith SN with a
mean squared channel power Ω1,i, denoted as a1,i =
α1,ie

jθ1,i ∼ CN (0, Ω1,i). Also, wi[n] ∼ CN (0, N0) is
the additive white Gaussian noise (AWGN) at the SN.

Conditioned on yi[n], n = 1, . . . ,Mp, the MMSE
estimate of the channel coefficient a1,i at the ith SN
can be shown to be

â1,i =

√
MpEpΩ1,i

N0 +MpEpΩ1,i

Mp∑
n=1

qi[n], (2)

with Ep denoting the pilot power. Therefore, the channel
magnitude and phase estimates can be written respec-
tively as α̂1,i = |â1,i| and

θ̂1,i = tan−1
(
={â1,i}
< {â1,i}

)
. (3)

The modulation symbol common to all the SNs is
denoted by s[n]. To coherently align s[n] at the FC, the
ith SN pre-rotates s[n] to compensate for the estimated
phase and transmits the symbol xi[n] such that

xi[n] =
√
Ese−jθ̂1,is[n] n = Mp + 1, . . . ,M, (4)

with Es denoting the symbol energy. In the following
subsections, we derive expressions for the achievable
ergodic secrecy rates with both ideal and practical DCP.
For the derivation, we assume that the EVE has perfect
knowledge of its channels to the SNs, although no
explicit training signals are sent by the SNs. This results
in a lower bound on the achievable secrecy rate, and is
a commonly used assumption in physical layer security
related studies.

A. Achievable Ergodic Secrecy Rate under Ideal DCP

Under ideal DCP, we assume that accurate CSI is
available at all the SNs, and therefore, θ̂1,i = θ1,i.
Consequently, the signal received by the FC at the nth
instant can be expressed as

y1[n] =

N∑
i=1

α1,ie
jθ1,ixi[n] + w1[n]

= N
√
Esh1s[n] + w1[n] (5)

with w1[n] ∼ CN (0, N0), and h1 , 1
N

∑N
i=1 α1,i.

To obtain the achievable ergodic secrecy rates for this
system, we need to separately determine the achievable
ergodic secrecy rates for the main channel and the
eavesdroppers channel [21]. These rates are given in
Lemmas 1 and 2 below.

Lemma 1. For the single antenna DCP system with non
identically distributed channels, the achievable rate over
the main channel satisfies

Rm ≥ ηp

(
log2

(
π

4

Es
N0

N∑
i=1

N∑
m=1

√
Ω1,iΩm,i

)

+ log2(e)

(
2E[ψ]− E[ψ2]

2
− 3

2

))
(6)

with E[ψ] defined in (8), E[ψ2] defined in (9), and ηp =(
M−Mp

M

)
, for non identically distributed channels, and

Rm ≥ ηp
(

log2

(
πN2Es

4N0
Ω

)
− 0.3944

N
− 4.24

N2
.

)
(7)

for identically distributed channels, with Ω1,i = Ω for
i = 1 . . . N .

Proof: See Appendix A.
We now turn our attention to the eavesdropper’s

channel. Letting b1,i ∼ CN (0, ∆1,i) be the channel
coefficients between the ith SN and the EVE, we
can write the signal received by the EVE as z[n] =
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E[ψ] =
4N2

π
∑N
i,m=1

√
Ω1,iΩm,i

E[|h1|2] = 1 +

(
4

π
− 1

)( ∑N
i=1Ω1,i∑N

i,m=1

√
Ω1,iΩm,i

)
(8)

E[ψ2] =
16N4E[|h1|4]

π2
(∑N

i,m=1

√
Ω1,iΩm,i

)2 =
16

π2
(∑N

i,m=1

√
Ω1,iΩm,i

)2
(

2

N∑
i=1

Ω1,i + 3

N∑
i=1

N∑
k=1
k 6=i

Ω
3/2
1,i Ω

1/2
1,k

+ 3

N∑
i=1

N∑
k=1
k 6=i

Ω1,iΩ1,k + 6

N∑
i=1

N∑
k=1
k 6=i

N∑
l=1
l 6=i,k

Ω1,iΩ
1/2
1,k Ω

1/2
1,l +

N∑
i=1

N∑
k=1
k 6=i

N∑
l=1
l 6=i,k

N∑
m=1
m 6=i,k,l

Ω
1/2
1,i Ω

1/2
1,k Ω

1/2
1,l Ω

1/2
1,m

)
. (9)

√
Ess[n]

∑N
i=1 b1,ie

−jθ1,i + v[n] = N
√
Esg1s[n] + v[n],

where v[n] ∼ CN (0, N0) is the AWGN at the EVE,
and g1 = 1

N

∑N
i=1 b1,ie

−jθ1,i . Since g1 is the sum of
independent zero mean circularly symmetric complex
Gaussian (ZMCSCG) r.v.s, it is also ZMCSCG.

Lemma 2. The achievable rate over the EVE’s channel
in case of a block fading channel is upper bounded as

Re ≤ ηp
(

log2

(
1 +

NEs
N0

∆

))
. (10)

with ∆ = 1
N

∑N
i=1∆1,i.

Proof: See Appendix B.
Using these results, a lower bound on the achievable

ergodic secrecy rate of the DCP system can be obtained
using Theorem 1.

Theorem 1. The achievable ergodic secrecy rate of the
DCP system can be lower bounded as

Rs ≥ ηp

[
log2

π
4

Es
N0

N∑
i,m=1

√
Ω1,iΩ1,m

+ log2(e)

×
(

2E[ψ]− E[ψ2]

2
− 3

2

)
− log2

(
1 +

NEs
N0

∆

)]+
.

(11)

for non identically distributed channels, and

Rs ≥ ηp

[
log2

(
πEs
4N0

N2Ω

)
− 0.3944

N

−4.24

N2
− log2

(
1 +

NEs
N0

∆

)]+
. (12)

for identically distributed channels.

