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Testing Ising Models
Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath

Distribution testing: Given samples from an unknown distribuion
p on X n, decide whether p has a particular property or is far from
having it

Canonical examples:

Identity testing
Disinguish w.p. at least 2/3 between p = q and dT V (p, q) > ε for a
fixed known q

Independence testing

Univariate case requires Θ(
√
k/ε2) samples , multivariate case

requires Θ(k
n
2 /ε2) samples

This work: Distribution testing for Ising models
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Ising model: a distribution on {−1,+1}n, has three parameters

A graph G = (V,E)
Edge parameters θuv

Node parameters θv

p(x) ∝ exp
(∑

v∈V

θvxv +
∑

(u,v)∈E

θuvxuxv

)

Main result: sample complexity bounds for Ising model identity
testing and independence testing
For tree structured models, independence testing requires O(n/ε)
samples
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Recovery of Binary Sparse Signals With Biased Measurement
Matrices
Axel Flinth and Sandra Keiper

Recovery of sparse, binary signals using biased measurement
matrices

Measurement matrix entries usually assumed to be drawn from
centered distributions
For recovering binary signals, biased entries can lead to better
performance
Basis pursuit with box constraints

min
x
‖x‖1 subject to Ax = b, x ∈ [0, 1]N
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Figure 1: Recovery performance (a) Gaussian measurement matrix, (b)
Bernoulli measurement matrix.
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Main result: Analysis of box constrained BP for biased A

A = µ1 +D,

where µ is the bias and D has centered, subgaussian entries

For x0 binary and k-sparse and y = Ax0, x0 is the unique solution
to box constrained BP whp if

m ≥ max
{
R2

µ2 ,min{k,N − k}
}

logN

Under the same assumption, x0 can be recovered by solving

min
x
‖Ax− b‖2 subject to x ∈ [0, 1]N
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Privacy With Estimation Guarantees
Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and

Mayank Varia

The privacy-utility tradeoff

User shares data with analyst and receives some utility
Involves privacy risk since analyst can make additional inferences
Apply privacy preserving mechanism to data before sharing, while
guaranteeing utility

Examples: Users sharing movie ratings, medical records shared for
learning patterns

7 / 9



Privacy With Estimation Guarantees
Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and

Mayank Varia

The privacy-utility tradeoff
User shares data with analyst and receives some utility

Involves privacy risk since analyst can make additional inferences
Apply privacy preserving mechanism to data before sharing, while
guaranteeing utility

Examples: Users sharing movie ratings, medical records shared for
learning patterns

7 / 9



Privacy With Estimation Guarantees
Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and

Mayank Varia

The privacy-utility tradeoff
User shares data with analyst and receives some utility
Involves privacy risk since analyst can make additional inferences

Apply privacy preserving mechanism to data before sharing, while
guaranteeing utility

Examples: Users sharing movie ratings, medical records shared for
learning patterns

7 / 9



Privacy With Estimation Guarantees
Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and

Mayank Varia

The privacy-utility tradeoff
User shares data with analyst and receives some utility
Involves privacy risk since analyst can make additional inferences
Apply privacy preserving mechanism to data before sharing, while
guaranteeing utility

Examples: Users sharing movie ratings, medical records shared for
learning patterns

7 / 9



Privacy With Estimation Guarantees
Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and

Mayank Varia

The privacy-utility tradeoff
User shares data with analyst and receives some utility
Involves privacy risk since analyst can make additional inferences
Apply privacy preserving mechanism to data before sharing, while
guaranteeing utility

Examples: Users sharing movie ratings, medical records shared for
learning patterns

7 / 9



Formulation

A hidden variable S (deemed private by user)
A useful variable X that depends on S

A privacy preserving mapping is applied to X to obtain Y

Y is disclosed to analyst

Main result: A χ2 privacy utility function that captures how well
analyst can reconstruct functions of X while restricting his ability
to reconstruct functions of S

For finite X and Y, χ2(X,Y ) related to singular values of the
matrix D−

1
2

X PXY D
− 1

2
Y where

PXY ∈ R|X |×|Y| has entries PXY (i, j),
DX and DY are diagonal with marginals of X and Y on diagonal
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Other interesting papers

Snapshot Compressed Sensing: Performance Bounds and
Algorithms. S. Jalali and X. Yuan
Confidence Region of Singular Subspaces for Low-Rank Matrix
Regression. D. Xia
Statistical Mechanics of MAP Estimation: General Replica
Ansatz. A. Bereyhi, R. R. Müller, and H. Schulz-Baldes
Analysis of Approximate Message Passing With Non-Separable
Denoisers and Markov Random Field Priors. Y. Ma, C. Rush, and
D. Baron
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