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BIg-p” Data: large number of variables “p”

* Across modern applications {images, signals, networks}
many”many variables

gene expression
profiles

_ variables: genes variables: users

fMRI images social networks
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SIg-p” Data
* A critical question given a large number of variables of interest:

» What are the connections/dependencies among the variables?

- Consider a visual representation of this problem: where the variables are
represented as nodes of a graph, and edge weights represent dependenci

Gene Y

Gene
- Estimating the dependencies among the variables

Is then equivalent to estimating such a weighted graph
Gene Z
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Gene Y
Gene

Gene Z

- What dependencies between variables could we be interested in?
« Correlation? Gene X activity is highly correlated with Gene Z activity
- Causation? Gene X being active causes Gene Z to be active

- Gonditional (In)dependence: Given all other genes, are Gene X and Gene Z
(in)Jdependent?
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Graph Structure Gens Gene Y

Gene Z
- What dependencies between variables could we be interested in?

- Gonditional (In)dependence: Given all other genes, are Gene X and Gene Y
(in)dependent?

« X = “shoe-size” and Y = “gray-hair” are “marginally” dependent (think of
small children with small shoe-sizes and no gray-hair)

« But “shoe size” and “gray hair” are common-sensically not directly
associated

- Given Z = “age”, the dependence vanishes away: they are conditionally
independent



Conditional Independence Graph Structure

» Lack of an edge: lack of “direct dependence”

* no-edge(x,y) : xandy are independent given rest of
nodes
X1 X0 o X3 J_X4‘{X1,X2,X5}

X2 \
X3

Ox4
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Graphical Model Structure
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B Given some graph G representing the conditional independence
edge structure among the vector of random variables X

B \What is the set of distributions over X that respects this
conditional independence structure (in other words, that satisfies
all these conditional independences among the variables)



Graphical Model Structure
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B Given some graph G representing the conditional independence
edge structure among the vector of random variables X

B \What is the set of distributions over X that respects this
conditional independence structure (in other words, that satisfies
all these conditional independences among the variables)

B This set of distributions is called the graphical model
represented by G
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Graphical Model Structure

X3 L Xy [{X1, X2, X5}

B The graphical model represented by G is a family of distributions that
respects the conditional independence structure specified by G

B Do these distributions have any particular algebraic form?

B Hammersley Clifford: they take the form of a product of local factors,

each of which depend olnly on a clique (fully connected subgraph)

p(X) = — Va(Xa)¥p(Xp)¥c(Xc)



Graphical Model Structure

- The conditional independence graph structure, underlying a
graphical model, is an object of interest in varied applications

- hetwork analysis, medical diagnosis, gene expression analyses,
natural language processing, ....

R Sl

US Senate 109th
Congress

Banerjee et al, 2008 Rosetta Informatics

Compendium of gene
expression profiles



Graphical Model Structure Selection

GIVEN: n samples of X = (X4,...,X,)

drawn from some unknown graphical model distribution P(X; G)
for some unknown graph G, recover the graph G.
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Graphical Model Structure Selection

GIVEN: n samples of X = (Xq,...,X,)
drawn from some unknown graphical model distribution P(X; G)
for some unknown graph G, recover the graph G.
It is common to further assume a parametric model form for P(X; G)

Ising Models, Multinomial (Discrete) Models,
Gaussian Graphical Models, ...



—xamples: Parametric Graphical Models

1
p(X7 97 G) — Z(Q) CXP ( Z 9875 ¢St(XS7 Xt))
(s,t)eE(G)

¢st(xs,x4) : arbitrary potential functions

Ising Ts Ty
Potts I(xs = x4)
Indicator I(xs, 2 = 3, k)



Parametric Graphical Model Selection

GIVEN: n samples of X = (X3,...,X,) with distribution p(X; 6*; G), where

p(X;0%) = exp { Z OstPst(Ts, ) — A(H*)}

(s,t)eE(G)

PROBLEM: Estimate graph GG given just the n samples.
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Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any
graph (based on learning the parametric graphical model given the graph)
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Graphical Model Selection: Classical Approaches

- Score Based Approaches: search over space of graphs, with a score for any
graph (based on learning the parametric graphical model given the graph)

- Constraint-based Approaches: estimate individual edges by hypothesis tests
for conditional independences

+ Caveats:
» difficult to provide guarantees for estimators

» estimation problems they solve are NP-Hard



Graphical Model Selection

- Modern Approach: statistical estimation of the parametric graphical model
subject to constraints on the underlying graph (e.g. edge bounds, degree
bounds, etc.)