Proof: We know that, for memoryless AWGN chan-
nels, the achievable secrecy rate can be expressed in
terms of the achievable rates over the main and the
wiretap channels as [21]

Rs = [Rm −Re]+ . (13)

Therefore, (12) can be obtained by plugging the expres-
sions for Rm and Re into (13).

Note that the argument inside the logarithm of the first
term of (12) scales as N2, and that of the third term
scales linearly with N . Therefore, for large enough N ,
DCP can ensure secure communication at a nonzero rate
between the SNs and the FC even when the channels
from the SNs to the FC are weaker than the channels
from the SNs to the EVE.Under high SNR, we can
approximate the lower bound on the achievable ergodic
secrecy rate for identically distributed channels as

Rs ≈ ηp
[
log2

(
N
π

4

Ω

∆

)
− 0.3944

N
− 4.24

N2

]+
. (14)

In other words, as the SNR increases, the secure com-
munication rate saturates to a value that depends only
on the number of SNs participating in the DCP, and is
independent of the SNR.

B. Practical DCP

In practice, the SNs need to estimate the CSI using
pilot symbols transmitted by the FC. In this section, we
analyze the effect of channel estimation errors on the
secrecy rates of DCP systems. The actual channel from
the ith SN to the FC, a1,i, can be expressed in terms of
its MMSE estimate at the SN, â1,i, as

a1,i =

√
ξΩ1,i

1 + ξΩ1,i
â1,i +

√
Ω1,i

1 + ξΩ1,i
ã1,i (15)

where ξ =
MpEp
N0

is the pilot SNR, and ã1,i ∼ CN (0, 1),
such that E[â1,iã

∗
1,i] = 0 due to the MMSE estimation.

Here it is important to note that this decomposition is
applicable only for ZMCSCG rvs.

In this case, we present lower bounds on the achiev-
able rate over the main channel, and on the achievable
secrecy rate, as Lemma 3 and Theorem 2, respectively.

Lemma 3. The achievable rate over the main channel



5

for practical DCP is bounded as

Rm ≥ ηp

log2

 πEs
4N0

N∑
i,k=1

√
ξΩ2

1,i

1 + ξΩ1,i

ξΩ2
1,k

1 + ξΩ1,k


− 1

N

(
2E[ψ̄]− E[ψ̄2]

2
− 3

2

))
, (16)

Rm ≥ ηp
(

log2

(
N2Es
N0

π

4

ξΩ2

1 + ξΩ

)
−0.3944

N
− 4.24

N2

)
(17)

for independent and non-identically distributed (i.n.d.)
and i.i.d. channels, respectively.

Proof: See Appendix C
Since the channels between the EVE and the SNs

are independent of the CSI at the SNs, the channel
statistics for the the EVE’s channel remain unaltered
under practical DCP.

Theorem 2. The ergodic secrecy rates for DCP based
on estimated channels can be approximated as

Rs ≥ ηp

[
log2

 πEs
4N0

N∑
i,k=1

√
ξΩ2

1,i

1 + ξΩ1,i

ξΩ2
1,k

1 + ξΩ1,k


−
(

2E[ψ̄]+E[ψ̄2]− 3

2

)
−log2

(
1 +
Es
N0

N∑
i=1

∆1,i

)]+
,

(18)

and

Rs ≥ ηp

[
log2

(
πN2Es

4N0

ξΩ2

1 + ξΩ

)
− 0.3944

N
− 4.24

N2

− log2

(
1 +

NEs
N0

∆

)]+
ηp, (19)

for i.n.d. and i.i.d. channels, respectively.

At high SNR, the ergodic secrecy rate for i.i.d. chan-
nels can be approximated as

Rs ≈ ηp
[
log2

(
π

4

N

∆

ξΩ2

1 + ξΩ

)
− 0.3944

N
− 4.24

N2

]+
.

(20)

Compared to the ideal DCP case in (14), we see that
the effect of imperfect channel estimation at the SNs
manifests as the ξΩ/(1+ξΩ) term inside the logarithm.
The loss in rate compared to (14) thus depends on the
pilot SNR, ξ.

We next extend the above analysis to derive the
achievable ergodic secrecy rates in the presence of L
colluding eavesdroppers.

III. SINGLE STREAM DCP WITH L COLLUDING
EAVESDROPPERS

The system model for the WSN in this case is the
same as the one considered in Section II, consisting of N
single antenna SNs communicating with a single antenna
FC. However, there are now L ≥ 1 colluding EVEs in
proximity of the WSN with accurate information about
the channels between themselves and the SNs. We also
assume that the EVEs can share their observations over
an error free communication channel, such that the EVE
network can be viewed as a single EVE with L antennas.

Letting bl,i ∼ CN (0, ∆l,i) be the channel between the
lth EVE and the ith SN, the signal received at the lth
EVE can be expressed as

zl[n] = N
√
Esgls[n] + vl[n] (21)

with vl[n] ∼ CN (0, N0) and gl , 1
N

∑N
i=1 bl,ie

−jθ̂1,i ∼
CN

(
0, 1

N2

∑N
i=1∆l,i

)
, as shown in Section II.

The achievable ergodic secrecy rate in this case can
be lower bounded according to Theorem 3.

Theorem 3. With L colluding eavesdroppers, the achiev-
able ergodic secrecy rate under i.n.d. and i.i.d. channels
can be lower bounded as

Rs ≥ ηp

[
log2

 πEs
4N0

N∑
i,k=1

√
ξΩ2

1,i

1 + ξΩ1,i

ξΩ2
1,k

1 + ξΩ1,k


− log2

(
1 +

NEs
N0

L∆

)
−
(

2E[ψ̄] + E[ψ̄2]− 3

2

)]+
(22)

and

Rs ≥

[
log2

(
N2Es
N0

π

4

ξΩ2

1 + ξΩ

)
− 0.3944

N
− 4.24

N2

− log2

(
1 +

NEs
N0

L∆

)]+
ηp, (23)

respectively.

