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Discrete Linear Canonical Transform Based on
Hyperdifferential Operators (Aykut Koc, Burak Bartan,
and Haldun M. Ozaktas)

Achievements:

I A new approach to define the discrete linear canonical
transform (DLCT) by employing operator theory

Basics :
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,

AD − BC = 1 (Unitary transform)

I LCT as a linear integral transform :

CLf (u) =
√
βe−i

π
4

∫ ∞
−∞

expiπ(u2 − 2βuu′ + γu′2)f (u′)du′

I Every triplet (α, β, γ) corresponds to a different LCT.



Continue .....

I CL1L2f (u) = CL1CL2f (u) and CL2L1f (u) = f (u), if L2 = L−11

I Scaling : LM =

[
M 0
0 1

M

]
CLM = MM f (u) =

√
1
M f ( u

M )

I Fractional Fourier Transform (FRT) : LF a
1c

=

[
cos θ sin θ
− sin θ cos θ

]
,

θ = πa/2 and a is the fractional order, a = 1 =⇒ FRT =
FT. F a

1c f (u) =
∫∞
−∞ K (u, u′)f (u′)du′

I Chirp Multiplication : LQp =

[
1 0
−q 1

]
,

CQq f (u) = Qqf (u) = exp(−iπqu2)f (u)

I Iwasawa decomposition :
CL = QqMMF a

1c =⇒ L = LQpLMLF a
1c
, a, q,M be chosen

appropriately.



Hyperdifferential forms

I Qq = exp(−i2πqU2

2 ) , MM = exp(−i2π ln(M)UD+DU
2 ) and

F a
1c = exp(−iaπ2U2+D2

2 )

I Uf (u) = uf (u) and Df (u) = 1
i2π

df (u)
du and U = FDF−1

I abstract operators being replaced by matrix operators,
CL = QqMMFa

1c

I Qq = exp(−i2πqU2

2 ) , MM = exp(−i2π ln(M)UD+DU
2 ) and

Fa
1c = exp(−iaπ2U2+D2

2 )

I u = nh, Um,n =

{√
N
π sin(πnN ) form = n

0, form 6= m

I D = FUF−1, F : DFT

I CL : Unitary/ D,U : Hermitian/ Qq,MM ,F
a
1c : Unitary



Sinusoidal Parameter Estimation from Signed
Measurements via Majorization-Minimization Based
RELAX† (Jiaying Ren, Tianyi Zhang, Jian Li, and Petre
Stoica)

Achievements:

I present a majorization-minimization (MM) based 1bRELAX
algorithm, referred to as 1bMMRELAX, for sinusoidal
parameter estimation using signed measurments obtained via
one-bit sampling

I introduce a proper majorizing function and develop the MM
procedure for minimizing the negative log-likelihood function
for the signed measurements.



Problem formulations:

I 1− D sinusoidal signal

st(θ) =
K∑

k=1

Aksin(ωkt + φk) =
K∑

k=1

ak sin(ωkt) + bkcos(ωkt),

K : the number of sinusoids, Ak ∈ R+ : amplitude,
ωk ∈ [0, π] : frequency, φk ∈ [0, 2π] : phase (of the k−th
sinusoid component)

I yn = sign(sn(θ) + en − hn), additive noise e ∈ RN : iid
Gaussian with mean zero and unknown variance σ2, hn ∈ RN :
known threshold vector.

I likelihood function of the signed measurements :
Lβ =

∏N−1
n=0 Φ(yn

sn(θ)−hn
σ ) =∏N−1

n=0 Φ[yn
(
∑K

k=1 ak sin(ωkn)+bk cos(ωkn))−hn
σ ],

I Φ(x) : cdf of standard normal distribution, unknown
parameter : β = [θT , σ]T



continue ..

I Goal : estimating the parameter vector β and K based on the
signed measurement vector y ∈ [−1, 1]N

I Maximum Likelihood Estimation: ML estimate of the
parameter vector by minimizing the negative log-likelihood

function:
∧
β̃ = arg minβ̃ l(β̃) =

arg minβ̃
∏N−1

n=0 Φ[yn((
∑K

k=1 ãk sin(ωkn)+ b̃k cos(ωkn))−λhn)]

I λ = 1
σ , ãk = 1

σak , b̃k = 1
σbk , β̃ = [θ̃T , λ]T , and

θ̃ = [ã1, b̃1, ω̃1, . . . , ãK , b̃K , ω̃K ]

Majorization function

I With an auxiliary vector
x(β̃) = (xn(β̃))N−1n=0 = yn(sn(θ̃)− λh)N−1n=0 and x i = x(β̃i ), the
estimate obtained at the i−th MM iteration,



continue

I G (β̃|β̃i ) = G̃ (x(β̃)|x i ) =∑N−1
n=0 f (x in) + f ′(x in)(xn(β̃)− x in) + 1

2(xn(β̃)− x in)2, majorizes
the objective function

I computational complexity: 1bRELAX(O(CKN2 + CK 2N2))
where C is the number of iterations required to achieve
practical convergence

I 1bMMRELAX : O(KN2)



Group Greedy Method for Sensor Placement (Chaoyang
Jiang, Zhenghua Chen, Rong Su, and Yeng Chai Soh)

Achievements:
Providing necessary and sufficient conditions for convergence of
existing greedy algorithms and newly proposed group greedy
algorithm for sensor placement

