Journal Watch
 IEEE Transactions on Information Theory
 September 2019 and October 2019

Lekshmi Ramesh

Indian Institute of Science
Bangalore

September 28, 2019

Distributed Estimation of Gaussian Correlations

U. Hadar and O. Shayevitz

■ Distributed estimation of correlation

Distributed Estimation of Gaussian Correlations
 U. Hadar and O. Shayevitz

■ Distributed estimation of correlation

- Two remotely located parties A and B observe unlimited iid samples

Distributed Estimation of Gaussian Correlations
 U. Hadar and O. Shayevitz

■ Distributed estimation of correlation

- Two remotely located parties A and B observe unlimited iid samples
- Samples correspond to two different parts of a random vector

Distributed Estimation of Gaussian Correlations
 U. Hadar and O. Shayevitz

■ Distributed estimation of correlation
■ Two remotely located parties A and B observe unlimited iid samples

- Samples correspond to two different parts of a random vector
- Party A can send k bits to Party B.

Distributed Estimation of Gaussian Correlations
 U. Hadar and O. Shayevitz

- Distributed estimation of correlation

■ Two remotely located parties A and B observe unlimited iid samples

- Samples correspond to two different parts of a random vector
- Party A can send k bits to Party B.
- Party B needs to estimate the cross correlation between the two parts

Distributed Estimation of Gaussian Correlations

U. Hadar and O. Shayevitz

■ Distributed estimation of correlation

- Two remotely located parties A and B observe unlimited iid samples
- Samples correspond to two different parts of a random vector
- Party A can send k bits to Party B.
- Party B needs to estimate the cross correlation between the two parts
- The scalar case: Parties observe jointly Gaussian random variables, goal is to estimate correlation coefficient ρ

Distributed Estimation of Gaussian Correlations

U. Hadar and O. Shayevitz

■ Distributed estimation of correlation

- Two remotely located parties A and B observe unlimited iid samples
- Samples correspond to two different parts of a random vector
- Party A can send k bits to Party B.
- Party B needs to estimate the cross correlation between the two parts
- The scalar case: Parties observe jointly Gaussian random variables, goal is to estimate correlation coefficient ρ

■ Only known previous work is for scalar case and is non constructive

- Contributions

■ Contributions

- Two closed form unbiased estimators, have similar variance dependence as the previously known estimator

■ Contributions

- Two closed form unbiased estimators, have similar variance dependence as the previously known estimator
- New results for the vector case

■ Contributions

- Two closed form unbiased estimators, have similar variance dependence as the previously known estimator
- New results for the vector case
- Details for the scalar setting

■ Contributions

- Two closed form unbiased estimators, have similar variance dependence as the previously known estimator
- New results for the vector case
- Details for the scalar setting
- Infinitely many samples at A and B, each can estimate its own mean and variance arbitrarily well and normalize

■ Contributions

- Two closed form unbiased estimators, have similar variance dependence as the previously known estimator
- New results for the vector case
- Details for the scalar setting
- Infinitely many samples at A and B, each can estimate its own mean and variance arbitrarily well and normalize
- Assume $X, Y \sim \mathcal{N}(0,1)$. Equivalent model

$$
Y=\rho X+\sqrt{1-\rho^{2}} Z
$$

where $Z \sim \mathcal{N}(0,1)$ is independent of X

- An estimate for ρ
- An estimate for ρ
- Party A computes the index of the largest sample (among first 2^{k} samples)

$$
J:=\max _{i \in\left[2^{k}\right]} X_{i}
$$

- An estimate for ρ
- Party A computes the index of the largest sample (among first 2^{k} samples)

$$
J:=\max _{i \in\left[2^{k}\right]} X_{i}
$$

- J encoded using k bits and sent to B. Party B computes the following estimate

$$
\hat{\rho}=\frac{Y_{J}}{\mathbb{E}\left[X_{J}\right]}
$$

- An estimate for ρ
- Party A computes the index of the largest sample (among first 2^{k} samples)

$$
J:=\max _{i \in\left[2^{k}\right]} X_{i}
$$

■ J encoded using k bits and sent to B. Party B computes the following estimate

$$
\hat{\rho}=\frac{Y_{J}}{\mathbb{E}\left[X_{J}\right]}
$$

■ $\hat{\rho}$ is and unbiased estimate of ρ, has variance decaying as $1 / k$

- An estimate for ρ
- Party A computes the index of the largest sample (among first 2^{k} samples)

$$
J:=\max _{i \in\left[2^{k}\right]} X_{i}
$$

■ J encoded using k bits and sent to B. Party B computes the following estimate

$$
\hat{\rho}=\frac{Y_{J}}{\mathbb{E}\left[X_{J}\right]}
$$

■ $\hat{\rho}$ is and unbiased estimate of ρ, has variance decaying as $1 / k$
■ Results similar to Gaussian case even when distribution unknown

Community Recovery in Hypergraphs

K. Ahn, K. Lee, and C. Suh

- Cluster data points in to different communities based on measurements of the relation between points

Community Recovery in Hypergraphs

K. Ahn, K. Lee, and C. Suh

- Cluster data points in to different communities based on measurements of the relation between points

■ Previous literature focuses on the case of pairwise measurements

Community Recovery in Hypergraphs

K. Ahn, K. Lee, and C. Suh

■ Cluster data points in to different communities based on measurements of the relation between points

■ Previous literature focuses on the case of pairwise measurements
■ Need subset-wise measurements to capture higher order interactions (e.g. users annotate items with tags: 3-way relation)

