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Variations on the Convolutional Sparse Coding Model by Ives Rey-Otero,
Jeremias Sulam, and Michael Elad

Contributions

Proposed alternate formulations of CSC in terms of mixed norms l2 − l1,∞ and l2,∞ − l1
using local sparsity.

Recovery algorithms using ADMM and PPXA are proposed.

System Model

minimize
Γ

1

2
‖X − DΓ‖2

2 + λ‖Γ‖1

where D ∈ Rnm×N , n� N If D is a concatenation of m banded Circulant matrices, where each
such matrix has a band of width n� N. As such, by simple permutation of its columns, such a
dictionary consists of all shifted versions of a local dictionary DL of size n×m. Then the problem
is known as CSC.

Figure: CSC model
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Figure: Stripe dictionary

l2 − l1,∞ formulation

xi = RiX = RiDΓ = RiDST
i SiΓ

where xi is the patch of length n extracted from i th location using patch extractor operator Ri ,
ST
i operator preserves the non zeros columns of RiD and Ω = RiDST

i is independant of i . Then
problem can be reformulated as

minimize
Γ,{γi}

1

2
‖Y − DΓ‖2

2 + λmax
i
‖γi‖1

Subject to ∀i , γi = SiΓ, i ∈ [N]. Augmented lagrangian version

1

2
‖Y − DΓ‖2

2 + λmax
i
‖γi‖1 +

ρ

2

∑
i

‖γi − SiΓ + ui‖2
2
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Tensor Completion From Regular Sub-Nyquist Samples by Charilaos I.
Kanatsoulis, Xiao Fu, Nicholas D. Sidiropoulos, and Mehmet Akakaya

Contributions
Study the task of sampling and reconstruction of signals that are tensors or tensor sampling.
Generic as well as deterministic theoretical conditions (unlike CS and LRMC) are derived.
Regular, equispaced and highly structured sampling strategies can be adopted - which has a
much broader spectrum of applications in practice.

Problem Formulation

y = sample(X)

here Sample(·) : FI×J×K → FL, L� IJK . Applicable to both real and complex fields and higher
order tensors. Goal is to study under what conditions and sampling strategies, identifying X from
y is possible.
Canonical Polyadic Decomposition (CPD)

X =
F∑

f =1

af � bf � cf

where � is outerproduct operator, a ∈ FI , b ∈ FJ , c ∈ FK . Here F is the minimum number of
outerproducts needed to reconstruct X. CPD elementwise representation is

X(i , j , k) =
F∑

f =1

A(i , f )B(j , f )C(k, f )

where A = [a1, a2 . . . aF ] ∈ FI×F , B = [b1, b2 . . . bF ] ∈ FJ×F , C = [c1, c2 . . . cF ] ∈ FK×F
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Theorem 1
Uniqueness of X = [ABC ] decomposition is true when I ≥ J ≥ K and F ≤ 2blog2 Jc+blog2 Kc−2

almost surely.
Theorem 2
The decomposition X = [ABC ] is essentially unique with CP rank F if kA + kB + kC ≥ 2F + 2.
where kA is kruskal rank of A
Main Idea
Uniqueness of CPD and relation between subsampled tensor and original tensor.

X (Sr ,Sc ,Sf ) = [A (Sr , :) ,B (Sc , :) ,C (Sf , :)]

where Sr ⊆ {1, . . . , I} rows, Sr ⊆ {1, . . . , J} columns, Sr ⊆ {1, . . . ,K} fibers. One key
observation is that the above sub-tensor can be decomposed to a sum of rank one terms of
number equal to the rank of the original tensor.
Results

Introduced slab sampling, fiber sampling and entry sampling.

Similar to matrix completion, the sample complexity for tensor signal reconstruction is
mainly affected by the tensor rank and the tensor size, instead of signal bandwidth or
sparsity. Unlike CS and LRMC, the proposed approach does not require incoherent sampling.

Designing accelerated acquisition schemes for functional magnetic resonance imaging (fMRI)
utilizing the proposed tensor sampling principles.
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Figure: Tensor sampling
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Sparse Bayesian Learning With Dynamic Filtering for Inference of
Time-Varying Sparse Signals by Matthew R. OShaughnessy, Mark A.
Davenport, and Christopher J. Rozell

Contributions

Estimating time varying sparse signals using SBL.

Key insight is that the estimate of xt can be improved in a robust manner by injecting
information from the estimate of the previous time step and a dynamics model into the
hyperparameters of the SBL probability model.

System Model

yt = Φxt + et

xt+1 = ft(xt) + nt

where yt , et ∈ RM , xt ∈ RN , Φ ∈ RM×N and ft(·) : RN → RN . Here M � N and ||xt ||0 ≤ K < M
Solution under SBL framework
System is corrupted under i.i.d gaussian noise et ∼ N (0, λI)

p(y |x , λ) = N (Φx, λI)

p(xi |γi ) = Nxi (0, γi )

Γ = diag(γi ) is parameterised with {ai , bi}Ni=1
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SBL-DF

x̂SBL = Ex [p(x |y ,γ, λ)] = µ

p(x |y ,γ, λ) = N (µ,Σ)

where Σ =
(
Γ−1 + λ−1ΦT Φ

)−1
, µ = λ−1ΣΦT y and Γ = diag{γi}

γdyn = arg min
γ

E
[
‖x̂ − x̃‖2

2

]
For simplification assume ΦT Φ is diagonal then ai = ξ and bi = ξx̃2

i
Here EM with pruning of µ and Σ followed by the bi = ξx̃2

i , where the parameter ξ represents how
much weight the dynamics-based prediction is assigned in the evidence maximization procedure.
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On the Convergence of a Bayesian Algorithm for Joint Dictionary Learning
and Sparse Recovery by Geethu Joseph and Chandra R. Murthy

Contributions

A novel algorithm for learning the sparsifying dictionary along with the sparse representation.

Convergence guarantees of the dictionary update step using AM and ALS optimization
procedures are derived. Stability of limit points irrespective of initializations are discussed.

Convergence guarantees of entire algorithm (Dictionary update and sparse representation) is
discussed.

Problem Statement
Recover both sparse vectors {xk}Kk=1 and dictionary A from measurements {yk}Kk=1

yk = Axk + wk

where yK = {yk ∈ Rm}Kk=1, xK = {xk ∈ RN}Kk=1, unknown A ∈ Rm×N with unit norm columns.

wk ∼ N (0, σ2I), xk ∼ N (0, diag(γk ))

x̂k−SBL = E[xk |yk , γk , Â]

Final cost function is arrived by minimizing the negative log likelihood − log p(yK ; Λ),
Λ = {A,γk ; k = [K ]}

T (Λ) =
K∑

k=1

log[|σ2I + AΛkAT |] + yTk (σ2I + AΛkAT )−1yk
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Sparse recovery using EM.

Dictionary update is via Alternating Minimization or Armijo Line Search.
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Other Interesting Papers

A Block Sparsity Based Estimator for mmWave Massive MIMO Channels With Beam Squint.

An Asymptotically Efficient Weighted Least Squares Estimator for Co-Array-Based DoA
Estimation.

A SpatialTemporal Subspace-Based Compressive Channel Estimation Technique in Unknown
Interference MIMO Channels.

Energy and Area-Efficient Recursive-Conjugate-Gradient-Based MMSE Detector for Massive
MIMO Systems.

LDA via L1-PCA of Whitened Data.

Multi-Class Random Matrix Filtering for Adaptive Learning

Nonlinear Filtering With Variable Bandwidth Exponential Kernels
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