Problem Statemant

I physical field ζ = Φ̃α ∈ RN , where Φ̃ ∈ RN×n with n < N

I aim is to estimate α from

y = H(ζ + ν) = HΦ̃α + Hν,

y ∈ RM , M is the number of sensor observations, H ∈ RM×N

whose i−th row is eTsi , Φ = HΦ̃ = [φs1 , . . . , φsM ]T ∈ RM×n,
si ∈ N = {1, 2, . . . ,N} corresponds to i−th sensing location,
φTsi is the observation vector, noise ν ∼ N (0, σ2I )



Measure of recovery performance

I mean squared error (MSE):

MSE (α̃) = σ2tr((ΦTΦ)−1) =
n∑

i=1

σ2

λi

I log volume of the confidence ellipsoid (VCE):

VCE (α̃) = β − 1

2
log det(ΦTΦ)

I worst case error variance (WCEV)

WCEV (α̃) = σ2λmax((ΦTΦ)−1)

I Goal : error of the estimated α̃ is less than predefined
threshold and M is minimized



Combinatorial optimization problem

I min M = |S |
subject to S ⊂ N, f (S) ≥ γ

I fMSE (S) = n
ε − tr(Ψ−1) ≥ n

ε − γA, fVCE (S) = log det Ψ ≥ γD ,
fWVEV = λn ≥ 1

γE

I Greedy algorithm : Update stage:
s∗ = arg maxj∈N\S f (S ∪ {j}), S = S ∪ {s∗}
run till constraint is not satisfied

I Dual Problem:
max f (S)
subject to S ⊂ N, |S | = M

I A and B be both optimal solutions of dual problem with
MA = |A| < MB = |B|
A = arg max|S |=MA,S⊂N f (S) and b = arg max|S|=Mb,S⊂N f (S)

I Necessary and sufficient condition: The greedy algorithm can
obtain the optimal solution of dual problem iif ∀MAMB ,
A ⊂ B.



Group greedy Algorithm

I when determining each sensing location select a group of L
suboptimal sensor configurations instead of the current
optimal one

I Update stage :
∀ i ∈ [1 : L], Sk+1i = Skl∗i ∪ {j

∗
i } where

{l∗i , j∗i } = arg rankdei
li∈[1:N],ji∈N\Skli

f (Skli ∪ {ji})

k = k = 1, S = Sk1 and M = k

I ‘rankdei’ represents an operator which ranks all elements of a
set in a descending order and returns the i−th element

I Necessary and sufficient condition: Denote the optimal
solution of dual problem by S∗M . Let Sk = {Sk1, . . . ,SkL}.
Then group greedy algorithm can provide the optimal solution
of dual problem iif for every k ∈ [1,M − 1] there exists
i ∈ [1, L] such that Ski ⊂ S∗k+1



Other papers:

I Information-Theoretic Pilot Design for Downlink Channel
Estimation in FDD Massive MIMO Systems (Yujie Gu ; Yimin
D. Zhang)

I Unimodality-Constrained Matrix Factorization for
Non-Parametric Source Localization (Junting Chen ; Urbashi
Mitra)

I Delta-Ramp Encoder for Amplitude Sampling and its
Interpretation as Time Encoding (Pablo Martinez-Nuevo ;
Hsin-Yu Lai ; Alan V. Oppenheim)

I Localization from Incomplete Euclidean Distance Matrix:
Performance Analysis for the SVD-MDS Approach (Huan
Zhang ; Yulong Liu ; Hong Lei)

I Advanced Low-Complexity Multicarrier Schemes Using
Fast-Convolution Processing and Circular Convolution
Decomposition (AlaaEddin Y. M. Loulou ; Juha Yli-Kaakinen
; Markku K. Renfors )



Other papers:

I Correction of Corrupted Columns through Fast Robust Hankel
Matrix Completion (Shuai Zhang ; Meng Wang)

I On the Use of the Z Transform of LTI Systems for the
Synthesis of Steered Beams and Nulls in the Radiation
Pattern of Leaky-Wave Antenna Arrays (Rafael
Verdu-Monedero ; Jose Luis Gomez-Tornero)

I Semi-Blind Inference of Topologies and Dynamical Processes
over Dynamic Graphs (Vassilis N. Ioannidis ; Yanning Shen ;
Georgios B. Giannakis)

I Covariance Matrix Estimation from Linearly-Correlated
Gaussian Samples (Wei Cui ; Xu Zhang ; Yulong Liu)

I New Saddle-Point Technique for Non-Coherent Radar
Detection with Application to Correlated Targets in
Uncorrelated Clutter Speckle (Josef Alexander Zuk ; Stephen
Bocquet ; Luke Rosenberg)



Other papers:

I Antithetic Dithered 1-bit Massive MIMO Architecture:
Efficient Channel Estimation via Parameter Expansion and
Pseudo Maximum Likelihood (David K. W. Ho ; Bhaskar D.
Rao)

I Frequency Synchronization for Uplink Massive MIMO with
Adaptive MUI Suppression in Angle-domain (Yinghao Ge ;
Weile Zhang ; Feifei Gao ; Geoffrey Ye Li)

I Parameter Estimation of Heavy-Tailed AR Model with Missing
Data via Stochastic EM (Junyan Liu ; Sandeep Kumar ;
Daniel P. Palomar)

I Learning To Detect (Neev Samuel ; Ami Wiesel ; Tzvi Diskin)

I Underdetermined DOA Estimation for Wide-Band Stationary
Sources in Unknown Noise Environment (L. Huang ; Q.
Zhang ; S. Wu ; So)
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