Proof: The vector signal received by the EVEs is

z[n] = N
√
Esgs[n] + v[n], (24)

with g = [g1, . . . , gL]T . The achievable ergodic rate of
the wiretap channel can therefore be given as

Re = ηpE

[
log2

(
1 +

N2Es
N0
‖g‖22

)]
≤ ηp log2

(
1 +

N2Es
N0

L∑
l=1

E
[
|gl,i|2

])

= ηp log2

(
1 +
Es
N0

N∑
i=1

L∑
l=1

∆l,i

)
(25)
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Letting ∆ = 1
NL

∑N
i=1

∑L
l=1∆l,i, be the average eaves-

dropper channel power, we can write

Re ≤ ηp log2

(
1 +NL∆

Es
N0

)
. (26)

Substituting this in (11) and (12) completes the proof.

Under high data SNRs, this can be approximated as

Rs ≈

ηp

[
log2

(
N

L

Ω

∆

π

4

ξΩ

1 + ξΩ

)
− 0.3944

N
− 4.24

N2

]+
.

(27)

Thus, L colluding eavesdroppers can reduce the achiev-
able secrecy rate of a DCP system. We next analyze the
performance of multi-stream DCP in the presence of L
colluding eavesdroppers. Multi-stream DCP is possible
when the FC is equipped with K > 1 antennas.

IV. SECRECY RATE OF CONVENTIONAL
MULTI-STREAM DCP

A. System Model
We consider N single antenna SNs reporting to an FC

equipped with K receive antennas. Each SN simultane-
ously transmits data over K streams with equal power.
It is assumed that there are L colluding EVEs, having
accurate CSI for all the channels from the SNs. We
also assume that all the channels remain static over one
DCP frame duration comprising M channel uses. During
the first KMp channel uses, the FC transmits Mp pilot
symbols from each of its K antennas. These pilots are
used by the SNs to estimate the channels to the respective
FC antennas. Following this, the SNs simultaneously
transmit K streams of data to each of the FC antennas
during the next Md = M −KMp channel uses.

Letting ak,i = αk,ie
jθk,i ∼ CN (0, Ωki) denote the

channel between the kth FC antenna and the ith SN,
the signal received at the ith SN during the nth training
instant (n ∈ {(k − 1)Mp + 1, . . . , kMp}) is

qi[n] = ak,i
√
Ep+wi[n] = αk,ie

jθk,i
√
Ep+wi[n] (28)

with wi[n] ∼ CN (0, 1) being the ZMCSCG AWGN
at the ith SN. The MMSE estimate of the channel
coefficient between the ith SN and the kth FC antenna
is computed at the ith SN as

âk,i =

√
MpEpΩki

N0 +MpEpΩki

kMp∑
n=(k−1)Mp+1

qi[n]. (29)

This is used to obtain the gain and phase estimates for
the corresponding channel as α̂k,i = |âk,i| and

θ̂k,i = tan−1
(
={âk,i}
< {âk,i}

)
, (30)

respectively. Compensating for the estimated phase to
each of the FC antennas, the ith SN then transmits the
symbol xi[n] given as

xi[n] =

√
Es
K

K∑
k=1

sk[n]e−jθ̂k,i , n = KMp + 1, . . . ,M,

(31)
Note that the transmit energy is normalized w.r.t. the
number of streams being used. In the following sub-
sections, we discuss the received signal model and
the achievable ergodic secrecy rates for the ideal and
practical DCP cases.

B. Ergodic Secrecy Rate with Ideal DCP

We first calculate the ergodic secrecy achievable rate
over the main channel, for which the signal received by
the kth FC antenna is

yk[n] =

N∑
i=1

ak,ixi[n] + wk[n]

=

√
Es
K

K∑
m=1

sm[n]

N∑
i=1

αk,ie
j(θk,i−θm,i) + wk[n].

(32)

Letting hkm = 1
N

∑N
i=1 αk,ie

j(θk,i−θm,i) denote the
effective channel coefficient between the kth FC antenna
and the mth stream of data, we can write (32) as

yk[n] = N

√
Es
K
hkksk[n]

+N

√
Es
K

K∑
m=1;m 6=k

hkmsm[n] + wk[n]. (33)

Equivalently, the vector signal received at the FC, y[n] ,
[y1[n], y2[n], . . . , yK [n]]T , can be written as

y[n] = NHs[n] + w[n], (34)

where H is the effective channel matrix with
its (k,m)th entry equal to hkm, and s[n] ,
[s1[n], s2[n], . . . , sK [n]]T is the data vector. Assuming
the data across different streams to be independent, i.e.,
E[s[n]sH [n]] = IK , the ergodic achievable rate over the
main channel is given by [33]

Rm = ηp,KEH

[
log2

(
det

(
IK +

N2Es
KN0

HHH

))]
,

(35)
with ηp,K =

(
M−KMp

M

)
. A lower bound on (35) can be

obtained using Lemma 4.
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Lemma 4. The achievable rate over the main channel
can be lower bounded as

Rm ≥ ηp,K

(
K∑
k=1

log2

 πEs
4KN0

N∑
i,m=1

√
ΩkiΩkm


+ E [log2 (det (Ψ))]

)
. (36)

where
Ψ , D−1HHH. (37)

and

D =
π

4N2
diag


 N∑
i,m=1

√
ΩkiΩkm

K
k=1

 , (38)

Proof: See Appendix D
Now, the diagonal entries of H correspond to

weighted sums of Rayleigh random variables, and the
off-diagonal entries correspond to ZMCSCG random
variables. Therefore, it is not possible to determine the
distribution of log2 (det(Ψ)) in closed form. Hence, this
term is evaluated for i.i.d. channels using Monte Carlo
simulations as

E [log2 (det (Ψ))] ≈ − 1

N

(
2.2K2 − 1.8K

)
(39)

It is observed that the variances of both the diagonal and
off-diagonal entries of H decay as 1

N , and therefore the
entries of H concentrate around their expected values
as N increases, resulting in the functions of H, Ψ and
log2 (det (Ψ)) concentrating around their means. This is
evident in the behavior of the simulated lower bound on
log2 (det (Ψ)). Therefore, the achievable rate over the
main channel, for i.i.d. channels can be evaluated as

Rm ≥ Kηp,K
(

log2

(
N2Es
KN0

π

4
Ω

)
−

1

N
(2.2K − 1.8)

)
. (40)

A comparison of the behavior of the achievable rates
over the main channel with the derived bound for differ-
ent values of K and N for EsN0

= 1 is plotted in Fig. 1.
The plot illustrates that the achievable rate increases
linearly in K and logarithmically in N , as expected from
(40). It is also interesting that for K = 1 and moderately
large values of N , this bound closely approximates the
bound derived for the single stream case.

