Journal Watch IEEE Transactions on Vehicular Technology January 2019

Chirag Ramesh SPC Lab, Indian Institute of Science

February 02, 2019

Chirag Ramesh (SPC Lab, IISc)

IEEE TVT, Jan 2019

February 02, 2019 1 / 12

Energy-Efficient Power Allocation for NOMA With Imperfect CSI

Contributions

- Power allocation problem formulated for energy efficiency maximization in NOMA systems with imperfect CSIT
- A low complexity sub-optimal iterative solution is proposed (with polynomial time complexity)

System Model

- A downlink SISO system with a BS serving M users in the same RB
- Channel gain $h_k = g_k d_k^{-\delta/2}, \ g_k \sim \mathcal{CN}(0,1)$
- MMSE estimates \hat{h}_k known at the BS with error $\epsilon = h_k \hat{h}_k$
- BS transmits $x = \sum_{k=1}^{M} \sqrt{\alpha_k P} s_k$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

- Received signal $y_{k} = \hat{h}_{k} \sqrt{\alpha_{k} P} s_{k} + \sum_{i \neq k} \hat{h}_{i} \sqrt{\alpha_{i} P} s_{i} + \epsilon \sum_{i} \sqrt{\alpha_{i} P} s_{i} + n_{k}$
- With SIC, rate is $R_k = \log_2 \left(1 + \frac{P|\hat{h}_k|^2 \alpha_k}{P|\hat{h}_k|^2 \sum_{i=k+1}^M \alpha_i + P\sigma_\epsilon^2 \sum_{i=1}^M \alpha_i + \sigma^2} \right)$
- Energy efficiency maximization:

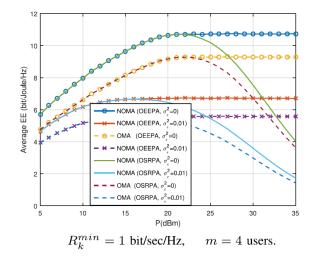
θ

$$\max_{\alpha_{k},1 \leq k \leq M} (\sum_{k=1}^{M} R_{k}) / (\theta P + P_{c})$$

$$s.t. \sum_{k=1}^{M} \alpha_{k} = \theta$$

$$R_{k} \geq R_{k}^{min}$$

$$P \geq \theta P \geq P^{min}$$


Chirag Ramesh (SPC Lab, IISc)

IEEE TVT, Jan 2019

February 02, 2019 3 / 12

Solution & Results

- Stage 1: Keep θ constant and optimize to get α_k in closed form solution. KKT conditions are sufficient.
- Stage 2: Solve for θ and perform power allocation by an iterative algorithm based on DC-programming.

Optimal Inter-Constellation Rotation Based on Minimum Distance Criterion for Uplink NOMA

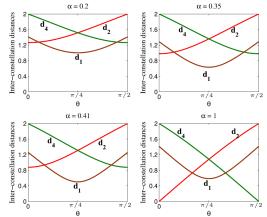
Contributions

- Closed form expression for optimal rotation angle for uplink NOMA system obtained
- SNR independent minimum distance criterion shown to be more robust and fair than SNR dependent mutual information criterion

System Model

- For a GMAC with equal power transmission, it has been proved that CCC or MI can be increased by rotation of input constellations
- This is dependent on SNR as well as modulation schemes
- Received signal $y_l = h_s \sqrt{(2-\alpha)P} s_l + h_w \sqrt{\alpha P} e^{i\theta} w_l + z_l$
- Knowing the channels, θ can be adjusted $\Rightarrow h = h_{\rm s} = h_{\rm w}$

・ロト ・ 一 マ ・ コ ・ ・ 日 ・


• CCC/MI:
$$\theta_{MI}^*(\alpha) = \arg \max_{\theta} I\left(\sqrt{(2-\alpha)P}s_l + \sqrt{\alpha P}e^{i\theta}w_l; y_l\right)$$

 $\Rightarrow \theta_{MI}^*(\alpha) = \arg \max_{\theta} I\left(\sqrt{\alpha P}e^{i\theta}w_l; y_l\right)$

• Minimum Distance:

$$\theta^*_{MD}(\alpha) = \arg \max_{\theta} d_{\min}(\theta, \alpha)$$

• For joint QPSK constellation,

$$\theta_{MD}^*(\alpha) = \cos^{-1}\left(\frac{\alpha}{\sqrt{4\alpha(2-\alpha)}}\right)$$

 $d_s^* = \sqrt{P(4 - 2\sqrt{8\alpha - 5\alpha^2})},$
 $d_w^* = \sqrt{2P\alpha}$

< □ > < □ > < □ > < □ > < □ >

æ

 For general constellations s_l ∈ M, w_l ∈ N, group rotation distance defined and it's properties proved

•
$$D_{\theta}(a_1, a_2|\mathcal{N}) = \min_{b_1, b_2 \in \mathcal{N}} \|(a_1 - a_2) + (b_1 - b_2)e^{i\theta}\|, \ a_1, a_2 \in \mathcal{M}$$

