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Low-complexity Graph Sampling With Noise and Signal Reconstruction via
Neumann Series by Fen Wang, Gene Cheung, and Yongchao Wang

Contributions

Sampling matrix is obtained by solving modified A-optimality criteria based on Neumann
series

Select nodes greedily without large matrix inversion using matrix inversion lemma.

Dynamic subset sampling introduced –extended sampling case.

Setting

G = {V, E,W } a graph with N nodes indexed by V = {1, 2, ...N}. E specifies the set of
connected node pairs(i , j) and W is adjacency matrix.

Connected, undirected graphs with no self-loops are assumed.

Laplacian matrix L = D −W and its eigen decomposition L = VΣVT with eigen values in
increasing order. Where D is diagonal degree matrix.

The GFT of a graph signal x ∈ RN is defined as x̃ = VT x .

A K-bandlimited graph signal can be expressed as x = VK x̃K where VK is first K columns of
V matrix and x̃K is first K elements of x̃ vector. K-Bandlimited low pass filter is defined as
T = VKV

T
K

Definition To sample M elements from x to produce xS = Cx ∈ RM with a sample set S ⊆ V and
|S| = M, define a M × N 0-1 binary sampling matrix C as

Cij =

{
1, j = S(i)
0, otherwise

(Unnikrishnan N, ECE, IISc) IEEE TSP, Nov.1, 1, 2019 November 19, 2019 2 / 11



A sampled K-bandlimited graph signal can now be written as xS = CVK x̃K with rank(CVK ) = K.
Least square solution of a noisy observation

yS = xS + nS

x̂LS = VK (CVK )†yS

Rx̂LS = VK [(CVK )TCVK ]−1VK

Problem formulation
A-optimality criteria

C∗ = arg min
C∈FM×N

Tr

([
(CVK )> CVK

]−1
)

Augmented A-optimality criteria

C∗ = arg min
C∈FM×N

Tr

([
(CVK )> CVK + µI

]−1
)

Equivalent Augmented A-optimality

S∗ = arg min
S :|S|=M

Tr (TS + µI)−1

where TS = CVK (CVK )T . This TS is a low pass filter that can be approximated with fast Graph
fourier transform (truncated Jacobi algorithm).

min
Λ̂,S1,...,sJ

∥∥∥L− S1 . . .SJ Λ̂S>J . . .S
>
1

∥∥∥2

F

where Sj are givens rotation matrices and Λ̂ is a diagonal matrix

(Unnikrishnan N, ECE, IISc) IEEE TSP, Nov.1, 1, 2019 November 19, 2019 3 / 11



Modified A-optimality problem

S∗ = arg min
S:|S|=M

Tr
(

TFGFT
S + µI

)−1

where TFGFT
S is computed using fast Graph fourier transform.

Other Points

GFS Graph Signal Sampling Algorithm using matrix inversion lemma discussed.

Static subset sampling problem is extended to dynamic case

Reconstruction MSE Evaluation of graph signal for various algorithms were discussed
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A Low-Complexity Nonlinear Least Mean Squares Filter Based on a
Decomposable Volterra Model by Felipe Chaud Pinheiro and Cassio
Guimaraes Lopes

Goal

Decomposable volterra model is used for modelling non-linearity.
Steepest descend and LMS formulations were done.
Necessary condition for stability is derived and thus step size also.

Volterra Model
In a nonlinear system with input signal u(i) and output signal y(i), a Volterra series
representation is given by

y(i) = y0 + y1(i) + y2(i) + y3(i) + · · ·

where y0 is a constant and

yk (i) =
∑

0≤i1,...,ik<M

Hk (i1, . . . , ik )u(i − i1) · · · u(i − ik )

where Hk is volterra kernal and its order of complexity for computation is O(MK )
Decomposable Volterra Model(DVM)

u⊗k
i = ui ⊗ · · · ⊗ ui︸ ︷︷ ︸

k times

(1×Mk )

ui ,
[
u(i) u(i − 1) . . . u(i − 1 + M)