Considering the EVE’s channel, we can write the
received signal at the lth EVE antenna as

zl[n] = N

√
Es
K

K∑
k=1

glksk[n] + vl[n] (41)
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Fig. 1. The Achievable data rates for the main multi-stream DCP
channel for different numbers of SNs and FC antennas

where glk , 1
N

∑N
i=1 bl,ie

−jθk,i is ZMCSCG with
E[|glk|2] = 1

N2

∑N
i=1∆li.

The signal received at the EVE’s channel can be
written as

z[n] = N

√
Es
K

Gs[n] + v[n], (42)

where G denotes the effective channel with (l, k)th entry
glk. Lemma 5 presents an upper bound on the achievable
rate over the channel described in (42).

Lemma 5. The achievable rate over the EVE’s channel
can be upper bounded as

Re ≤ K log2

(
1 +

NLEs∆
KN0

)
, (43)

where ∆ , 1
NL

∑L
l=1

∑N
i=1∆li.

Proof: See Appendix E

Theorem 4. The achievable ergodic secrecy rate for
multi-stream DCP with perfect CSI at the SNs, and a
K antenna FC is given by

Rs ≥ ηp,K
[
K

(
log2

(
N2Es
KN0

π

4
Ω

)
− log2

(
1 +

NEs
KN0

L∆

)
− 1

N
(2.2K − 1.8)

)]+
.

(44)

Under high SNRs, this can be approximated as

Rs ≈

ηp,K

[
K

(
log2

(
Ω

∆

N

L

π

4

)
− 1

N
(2.2K − 1.8)

)]+
.

(45)
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Therefore, multi-stream DCP with K FC antennas can
achieve is approximately K times the ergodic secrecy
achievable rate by single stream DCP in the presence of
the same number of eavesdroppers.

C. Ergodic Secrecy Rate with Estimated Channels

The channel coefficient between the kth antenna at
the FC and the ith SN is given as

ak,i =

√
ξΩki

1 + ξΩki
α̂kie

ˆj(θki) +

√
Ωki

1 + ξΩki
ãki (46)

with ãki ∼ CN (0, 1). The signal received at the kth FC
antenna is therefore given as

yk[n] = N

√
Es
K
h̄kksk[n]+N

√
Es
K

K∑
m=1
m6=k

h̄kmsm[n]+wk[n],

(47)
where ĥkk = 1

N

∑N
i=1

√
ξΩki

1+ξΩki
α̂ki, h̃kk =

1
N

∑N
i=1

√
Ωki

1+ξΩki
ãkie

−jθ̂ki , h̄kk = ĥkk + h̃kk

and h̄km = 1
N

∑N
i=1 akie

−jθ̂mi , and equivalently, the
received signal vector can be written as,

y[n] =

√
Es
K

H̄s[n] + w[n]. (48)

The rate achievable over the channel described by (48)
can be lower bounded using Lemma 6.

Lemma 6. The achievable rate on the main channel is

Rm ≥ ηp,K

(
E [log2 (det (Ψ))] +

K∑
k=1

log2

 πEs
4KN0

N∑
i,m=1

√
Ω2
ki

1 + ξΩki

Ω2
km

1 + ξΩkm

)
(49)

for i.n.d. channels, and

Rm ≥ Kηp,K×(
log2

(
N2Es
KN0

π

4

Ω2

1 + ξΩ

)
− 1

N
(2.2K − 1.8)

)
. (50)

for i.i.d. channels, with

D=
π

4N2
diag


 N∑
i,m=1

√
Ω2
ki

1 + ξΩki

Ω2
km

1 + ξΩkm

K
k=1


(51)

and
Ψ , D−1H̄HH̄ (52)

Proof: See Appendix F
Therefore, the achievable secrecy rate of multistream

DCP under estimated channels can be lower bounded
using Theorem 5.

Theorem 5. The achievable ergodic secrecy rates for
i.n.d and i.i.d. channels with practical multi-stream DCP
are given by

Rs ≥ ηp,K×[
K∑
k=1

log2

 πEs
4KN0

N∑
i,m=1

√
Ω2
ki

1 + ξΩki

Ω2
km

1 + ξΩkm


+ E [log2 (det (Ψ)) −K log2

(
1 +

NEs
KN0

L∆

)]+
(53)

and

Rs ≥ Kηp,K

[
log2

(
N2Es
KN0

π

4

Ω2

1 + ξΩ

)

− 1

N
(2.2K − 1.8)− log2

(
1 +

NEs
KN0

L∆

)]+
, (54)

respectively.

Therefore, by using K antennas at the FC and trans-
mitting K data streams, the achievable secrecy rate over
a DCP channel can be scaled up approximately K times.

V. MULTI-STREAM DCP WITH CONSTRAINED
MAXIMAL RATIO TRANSMISSION

In the previous section, we considered the case where
each SN allocates equal power, Es/K, to each of the
transmitted streams. However, from the initial training
phase, the nodes have an estimate of the magnitude
of the channel to each of the FC antennas. They can
potentially use this knowledge to allot power across
the K data streams, while meeting an overall transmit
per-node power constraint, and thereby improve their
data rates. In this section, we evaluate the achievable
ergodic secrecy rates with maximal ratio transmission
based power allocation across the streams.

