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Hypothesis Test for Bounds on the Size of Random
Defective Set (A. Dyachkov, N. Polyanskii, V. Shchukin,
and I. Vorobyev)

Problem Considered
How to distinguish reliably the null hypothesis H0: the number of
defective elements is at most s1, and the alternative one H1: the
number of defective elements is at least s2.

Results
I For the case s1 = s and s2 = αs, α ≥ 1 fixed, the optimal

number of non-adaptive tests required to accept or reject H0

with error probability ε is Θ(log 1
ε ).

I When s1 = s and s2 = s + c for c = o(s), the necessity of
O( s

c log 1
ε

) tests and provide a simple weight algorithm with

O( s2

c2 log 1
ε

) tests.

I Simulation results confirm the advantage of this algorithm
over the COMP algorithm adapted for this problem.



Basis Pursuit Denoise With Nonsmooth Constraints (R.
Baraldi, R. Kumar, and Aleksandr Aravkin )

Problem Considered

min
x
φ(C(x)) s.t. ψ(A(x)− b) ≤ σ, (2)

where φ and ψ may be nonsmooth, nonconvex, but have
well-defined proximity and projection operators:

proxηφ(y) = arg min
x

1

2η
‖x − y‖2 + φ(x)

projψ(·)≤σ = arg min
ψ(x)≤σ

1

2η
‖x − y‖2.

(3)

C : Cm×n → Rc and A : Cm×n → Rd



Results

Relaxed Version

min
x ,w1,w2

φ(w1) +
1

2η1
‖C(x)− w1‖2 +

1

2η2
‖w2 −A(x) + b‖22

s.t. ψ(w2) ≤ σ.

I Proposed a new approach for basis pursuit denoise and
residual-constrained low-rank formulations.

I Adapted to a variety of nonsmooth and nonconvex data
constraints.

I Solved using prox-gradient and Value-function Optimization.

I The algorithms are simple, scalable, and efficient.

I Sparse curvelet denoising and low-rank interpolation of a
monochromatic slice from the 4D seismic data volumes
demonstrate the potential of the approach.



Clustering of Data With Missing Entries Using Non-Convex
Fusion Penalties (S. Poddar and M. Jacob )

Problem Considered
Clustering the points X = {xi} in the presence of entries missing
uniformly at random. The rows of X are referred to as features.
Assume that each entry of X is observed with probability p0. The
entries measured in the i th column are denoted by:

yi = Si xi , i = 1, . . ,KM (7)

where Si is the sampling matrix, formed by selecting rows of the
identity matrix. Consider the following optimization problem to
cluster data with missing entries:

{u∗i } = min
{ui}

KM∑
i=1

KM∑
j=1

‖ui − uj‖2,0

s.t ‖Si (xi − ui )‖∞ ≤
ε

2
, i ∈ {1 . . .KM}

(8)



Continue ..

‖x‖2,0 =

{
0, if ‖x‖2 = 0

1, otherwise

Parameters
I min{m,n} ‖zk(m)− zl(n)‖2 ≥ δ; ∀ k 6= l

I
max
{m,n}

‖zk(m)− zk(n)‖∞ = ε; ∀k = 1, . . . ,K

I

µ(y) =
P‖y‖2∞
‖y‖22

, y ∈ RP

max
{m,n}

µ(zk(m)− zl(n)) ≤ µ0; ∀ k 6= l



Results

Proposed algorithm can successfully recover the clusters with high
probability when:

I The clusters are well separated (i.e., low κ = ε
√
P
δ ).

I The sampling probability p0 is sufficiently high.

I The coherence µ0 is small.
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