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Distributed Estimation of Gaussian Correlations
U. Hadar and O. Shayevitz

Distributed estimation of correlation

Two remotely located parties A and B observe unlimited iid samples

Samples correspond to two different parts of a random vector

Party A can send k bits to Party B.

Party B needs to estimate the cross correlation between the two
parts

The scalar case: Parties observe jointly Gaussian random
variables, goal is to estimate correlation coefficient ρ

Only known previous work is for scalar case and is non
constructive
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Contributions

Two closed form unbiased estimators, have similar variance
dependence as the previously known estimator

New results for the vector case

Details for the scalar setting

Infinitely many samples at A and B, each can estimate its own
mean and variance arbitrarily well and normalize

Assume X,Y ∼ N (0, 1). Equivalent model

Y = ρX +
√

1− ρ2Z

where Z ∼ N (0, 1) is independent of X
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An estimate for ρ

Party A computes the index of the largest sample (among first 2k

samples)
J := max

i∈[2k]
Xi

J encoded using k bits and sent to B. Party B computes the
following estimate

ρ̂ = YJ

E[XJ ]

ρ̂ is and unbiased estimate of ρ, has variance decaying as 1/k

Results similar to Gaussian case even when distribution unknown
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Community Recovery in Hypergraphs
K. Ahn, K. Lee, and C. Suh

Cluster data points in to different communities based on
measurements of the relation between points

Previous literature focuses on the case of pairwise measurements

Need subset-wise measurements to capture higher order
interactions (e.g. users annotate items with tags: 3-way relation)
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Contributions

Studies two new measurement models
(i) Homogeneity measurement model: whether or not a subset of
points is in the same cluster
(ii) Parity measurement model: observe sum of labels of data points
modulo 2
Measurements can be noisy (flipped)

Characterization of number of measurements required to recover
communities scales as

2d−2

d

n logn
(
√

1− θ −
√
θ)2

(for the homogeneity model)
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Sub-Linear Time Support Recovery for Compressed Sensing Using
Sparse-Graph Codes
X. Li, D. Yin , S. Pawar, R. Pedarsani , and K. Ramchandran

Support recovery problem: Given

y = Ax+ w

where A ∈ Rm×N , x k-sparse, recover supp(x)

Quantities of interest: minimum number of measurements and
computational complexity of algorithm

No known algorithms that achieve both O(k logN) measurement
and computational complexity
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Contributions

Noiseless setting: O(k) time and measurement complexity
Noisy setting: O(k log(N/k)) time and measurement complexity,
under finite alphabet assumption on x

For general x, additional log(N/k) factors

Measurement matrix construction based on sparse graph codes
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Detection Under One-Bit Messaging Over Adaptive Networks
S. Marano and A. H. Sayed

Setting: Multi agent network engaged in a binary decision task
Agents only allowed to send one bit messages

Contributions

Analysis of an adapt then combine (ATC) scheme in the one bit
quantized setting

Expressions for steady state distribution of messages
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Details: Network has S nodes/agents solving a BHT

Each nodes receives iid samples, updates its state based on
cooperation with neighbouring nodes

vk(n) = µxk(n) + (1− µ)yk(n− 1)

yk(n) =
S∑

l=1
aklvl(n), n ≥ 1

where xk(n): data received by node k at time n
yk(n): local state variable
vk(n): intermediate value
akl: weight given to message from node l to k
µ: step size

Decision performance characterized in terms of design parameters
µ and akl
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Other interesting papers

On the Error in Phase Transition Computations for Compressed
Sensing. S. Daei, F. Haddadi, A. Amini, and M. Lotz
One-Bit Compressive Sensing With Projected Subgradient Method
Under Sparsity Constraints. D. Liu, S. Li, and Y. Shen
Vector Approximate Message Passing. S. Rangan, P. Schniter,
and A. K. Fletcher
Provable Subspace Clustering: When LRR Meets SSC. Y.-X.
Wang, H. Xu, and C. Leng
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