We again consider N single antenna SNs reporting
to a K antenna FC. If the average energy expended
per symbol per node is Es, and the estimated channel
gains at the ith SN are represented using the vector
α̂i = [α̂1i, . . . , α̂Ki]

T , then the energy allocated by the
ith node for the kth stream is Es α̂2

ki

‖α̂i‖22
. Therefore, the

symbol transmitted by the ith node can be expressed as

xi[n] =
√
Es

K∑
k=1

α̂ki
‖α̂i‖2

sk[n]e−jθ̂ki . (55)

Note that, as in the previous sections, each SN still
transmits its data with a total power Es across the K
streams. Here, we limit the discussion to the case of
i.i.d. channels. The case of i.n.d. channels is analytically
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intractable due to the form of the random variables
involved, and is beyond the scope of this paper.

With ideal DCP, the signal received at the kth FC
antenna is given by

yk[n] = N
√
Eshkksk[n]+N

√
Es

K∑
m=1
m6=k

hkmsm[n]+wk[n]

(56)
where hkk = 1

N

∑N
i=1

α2
ki

‖αi‖2 , hkm =
1
N

∑N
i=1

αkiαmi

‖αi‖2 e
j(θki−θmi).

We can use Lemma 7 to lower bound the achievable
rate over the main channel.

Lemma 7. The achievable rate over the main channel
can be lower bounded as

Rm ≥

(
K log2

(
N2ΩEs
N0

(
Γ (K + 1

2 )

Γ (K + 1)

)2
)

+ log2(det(Ψ))

)
ηp,K , (57)

where Ψ = 1
Ω

(
Γ (K+1)

Γ (K+ 1
2 )

)2
HHH, and H is the effective

channel matrix with (k,m)th entry hkm.

Proof: See Appendix G
It is not possible to determine the distribution or the

moments of log2(det(Ψ)) in closed form. Using Monte
Carlo simulations similar to the previous section, we
evaluate this term as

log2(det(Ψ)) ≥ −K − 2

2
− K

N
(1.11K − 1.28) . (58)

Therefore, the achievable rate over the main channel can
be lower bounded as,

Rm ≥ ηp,K

(
K log2

(
N2ΩEs
N0

(
Γ (K + 1

2 )

Γ (K + 1)

)2
)

− K − 2

2
− K

N
(1.11K − 1.28)

)
. (59)

For the wiretap channel, the signal received by the lth
EVE can be written as

zl[n] = N
√
Es

K∑
m=1

glmsm[n] + wk[n] (60)

with glm = 1
N

∑N
i=1

bliαmi

‖αi‖2 e
j(−θmi).

Lemma 8. The achievable rate over the eavesdroppers
channel with maximal ratio beam-forming is given as

Re ≤ ηp,KK log2

(
1 +

NL

K

Es
N0

∆

)
. (61)

Proof: E[glm] = 0, and E[|glm|2] =
1
N2

∑N
i=1E[|bli|2]E

[
α2

mi

‖αi‖22

]
. Since α2

mi

‖αi‖22
is a beta

distributed random variable, E
[
α2

mi

‖αi‖22

]
= 1

K , hence,

E[|glm|2] = ∆
KN , where ∆ is as defined earlier.

Theorems 6 and 7 can be used to obtain bounds on the
achievable secrecy rates with and without CSI estimation
errors in this case.

Theorem 6. The achievable secrecy rate for ideal DCP
with maximal ratio transmission is

Rs ≥

[
K

(
log2

(
N2ΩEs
N0

(
Γ (K + 1

2 )

Γ (K + 1)

)2
)

− 1

N
(1.11K − 1.28)

− log2

(
1 +

NL

K

Es
N0

∆

))
− K − 2

2

]+
ηp,K . (62)

Theorem 7. The achievable secrecy rate for practical
DCP with maximal ratio transmission is

Rs ≥

[
K

(
log2

(
N2Es
N0

ξΩ2

1 + ξΩ

(
Γ (K + 1

2 )

Γ (K + 1)

)2
)

− 1

N
(1.11K − 1.28)

− log2

(
1 +

NL

K

Es
N0

∆

))
− K − 2

2

]+
ηp,K . (63)

VI. SECURING MULTI-STREAM DCP USING ADDED
ARTIFICIAL NOISE

In the previous sections, we have considered the
achievable secrecy rates of a DCP system that is unaware
of the existence of eavesdroppers in the network. How-
ever, in case the presence of an eavesdropper is known,
then the SNs can use additional physical layer security
techniques with the transmitted data to further improve
the achievable secrecy rates for the DCP channel. One
such technique is the addition of artificial noise to the
transmitted signal [34]–[36]. Here, the nodes transmit
artificial noise using a fraction of the transmitted power,
to reduce the achievable rate at the eavesdropper. It
is conventional to assume that the artificial noise is
transmitted in the null space of the effective channel
matrix. This beam alignment is not possible for DCP
due to the unavailability of receive degrees of freedom.

However, if the SNs generate and add independent
noise samples to their transmitted signals using a fraction
of the transmitted power, then the artificial noise does
not have the same array gain as the intended signal,
limiting its detrimental effects at the FC. Also, since
the eavesdroppers do not achieve the DCP array gain, as
discussed in the preceding sections, the use of artificial
noise affects the eavesdroppers more than the FC. In this
case, determining the fraction of power to be transmitted
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as artificial noise becomes important. In this section, we
determine the optimal fraction of power to be used for
transmitting artificial noise for an i.i.d. channel. We omit
the similar case of i.n.d. channels for brevity.