]
(1×M)
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yk (i) = u⊗k
i hk

hK = w1 ⊗ · · · ⊗ wK (MK × 1)

where w1, . . . ,wK are M × 1 vectors.
The effect of the decomposability hypothesis is to make the output y(i) computable via the
product of the output of K linear FIR filters(with overall complexity O(KM)), as follows:

y(i) = u⊗K
i hK = (ui ⊗ · · · ⊗ ui︸ ︷︷ ︸

K times

) (w1 ⊗ · · · ⊗ wK )

= (uiw1)⊗ · · · ⊗ (uiwK )

= (uiw1) · · · (uiwK )

Problem formulation

min
w

E
∣∣∣d − u⊗Kw

∣∣∣2 s.t. w being decomposable

J(w1, . . . ,wK ) = Rd − w∗R∗
uK d
− RuK dw + w∗RuKw

∂J

∂ws
=

∂J

∂w
·
∂w

∂ws

∂J

∂w
= −RuK d + w∗RuK (1×MK )

For each 1 ≤ s < K , the factor W s = ∂w
∂ws

is an Mk ×M Jacobian matrix.
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Steepest Descend Case

ws,i = ws,i−1 − µ
[
∂J

∂ws

∣∣∣∣
i−1

]∗
= ws,i−1 + µW

(s)∗
i−1 [RduK − RuKwi−1]

For each 1 ≤ s < K
LMS

R̃uK ,i = u⊗K∗
i u⊗K

i , R̃duK ,i = u⊗K∗
i d(i)

ws,i = ws,i−1 + µW
(s)∗
i−1 [u⊗K∗

i d(i)− u⊗K∗
i u⊗K

i wi−1]

= ws,i−1 + µ
(
u⊗K
i W

(s)
i−1

)∗
[d(i)− u⊗K

i wi−1]

Other points

Initializations of w discussed.

Convergence and stability discussed.

Detailed steady state analysis done.
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Non-Negative Orthogonal Greedy Algorithms by Thanh Thi Nguyen, Jrme
Idier, Charles Soussen, and El-Hadi Djermoune

Contributions

Define a class of non-negative orthogonal greedy algorithms with their structural properties.

Propose a fast and exact implementation based on active set resolution of non-negative LS.

Problem formulation

min
x≥0
‖y − Hx‖2

2 s.t. ‖x‖0 ≤ K . (`0+)

Consider the NNLS problem related to support S

min
x≥0
‖y − Hx‖2 s.t. supp(x) ⊂ S .

x̂+
S is a solution if and only if the KKT conditions are satisfied:{

Ht
C (y − H x̂+

S ) = 0
Ht
S\C (y − H x̂+

S ) ≤ 0

where C := supp
(
x̂+
S

)
⊂ S call r+

S = y − H x̂+
S
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General Structure of NNOGA

Greedy algorithms can be interpreted as descent algorithms dedicated to the minimization of the
residual norm using supports of growing size. Contrary to the unconstrained case, the selection of
only some atoms in S̄ may produce a decrease of the residual at a given iteration of an NNOG
algorithm.
Definition 1 For a given support S, define the set of indices corresponding to descending atoms as
follows:

DS =
{
i ∈ {1, . . . , n}, ‖r+

S∪{i}‖ < ‖r
+
S ‖
}

where DS ⊂ S̄
Definition 2 A descent selection rule is a function S(y, H, S) that takes its values in DS .
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One possible descend selection rule is

S1(S) ∈ argmax
i /∈S

ht
i rS

Fast Computations

Descend selection rule.

Active set NNLS

Warm start (other than zero vector start with ULS solution with positive entries)

Descend rule can be parallisable.

Comparison with other non negative techniques such as NN-SP, NN-CoSAMP are done.
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Other Interesting Papers

Power Leakage Elimination for Wideband mmWave Massive MIMO-OFDM Systems: An
Energy-Focusing WindowApproach

Double Bayesian Smoothing as Message Passing .

Efficient Equalization of Time-Varying Channels in MIMO OFDM Systems.

Sparse Recovery and Dictionary Learning From Nonlinear Compressive Measurements
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