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m Distributed estimation of correlation
m Two remotely located parties A and B observe unlimited iid samples

m Samples correspond to two different parts of a random vector
m Party A can send k bits to Party B.
m Party B needs to estimate the cross correlation between the two

parts

m The scalar case: Parties observe jointly Gaussian random
variables, goal is to estimate correlation coefficient p

m Only known previous work is for scalar case and is non
constructive
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m Contributions

m Two closed form unbiased estimators, have similar variance
dependence as the previously known estimator

m New results for the vector case

m Details for the scalar setting

m Infinitely many samples at A and B, each can estimate its own
mean and variance arbitrarily well and normalize

m Assume X,Y ~ N(0,1). Equivalent model

Y =pX++1-p*Z

where Z ~ N(0,1) is independent of X
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m An estimate for p

m Party A computes the index of the largest sample (among first 2%
samples)
J := max X;
1€[2F]
m J encoded using k bits and sent to B. Party B computes the
following estimate

m /) is and unbiased estimate of p, has variance decaying as 1/k

m Results similar to Gaussian case even when distribution unknown
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Community Recovery in Hypergraphs
K. Ahn, K. Lee, and C. Suh

m Cluster data points in to different communities based on
measurements of the relation between points

m Previous literature focuses on the case of pairwise measurements

m Need subset-wise measurements to capture higher order
interactions (e.g. users annotate items with tags: 3-way relation)
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m Contributions
m Studies two new measurement models

(i) Homogeneity measurement model: whether or not a subset of
points is in the same cluster

(ii) Parity measurement model: observe sum of labels of data points
modulo 2

Measurements can be noisy (flipped)
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m Studies two new measurement models

(i) Homogeneity measurement model: whether or not a subset of
points is in the same cluster

(ii) Parity measurement model: observe sum of labels of data points
modulo 2

Measurements can be noisy (flipped)

m Characterization of number of measurements required to recover
communities scales as

242 nlogn

d (V1=0-0)?

(for the homogeneity model)
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X. Li, D. Yin , S. Pawar, R. Pedarsani , and K. Ramchandran

m Support recovery problem: Given
y=Ar+w
where A € R™*N |z k-sparse, recover supp(z)

m Quantities of interest: minimum number of measurements and
computational complexity of algorithm

m No known algorithms that achieve both O(klog V) measurement
and computational complexity
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m Contributions
m Noiseless setting: O(k) time and measurement complexity

Noisy setting: O(klog(N/k)) time and measurement complexity,
under finite alphabet assumption on x

For general z, additional log(N/k) factors

m Measurement matrix construction based on sparse graph codes
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S. Marano and A. H. Sayed

m Setting: Multi agent network engaged in a binary decision task
Agents only allowed to send one bit messages

m Contributions

m Analysis of an adapt then combine (ATC) scheme in the one bit
quantized setting

m FExpressions for steady state distribution of messages
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m Details: Network has S nodes/agents solving a BHT

m Each nodes receives iid samples, updates its state based on
cooperation with neighbouring nodes

vg(n) = prg(n) + (1 — pye(n — 1)

s
yr(n) =Y agvi(n), n>1
=1

where x(n): data received by node k at time n
yr(n): local state variable

vg(n): intermediate value

ag;: weight given to message from node [ to k
w: step size
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m Details: Network has S nodes/agents solving a BHT

m Each nodes receives iid samples, updates its state based on
cooperation with neighbouring nodes

vk(n) = py(n) + (1= pyg(n —1)
S
yr(n) =Y agvi(n), n>1
=1
where x(n): data received by node k at time n
yr(n): local state variable
vg(n): intermediate value

ag;: weight given to message from node [ to k
w: step size

m Decision performance characterized in terms of design parameters
w and ag;
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Other interesting papers

m On the Error in Phase Transition Computations for Compressed
Sensing. S. Daei, F. Haddadi, A. Amini, and M. Lotz

m One-Bit Compressive Sensing With Projected Subgradient Method
Under Sparsity Constraints. D. Liu, S. Li, and Y. Shen

Vector Approximate Message Passing. S. Rangan, P. Schniter,
and A. K. Fletcher

m Provable Subspace Clustering: When LRR Meets SSC. Y.-X.
Wang, H. Xu, and C. Leng
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