Now, in general, the achievable secrecy rate of a K
stream MS-DCP system with L colluding eavesdrop-
pers, without any artificial noise being added, can be
expressed as

Rs ≥ ηp,K

[
K

(
log2

(
λm

N2Es
KN0

Ω

)

− log2

(
1 +

NL

K

Es
N0

∆

))
− fc(K)

]+
, (64)

where λm is a scale factor depending on the scheme
and channel conditions, and fc(K) is a function of the
number of streams. Letting a fraction 1− µ of the total
power be allotted to artificial Gaussian noise, the signal
transmitted by the ith SN at the nth instant can be written
as

xi[n] =

√
µEs
K

K∑
k=1

sk[n]e−jθ̂k,i +
√

(1− µ)Esνi[n].

(65)
where νi[n] is the artificial noise generated by the ith
SN. It can be shown that achievable secrecy rate over
the channel is given as,

Rs ≥ ηp,K

[
K

(
log2

(
λm

N2

K

µΩEs
(1− µ)Ω +N0

)

− fc(K)− log2

(
1 +

NL

K

µ∆Es
(1− µ)∆Es +N0

))]+
.

(66)

Since λm and fc(K) are independent of µ, the achiev-
able secrecy rate can be maximized by maximizing the
fraction

T (µ) =

µΩEs
(1−µ)ΩEs+N0

1 + NL
K

µ∆Es
(1−µ)∆Es+N0

. (67)

in terms of µ. It can be observed that for N > L > K
and Ω > ∆, this is a monotonically increasing function
of µ, and is therefore maximized for µ = 1. On the other
hand, for ∆ > Ω, it can be shown that the optimal µ
can be obtained by solving the quadratic equation

pµ2 + qµ+ r = 0, (68)

with p = (Ω∆E2s + ΩEsN0)
((
NL
K − 1

)
Ω∆E2s

)
−

Ω∆E2s
((
NL
K − 2

)
Ω∆E2s −ΩEsN0 +

(
NL
K − 1

)
∆EsN0

)
,

q = 2Ω∆E2s (Ω∆E2s + ΩEsN0 + ∆EsN0 + N2
0 ),

r = (Ω∆E2sΩEsN0)(Ω∆E2s +ΩEsN0 +∆EsN0 +N2
0 ).

Out of the two solutions of (68), the one satisfying
0 ≤ µ ≤ 1, optimizes the achievable secrecy rate of the
DCP system in the presence of eavesdroppers.
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Fig. 2. Achievable secrecy rates for a single antenna, single eaves-
dropper system, with N = 50 SNs.

VII. SIMULATION RESULTS

In this section, we substantiate the results derived
in the previous sections using Monte Carlo simulation
experiments. We also use these results to compare the
secrecy rate performance of the different multi-stream
DCP techniques discussed in the paper.

We assume that the FC transmits training symbols at
an SNR of 10 dB, followed by data transmission from the
SNs to the FC using DCP. We assume a frame length(M)
of 100 channel uses and Mp = 1 pilot per stream.
Simulations are then carried out for different values of
data SNRs, number of eavesdroppers, etc. The achievable
rate performances are obtained by averaging over 10, 000
independent channel realizations.

In Fig. 2, we plot the achievable secrecy rates for a
single stream DCP system with N = 50 SNs in the
presence of a single eavesdropper, against the per node
SNR, for different ratios of Ω and ∆. It is observed that
a DCP system is able to deliver nonnegative rates, even
when the EVEs channel is 10 dB stronger than the main
users’ channel, and the simulated results closely follow
the derived bounds.

In Fig. 3, we plot the achievable secrecy rates for a
three stream (K = 3) DCP system with N = 20 against
the number of eavesdroppers in the system, for different
SNRs, such that Ω = 10∆. The system performance is
observed to decay with an increase in the number of
eavesdroppers, under all cases, which is in accordance
with the derived results. Again, the simulated results are
observed to follow the derived bounds.

In Fig. 4, we plot the achievable secrecy rates for
a multi-stream DCP system with different numbers of
streams, in the presence of 10 eavesdroppers against the
number of SNs for Ω = 10∆ and a data SNR of 0 dB.
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Fig. 4. Achievable secrecy rates for a multi-stream DCP system for
different numbers of SNs at a data SNR of 0 dB, with 10 eavesdroppers
and Ω = 10∆.

The achievable secrecy rate is observed to increase with
both the number of SNs, and the number of streams,
which is as expected.

In Fig. 5, we plot the achievable secrecy rates for
an MRT multi-stream DCP system with N = 20 SNs
against the data SNR, for different number of streams
in the presence of L = 5 eavesdroppers. The achievable
secrecy rates grows almost linearly with the number of
streams, as predicted by the derived bounds.

In Fig. 6, we illustrate the effect of adding artificial
noise to a DCP system for enhancing physical layer
security. We consider a single stream DCP system with
N = 20 SNs, and L = 2 eavesdroppers. When the
main channel is stronger than the eavesdroppers channel,
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Fig. 5. Achievable secrecy rates for an MRT multi-stream DCP system
for N = 50 and 5 eavesdroppers at different SNRs.
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Fig. 6. Achievable secrecy rates for a single user two eavesdropper
system for different amounts of added artificial noise.

the achievable secrecy rate shows a steep increase near
µ = 1, indicating that no artificial noise should be
added to the system, which is as per the discussion in
Section VI. It is also shown in the figure that the use of
artificial noise is necessitated when the eavesdropper’s
channel is stronger than the main channel.

Thus, the simulation results illustrate that the use
of DCP provides secure communication between a set
of SNs and an FC, without the requirement of any
additional signal processing at the SNs, when the main
channel is stronger than the eavesdropper channel. It is
also shown that the user of DCP enables a nonnegative
secrecy rate between the SNs and the FC even when the
eavesdropper channel is weaker than the main channel,
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and in this case the achievable secrecy rate can be
further improved by adding artificial noise to the signals
transmitted by the SNs.