- $D_{\theta}(a_1, a_2|\mathcal{N})$ is symmetric, translation invariant and only a function of $(a_1 a_2)e^{-i\theta}$
- $D_{\theta}(a_1, a_2 | \mathcal{N})$ is used to find the optimal d_{min} and hence the optimal θ
- Closed form expressions obtained which are independent of SNRs

Schemes	R_1	R_2	$R_1 + R_2$	Jain's Index
OMA (0% power loss)	1.30	1.30	2.60	1
OMA (5% power loss)	1.26	1.26	2.52	1
OMA (10% power loss)	1.24	1.24	2.48	1
NOMA w/o rotation ($\alpha = 1$)	0.78	1.68	2.46	0.8820
NOMA w MI-maximizing rotation ($\alpha = 1$)	0.84	1.68	2.52	0.9000
NOMA w MD-maximizing rotation ($\alpha = 1$)	0.86	1.68	2.54	0.9056
NOMA w/o rotation ($\alpha = 0.7$)	1.04	1.50	2.54	0.9682
NOMA w MI-maximizing rotation ($\alpha = 0.7$)	1.10	1.50	2.60	0.9769
NOMA w MD-maximizing rotation ($\alpha = 0.7$)	1.12	1.50	2.62	0.9794

Joint Antenna Selection and Analog Precoder Design With Low-Resolution Phase Shifters

Contributions

- Joint antenna selection and analog beamformer design algorithm
- Algorithm has low complexity and maximizes spectral efficiency

System Model

- Narrow band millimeter wave downlink channel with N_t antennas at the BS
- UEs are single antenna users
- *M* low-resolution *B* bit quantized phase shifters are present at the BS
- Goal is to find best set of *M* antennas jointly with the design of a precoder

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

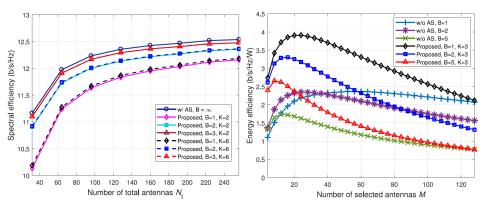
- Received signal: $y = \sqrt{P} \mathbf{h}^H \mathbf{f}_{RF} \mathbf{s} + \mathbf{n}, \ \mathbf{n} \sim \mathcal{CN}(\mathbf{0}, \sigma^2)$
- Millimeter wave channel $\mathbf{h} = \sum_{l=1}^{L} \alpha_l \mathbf{a}_t(\theta_l)$ known at the BS
- Achievable rate: $R = \log_2 \left(\left| 1 + \frac{P}{\sigma^2} \mathbf{f}_{RF}^H \mathbf{h} \mathbf{h}^H \mathbf{f}_{RF} \right| \right)$

• Possible entries:
$$\mathcal{F} = \left\{ \frac{1}{\sqrt{M}} \exp\left(\frac{j2\pi b}{2^B}\right) | b = 0, 1, \dots, 2^B - 1 \right\}$$

Precoder design:

$$\begin{aligned} \mathbf{f}_{RF}^* &= \arg \max \left| \mathbf{h}^H \mathbf{f}_{RF} \right|^2 \\ s.t. \quad \mathbf{f}_{RF} \in \{\mathcal{F}, 0\}^{N_t} \\ &\|\mathbf{f}_{RF}\|_0 = M \end{aligned}$$

イロト イポト イヨト イヨト 三日


- Divide range [0, ^{2π}/_{2^B}] into K sectors and obtain optimal phase which gives highest gain h^{*}_i f_i for each antenna
- Order $\alpha_i^k = h_i^* \overline{f}_{RF,i}^k$ and select M largest ones
- Do for each k and choose the one with the highest objective G_k

Input: h, B, M, N_t, K . Output: $f_{\rm RF}^{\rm alg}$. 1: Set $w_k, k = 1, \dots, K$, as (16). 2: for k = 1 : K do 3. for $i = 1 : N_t$ do 4: Find the optimal phase $\bar{f}_{\mathrm{RF},i}^k$ as (17). 5: Calculate α_i^k as (18). end for 6: 7: Obtain selected antenna set S_k based on α_i^k as (19). 8: Obtain G_k as (20).

9: end for

10: Select k^* as (21).

11: Obtain $\mathbf{f}_{\mathrm{RF}}^{\mathrm{alg}}$ by (22).

IEEE TVT, Jan 2019

February 02, 2019 11 / 12

э

< □ > < □ > < □ > < □ > < □ >

Other Interesting Papers

- Prediction of Time-Varying Multi-User MIMO Channels Based on DOA Estimation Using Compressed Sensing
- ② Joint Antenna Selection and User Scheduling for Massive Multiuser MIMO Systems With Low-Resolution ADCs
- Our Complexity Hybrid Precoding for Multiuser Millimeter Wave Systems Over Frequency Selective Channels
- Energy-Efficient Resource Allocation for Energy Harvesting-Based Device-to-Device Communication
- Oeep Learning-Inspired Message Passing Algorithm for Efficient Resource Allocation in Cognitive Radio Networks
- Minimum Error Entropy Criterion Based Channel Estimation for Massive-MIMO in VLC

Chirag Ramesh (SPC Lab, IISc)

IEEE TVT, Jan 2019

February 02, 2019 12 / 12

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●