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One-Bit Compressive Sensing via Schur-Concave Function
Minimization
Contributions

o Notion of Schur-concavity and its application to 1-bit CS

o Recovery model for minimizing ¢; Shannon entropy function (SEF)
with Schur-concave functions

System Model
o 1-bit CS problem: y = sign(®x) € {1,-1}M

mxin f(x) :=||x]|o
st. y=sign(®x) = diag(y)®x =0
Ix[l2 =1
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What is Schur-concavity?

o f: RN — R is Schur-concave if x <y = f(x) > f(y)
o Here, ‘<’ means Zf-‘zl X[ < le-‘zl i, k=1,...,N-1

Why use ¢1-SEF? N

X
Yie-ser (X Z | i
XHl ® Il

=1

o SEF is scale invariant, Schur-concave and concave wrt |x|

(Vtbe,ser(]x]), [x[) =0
Vouser(bal)(xl =) < 0. p = ep(()_, ballog bl)/Ilxl)
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o 1-bit CS problem reframed as:

M

”;ﬂliﬂl Yoser(]x]) + A max{0, —[diag(y)®x]}
= i=1

o Algorithm proposed to solve the above by constructing surrogate
functions and minimizing them

o Results compared with other 1-bit penalty functions such as Gaussian
entropy, sorted {1 penalty
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Stochastic Successive Convex Approximation for
Non-Convex Constrained Stochastic Optimization

Contributions

o A general SSCA method and its convergence proof

min o (x) £ E[go (x,n)]

st () 2E[g(6n)] <0i=1,..,m
o Parallel constrained SSCA

Novelty

o Current works use stochastic gradient/ stochastic MM/ SSCA with
deterministic feasible region

o Parallel SSCA can help in large scale optimization
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Applications
o MIMO transmit signal design with imperfect CSI

K
h! Qi hy

min Tr (Qx) s.t.E |log |1+ k > ri

{Qk=0} 1 = (Qu) < Zj;ék h/flojhk + Uﬁ
o MIMO robust beamforming design
o w |

min Z |wi||> s.t. Pr|SINR, £ | kHWk}z 5 < Uk] <e

i gt iz [ W Wil + o}

o Massive MIMO hybrid beamforming design
K

H 2
maxZE log (1 + ’hk :gk| 5 )
©r i sk | Fei|” +1

s.t.E [Tr (FGGHFHH <P
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Methodology

o Construct approximate problem using surrogate functions

Xt = argmin ff (x)
xeX

st fi(x)<0,i=1,...,m
Xt — (1 . ,yt) xt+ ,yt)—(t
Here, vt | 0 with 3°,7* = 0o and }_,(7%)? <
Construction of smooth surrogates with appropriate assumptions

Convergence analysis performed

Parallel implementation discussed

© © o o

Results shown for the three applications
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On Global Linear Convergence in Stochastic Nonconvex
Optimization for Semidefinite Programming

Problem

o Nonlinear stochastic semidefinite optimization problem is considered
in the scenario of statistical learning

o More general and weaker conditions assumed

o Applications include matrix sensing, subspace tracking, community
detection, PCA & recommendation systems

Contributions

o Establish global linear convergence of SGD for a more general
non-linear objective function

o Also propose an initialization scheme to ensure faster descent
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Problem

. _1 ' o
i f(X) niz;f,(X) st. X >0
1 n
min f(X) == f;(X) s.t. rank(X) <r<r*
iy 100= 30600 () <r<

o Relaxed into a matrix factorization problem

min f(UUT), X =UUT
Ue RpPxr

o Stochastic Gradient Descent:

Ut = UF — e F, (X UE
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o Second order lemma proven for SGD

o Compared with other techniques such as projected gradient descent,
factored gradient descent

o Matrix sensing:
n

_ 1
min f(X)= 2n;(bi — (A, X))

o Numerical results show upto 100x speed-up in convergence of SGD
from FGD for the above problem

o Error decomposition consisting of approximation error, optimization
error, and statistical error is analysed
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Other Interesting Papers

@ Optimization Algorithms for Graph Laplacian Estimation via ADMM
and MM

@ Provable Subspace Tracking From Missing Data and Matrix
Completion

® Randomized Two-Timescale Hybrid Precoding for Downlink Multicell
Massive MIMO Systems

@ Channel Estimation for Orthogonal Time Frequency Space (OTFS)
Massive MIMO

® Constrained Sampling: Optimum Reconstruction in Subspace With
Minimax Regret Constraint

® High-Dimensional Filtering Using Nested Sequential Monte Carlo
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