VIII. CONCLUSIONS

In this work, we showed that the DCP is inherently
secure in the presence of eavesdroppers. Specifically, the
SINR over the main channel increases as the square of
the number of SNs N , while that for the eavesdropper
channel increases linearly with N , leading to an achiev-
able rate that grows as logN . We extended the analysis
to multi-stream DCP, and showed that the secrecy rates
increases roughly linearly with the number of streams.
We then considered the secrecy performance of multi-
stream DCP with constrained maximal ratio transmis-
sion, and showed that this can further improve the
secrecy rates achievable by mutlistream DCP. We also
studied the effect of adding artificial noise. We found that
artificial noise can improve the secrecy rates of a DCP
system if the eavesdroppers’ channel is stronger than
the main channel. Finally, via simulation experiments,
we illustrated that the simulated achievable rates closely
follow the derived bounds.

APPENDIX A
PROOF OF LEMMA 1

From (5) we note that,

E[h1] =
1

N

N∑
i=1

√
π

4
Ω1,i, (69)

var(h1) =
1

N2

(
1− π

4

) N∑
i=1

Ω1,i, (70)

when the channels are non identically distributed and
E[h1] =

√
π
4Ω; var(h1) =

(
1− π

4

)
Ω
N , when the

channels are identically distributed.
The ergodic achievable rate over the main channel

under the assumptions of the channel being memoryless,
and the additive noise being Gaussian, can be calculated
as [33], [37]

Rm =

(
M −Mp

M

)
Eh1

[
log2

(
1 +

N2Es
N0
|h1|2

)]
≥
(
M −Mp

M

)
Eh1

[
log2

(
N2Es
N0
|h1|2

)]
. (71)

Defining ψ , 4N2

π
∑N

i=1

∑N
m=1

√
Ω1,iΩm,i

|h1|2,

Rm ≥
(
M −Mp

M

)
×(

log2

(
π

4

Es
N0

N∑
i=1

N∑
m=1

√
Ω1,iΩm,i

)
+ E[log2 (ψ)]

)
.

(72)

Since ψ is the square of a weighted combination
of Rayleigh random variables its distribution is not
obtainable in a closed form for N > 2. Therefore, the
term E[log2 (ψ)] cannot be computed in a closed form.
However, since log2(ψ) ≥ log2(e)

(
(ψ − 1)− (ψ−1)2

2

)
,

E[log2(ψ)] ≥ log2(e)

(
2E[ψ]− E[ψ2]

2
− 3

2

)
. (73)

Now,

E[ψ] =
4N2

π
∑N
i=1

∑N
m=1

√
Ω1,iΩm,i

E[|h1|2] (74)

and

E[ψ2] =
16N4

π2
(∑N

i=1

∑N
m=1

√
Ω1,iΩm,i

)2E[|h1|4]

(75)
that can be simplified to (8) and (9) respectively. For
identically distributed channels, these can further be
simplified as, E[ψ] = 1 + 1

N

(
4
π − 1

)
and

E[ψ2] =

(
1+

1

N

(
24

π
− 6

)
+

1

N2

(
29− 72

π
+

24

π2

)

− 1

N3

(
24− 48

π
− 48

π2

))
. (76)

Consequently,

E[log2(ψ)] ≥ −1

N
log2(e)

(
4

π
− 1

)
− 1

N2
log2(e)

(
29− 72

π
+

24

π2

)
≈ −0.3944

N
− 4.24

N2
.

(77)

APPENDIX B
PROOF OF LEMMA 2

By the definition of g1,

E[|g1|2] =
1

N2

N∑
i=1

E[b21,i] =
1

N2

N∑
i=1

∆1,i. (78)

Defining ∆ , 1
N

∑N
i=1∆1,i, we have g1 ∼

CN
(
0, ∆N

)
, and the ergodic achievable rate of EVE’s

channel can be calculated as [33]

Re =

(
M −Mp

M

)
Eg1

[
log2

(
1 +

N2Es
N0
|g1|2

)]
.

(79)
Using Jensen’s inequality [37], we get

Re ≤
(
M −Mp

M

)
log2

(
1 +

N2Es
N0

E[|g1|2]

)
, (80)

leading to (10).
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APPENDIX C
PROOF OF LEMMA 3

The signal received at the FC can be written as

y[n] = N
√
Esĥ1s[n] +N

√
Esh̃1s[n] + w[n], (81)

where ĥ1 = 1
N

∑N
i=1

√
ξΩ1,i

1+ξΩ1,i
α̂1,i and h̃1 =

1
N

∑N
i=1

√
Ω1,i

1+ξΩ1,i
ã1,ie

−jθ̂1,i .

Now, E[h̃1] = 0, E[|h̃1|2] = 1
N2

∑N
i=1

Ω1,i

1+ξΩ1,i
,

E[ĥ1] = 1
N

∑N
i=1

√
π
4

√
ξΩ2

1,i

1+ξΩ1,i
, and

E[|ĥ1|2] =
1

N2

N∑
i=1

ξΩ2
1,i

1 + ξΩ1,i

+
π

4N2

N∑
i=1

N∑
k=1;k 6=i

√
ξΩ2

1,i

1 + ξΩ1,i

√
ξΩ2

1,k

1 + ξΩ1,k
(82)

for non identically distributed channels. When the chan-
nels are i.i.d.,

E[ĥ1] =

√
π

4

√
ξΩ2

1 + ξΩ
, (83)

E[|ĥ1|2] =

(
1

N
+
π

4

N − 1

N

)
ξΩ2

1 + ξΩ
. (84)

At the FC, an accurate estimate of the effective DCP
channel h̄1 = ĥ1 + h̃1 is required for data decoding.
Using the fact that the h̄1 has a positive real part with
high probability, it has been shown in [16] that it can be
accurately estimated at the FC using the data symbols
transmitted by the SNs. That is, the channel estimation
at the FC is blind, i.e., it does not require transmission
of pilot symbols from the SNs. Defining

ψ̄ =
4

π

N2∑N
i=1

∑N
k=1

√
ξΩ2

1,i

1+ξΩ1,i

√
ξΩ2

1,k

1+ξΩ1,k

|h̄|2, (85)

we can use an approach similar to the one discussed in
Appendix A to obtain (16) and (17).

