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m Distribution testing: Given samples from an unknown distribuion
p on X", decide whether p has a particular property or is far from
having it

m Canonical examples:

m Identity testing
Disinguish w.p. at least 2/3 between p = ¢ and drv (p,q) > ¢ for a
fixed known ¢

m Independence testing

m Univariate case requires ©(vk/e2?) samples , multivariate case
requires O (k2 /e2) samples

m This work: Distribution testing for Ising models
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m Edge parameters 6.,

m Node parameters 6,

p(.’L‘) X exp (Z 0,2, + Z euvxuxv>

veV (u,v)EE

m Main result: sample complexity bounds for Ising model identity
testing and independence testing

m For tree structured models, independence testing requires O(n/¢)
samples
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Recovery of Binary Sparse Signals With Biased Measurement
Matrices

Axel Flinth and Sandra Keiper

m Recovery of sparse, binary signals using biased measurement
matrices

m Measurement matrix entries usually assumed to be drawn from
centered distributions

m For recovering binary signals, biased entries can lead to better
performance

m Basis pursuit with box constraints

min |z||1 subject to Az = b,z € [0,1]Y
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Figure 1: Recovery performance (a) Gaussian measurement matrix, (b)
Bernoulli measurement matrix.
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m Main result: Analysis of box constrained BP for biased A
A=pul+ D,

where p is the bias and D has centered, subgaussian entries

m For x( binary and k-sparse and y = Axg, x¢ is the unique solution
to box constrained BP whp if

R2
m > max{/ﬂ, min{k, N — k}} log N

m Under the same assumption, xg can be recovered by solving

min || Az — b||y subject to z € [0, 1]
€T
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Privacy With Estimation Guarantees
Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and
Mayank Varia

m The privacy-utility tradeoff
m User shares data with analyst and receives some utility
m Involves privacy risk since analyst can make additional inferences
m Apply privacy preserving mechanism to data before sharing, while

guaranteeing utility

m Examples: Users sharing movie ratings, medical records shared for
learning patterns
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m Formulation
m A hidden variable S (deemed private by user)

m A useful variable X that depends on S
m A privacy preserving mapping is applied to X to obtain Y

m Y is disclosed to analyst

® Main result: A 2 privacy utility function that captures how well
analyst can reconstruct functions of X while restricting his ability
to reconstruct functions of S
m For finite X and ), x2(X,Y) related to singular values of the
1 _1
matrix D*Pxy Dy-? where

Pxy € RI*XPI has entries Pxy (4, 5),
Dx and Dy are diagonal with marginals of X and Y on diagonal
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Other interesting papers

m Snapshot Compressed Sensing: Performance Bounds and
Algorithms. S. Jalali and X. Yuan

m Confidence Region of Singular Subspaces for Low-Rank Matrix
Regression. D. Xia

m Statistical Mechanics of MAP Estimation: General Replica
Ansatz. A. Bereyhi, R. R. Miiller, and H. Schulz-Baldes

m Analysis of Approximate Message Passing With Non-Separable
Denoisers and Markov Random Field Priors. Y. Ma, C. Rush, and
D. Baron
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