- Contributions
- Contributions
- Studies two new measurement models
(i) Homogeneity measurement model: whether or not a subset of points is in the same cluster
(ii) Parity measurement model: observe sum of labels of data points modulo 2
Measurements can be noisy (flipped)
- Contributions
- Studies two new measurement models
(i) Homogeneity measurement model: whether or not a subset of points is in the same cluster
(ii) Parity measurement model: observe sum of labels of data points modulo 2
Measurements can be noisy (flipped)
- Characterization of number of measurements required to recover communities scales as

$$
\frac{2^{d-2}}{d} \frac{n \log n}{(\sqrt{1-\theta}-\sqrt{\theta})^{2}}
$$

(for the homogeneity model)

Sub-Linear Time Support Recovery for Compressed Sensing Using Sparse-Graph Codes

X. Li, D. Yin, S. Pawar, R. Pedarsani, and K. Ramchandran

■ Support recovery problem: Given

$$
y=A x+w
$$

where $A \in \mathbb{R}^{m \times N}, x k$-sparse, recover $\operatorname{supp}(x)$

Sub-Linear Time Support Recovery for Compressed Sensing Using Sparse-Graph Codes
X. Li, D. Yin, S. Pawar, R. Pedarsani, and K. Ramchandran

■ Support recovery problem: Given

$$
y=A x+w
$$

where $A \in \mathbb{R}^{m \times N}, x k$-sparse, recover $\operatorname{supp}(x)$
■ Quantities of interest: minimum number of measurements and computational complexity of algorithm

Sub-Linear Time Support Recovery for Compressed Sensing Using Sparse-Graph Codes
X. Li, D. Yin, S. Pawar, R. Pedarsani, and K. Ramchandran

■ Support recovery problem: Given

$$
y=A x+w
$$

where $A \in \mathbb{R}^{m \times N}, x k$-sparse, recover $\operatorname{supp}(x)$
■ Quantities of interest: minimum number of measurements and computational complexity of algorithm

■ No known algorithms that achieve both $O(k \log N)$ measurement and computational complexity

- Contributions

■ Contributions

- Noiseless setting: $O(k)$ time and measurement complexity Noisy setting: $O(k \log (N / k))$ time and measurement complexity, under finite alphabet assumption on x
For general x, additional $\log (N / k)$ factors

■ Contributions

- Noiseless setting: $O(k)$ time and measurement complexity Noisy setting: $O(k \log (N / k))$ time and measurement complexity, under finite alphabet assumption on x
For general x, additional $\log (N / k)$ factors
- Measurement matrix construction based on sparse graph codes

Detection Under One-Bit Messaging Over Adaptive Networks S. Marano and A. H. Sayed

■ Setting: Multi agent network engaged in a binary decision task Agents only allowed to send one bit messages

Detection Under One-Bit Messaging Over Adaptive Networks S. Marano and A. H. Sayed

■ Setting: Multi agent network engaged in a binary decision task Agents only allowed to send one bit messages

- Contributions

Detection Under One-Bit Messaging Over Adaptive Networks S. Marano and A. H. Sayed

■ Setting: Multi agent network engaged in a binary decision task Agents only allowed to send one bit messages

- Contributions
- Analysis of an adapt then combine (ATC) scheme in the one bit quantized setting

Detection Under One-Bit Messaging Over Adaptive Networks
 S. Marano and A. H. Sayed

■ Setting: Multi agent network engaged in a binary decision task Agents only allowed to send one bit messages

- Contributions
- Analysis of an adapt then combine (ATC) scheme in the one bit quantized setting
- Expressions for steady state distribution of messages

■ Details: Network has S nodes/agents solving a BHT

■ Details: Network has S nodes/agents solving a BHT
■ Each nodes receives iid samples, updates its state based on cooperation with neighbouring nodes

$$
\begin{aligned}
& v_{k}(n)=\mu x_{k}(n)+(1-\mu) y_{k}(n-1) \\
& y_{k}(n)=\sum_{l=1}^{S} a_{k l} v_{l}(n), n \geq 1
\end{aligned}
$$

where $x_{k}(n)$: data received by node k at time n $y_{k}(n)$: local state variable $v_{k}(n)$: intermediate value
$a_{k l}$: weight given to message from node l to k
μ : step size

■ Details: Network has S nodes/agents solving a BHT
■ Each nodes receives iid samples, updates its state based on cooperation with neighbouring nodes

$$
\begin{aligned}
& v_{k}(n)=\mu x_{k}(n)+(1-\mu) y_{k}(n-1) \\
& y_{k}(n)=\sum_{l=1}^{S} a_{k l} v_{l}(n), n \geq 1
\end{aligned}
$$

where $x_{k}(n)$: data received by node k at time n
$y_{k}(n)$: local state variable $v_{k}(n)$: intermediate value
$a_{k l}$: weight given to message from node l to k
μ : step size
■ Decision performance characterized in terms of design parameters μ and $a_{k l}$

Other interesting papers

■ On the Error in Phase Transition Computations for Compressed Sensing. S. Daei, F. Haddadi, A. Amini, and M. Lotz
■ One-Bit Compressive Sensing With Projected Subgradient Method Under Sparsity Constraints. D. Liu, S. Li, and Y. Shen
■ Vector Approximate Message Passing. S. Rangan, P. Schniter, and A. K. Fletcher
■ Provable Subspace Clustering: When LRR Meets SSC. Y.-X. Wang, H. Xu, and C. Leng