APPENDIX D
PROOF OF LEMMA 4

The diagonal and off diagonal entries of H follow
different distributions, and their individual statistics are
required to evaluate (35). Looking at diagonal entries
first, we have

hkk =
1

N

N∑
i=1

αk,i, (86)

consequently,

E[hkk] =
1

N

N∑
i=1

√
π

4
Ωki, (87)

E[h2kk] =
1

N2

N∑
i=1

Ωki +
π

4N2

N∑
i=1

N∑
m=1;m 6=i

√
ΩkmΩki,

(88)
and

var(hkk) =
1

N2

(
1− π

4

) N∑
i=1

Ωki (89)

for i.n.d. channels, and

E[hkk] =

√
π

4
Ω, (90)

E[h2kk] =
π

4
Ω +

1

N

(
1− π

4

)
Ω, (91)

and
var(hkk) =

1

N

(
1− π

4

)
Ω (92)

for i.i.d. channels.
Also, the off-diagonal entries of H, hkm, k 6= m, are

the sum of ZMCSCG r.v.s and therefore are ZMCSCG,
such that, E[|hk,m|2] = 1

N

∑N2

i=1Ωki, for i.n.d. channels,
and E[|hkm|2] = 1

NΩ. for i.i.d. channels.
Since the matrix HHH is positive semidefinite, we

can lower bound (35) as,

Rm ≥
(
M −KMp

M

)
E

[
log2

(
det

(
N2Es
KN0

HHH

))]
.

(93)
Defining the matrices, Ψ and D as (37) and (38), we
can write

Rm ≥
(
M −KMp

M

)
×(

log2

(
det

(
N2Es
KN0

D

))
+ E [log2 (det (Ψ))]

)
.

(94)

This can be simplified as (36).
APPENDIX E

PROOF OF LEMMA 5
The vector signal received across all the eavesdrop-

pers is z[n] = N
√
Es
K Gs[n]+v[n], where G denotes the

effective channel with (l, k)th entry glk. The achievable
rate over the EVEs’ channel becomes [33]

Re = E

[
log2

(
det

(
IK +

N2Es
KN0

GHG

))]
(a)
≤ E

[
K∑
k=1

log2

(
1 +

N2Es
KN0

‖gk‖2
)]

(b)
≤

K∑
k=1

log2

(
1 +

N2Es
KN0

E
[
‖gk‖2

])

=

K∑
k=1

log2

(
1 +

Es
KN0

L∑
l=1

N∑
i=1

∆li

)

= K log2

(
1 +

NLEs∆
KN0

)
. (95)
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In the above, inequality (a) is the result of the upper
bound on the log det(.) function [38], and the inequality
(b) is due to Jensen’s inequality [37].

APPENDIX F
PROOF OF LEMMA 6

It can be shown that

E[ĥkk] =
1

N

N∑
i=1

√
π

4
Ωki

√
ξΩki

1 + ξΩki
, (96)

E[|ĥkk|2] =
1

N

N∑
i=1

ξΩ2
ki

1 + ξΩki

+
π

4N2

N∑
i=1

N∑
m=1;m6=i

√
ξΩ2

ki

1 + ξΩki

√
ξΩ2

km

1 + ξΩkm
, (97)

E[h̃kk] = 0, E[|h̃|2] =
1

N2

N∑
i=1

Ωki
1 + ξΩki

. (98)

Therefore,

E[h̄kk] =
1

N

N∑
i=1

√
π

4

ξΩ2
k,i

1 + ξΩki
, (99)

E[|h̄kk|2] =
1

N2

N∑
i=1

Ωki

+
π

4N2

N∑
i=1

N∑
m=1;m 6=i

√
ξΩ2

ki

1 + ξΩki

√
ξΩ2

km

1 + ξΩkm
(100)

for i.n.d. channels, and

E[h̄kk] =

√
π

4

ξΩ2

1 + ξΩ
, (101)

E[|h̄kk|2] =
Ω

N
+
π

4

N − 1

N

ξΩ2

1 + ξΩ
(102)

for i.i.d. channels.
We have shown in [17] that the effective channel ma-

trix H̄ contains positive real numbers on its main diag-
onal with high probability, and can be blindly estimated
at the FC using covariance based channel estimation.
Defining D and Ψ as (51) and (52), the above results
can be used to obtain Lemma 7.

APPENDIX G
PROOF OF LEMMA 7

Since the phase of hkm is uniformly distributed,
E[hkm] = 0 m 6= k, and

E[hkk] =
1

N

N∑
i=1

E

[
α2
ki

‖αi‖2

]
(a)
=

√
Ω
Γ (K + 1

2 )

Γ (K + 1)
. (103)

A proof for (a) is given in [39]. Further,

E[|hkm|2] =
1

N2

N∑
i=1

E

[
α2
kiα

2
mi

‖αi‖22

]
. (104)

For K = 2, it can be shown that [40]

E[|hkm|2] = 2F1

(
1, 2;

3

2
;−1

2

)
Ω

N
(105)

where 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function
[41]. For K ≥ 3, E[|hkm|2] cannot be evaluated in
closed form. However, when K is large, α2

ki

‖αi‖2 and α2
mi

‖αi‖2
can be treated as being approximately independent. Un-
der this approximation, we have:

E[|hkm|2] ≈ Ω

N

(
Γ (K + 1

2 )

Γ (K + 1)

)2

. (106)

Also, from [39]

E[h2kk] =
1

N
E

[
α4
ki

‖αi‖22

]
+

(N − 1)

N
E2

[
α2
ki

‖αi‖2

]
=
Ω

N

(
2

K − 1
+ (N − 1)

(
Γ (K + 1

2 )

Γ (K + 1)

)2
)
. (107)
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