- Caveats: such statistical estimation is not always computationally
tractable; statistical guarantees plausible, but require advanced arguments



Graph-structure constrained ML

N 1 — |
0 i —— ) 1 (). 9
€ arg min { n; og p(x‘"; )}

0:0c0 o
graph neg. log-likelihood

constraints

- Statistical Estimation typically intractable because of
» Graph Constraints: typically non-convex

» Likelihood function: typically NP-Hard to compute



Outline: Graphical Model Selection

* Ising Models
* In brief: Gaussian Graphical Models, Multinomial Discrete Graphical Models

* In brief: a new class of parametric graphical models — exponential family
graphical models



Ising Model Selection

. 0%; G), where

., X,) with distribution p(X

— (X,
S
(s,t)eEE(G)

(GIVEN: n samples of X
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Ising Model Selection

GIVEN: n samples of X = (X3,...,X,) with distribution p(X; 6*; G), where

p(X;07) = exp { Z 051 Xs Xt — A(H*)}

(s,t)eEE(G)

Applications: statistical physics, computer vision,
soclal network analysis

US Senate 109th
Congress

Banerjee et al, 2008



Ising Model Selection

 Just computing the likelihood of a knewn Ising model is NP Hard (since the
normalization constant requires summing over exponentially many

configurations)
Z(0) = Z exp (Z 0o T ZIZt)
st

xe{—1,1}P
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- Estimating the unknown Ising model parameters as well as graph structure
might seem to be NP Hard as well



Ising Model Selection

 Just computing the likelihood of a knewn Ising model is NP Hard (since the
normalization constant requires summing over exponentially many
configurations)

Z(0) = Z exp (Z 0o T :ct)

rxe{—1,1}r

- Estimating the unknown Ising model parameters as well as graph structure
might seem to be NP Hard as well

« On the other hand, it is tractable to estimate the node-wise conditional
distributions, of one variable conditioned on the rest of the variables



Neighborhood Estimation in Ising Models

For Ising models, node conditional
distribution is just a logistic regression model:

p(X’r‘XV\r; 0, G) —

eXp(ZtEN(T) 2 HrrtXr,aXt)

eXp(ZtEN(T) 2 Hr,ater»Xt) —I_ ].



Neighborhood Estimation in Ising Models

For Ising models, node conditional

N e distribution is just a logistic regression model:
N “' X«,- -
X ¥
®. VA p W 0,G) =
Xu s < ANQN ' \ CXP ( Zte N () 20, X, X t) + 1
X,

« So instead of estimating graph structure constrained global Ising model, we
could estimate structure constrained local node-conditional distributions —
logistic regression models



Neighborhood Estimation in Ising Models

For Ising models, node conditional

N distribution is just a logistic regression model:
. [ Xs- )
X X,
X u f \ " VAr ¥ exp(zte N (r) 2 (97“75 X T X t) + 1
’ / X-r ' Xu\'l —
X,

« So instead of estimating graph structure constrained global Ising model, we
could estimate structure constrained local node-conditional distributions —
logistic regression models

- But would node-conditional distributions uniquely specify a consistent joint,
or even be consistent with any joint at all?
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Conditional and Joint Distributions

- Would node-conditional distributions uniquely specify a consistent joint, or
even be consistent with any joint at all?

* In general: no!
- But for the Ising model and node-wise logistic regression models: yes!

- Theorem (Besag 1974, R., Wainwright, Lafferty 2010): An Ising model uniquely
specifies and is uniquely specified by a set of node-wise logistic
regression models.



Neighborhood Estimation in Ising Models

For Ising models, node conditional

N distribution is just a logistic regression model:
\ / Xs' )
X X,
\l B \' (X, [Xy,160,6) = D2t 202
_ ______“::-<;"' D T ri Y, —
/X, @ Xy

 Global graph constraint of sparse, bounded degree graphs is equivalent to
local constraint of bounded node-degrees (number of neighbors)

- Estimate node neighborhoods via constrained logistic regression models, and
stich node-neighborhoods together to form global graph



Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N (s)
for all s € V.

Method: Given n i.i.d. samples {X®) ..., X™1 perform logistic regression of
each node X on X\, := {Xs, t # s} to estimate neighborhood structure N(s).

& For each node s € V, perform ¢; regularized logistic regression of X on the
remaining variables X\ q:

é\[s] ;= arg min { ZfGX() + pn|9l1}

gcRpP—1 ——

loglstlc hkehhood regularization

© Estimate the local neighborhood N (s) as the support (non-negative entries) of
the regression vector 6|s].

© Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).



Empirical behavior: Unrescaled plots
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Star graph; Linear fraction neighbors

Number of samples



Sufficient conditions for consistent model selection

@ graph sequences G, 4 = (V, F) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (R., Wainwright,

Lafferty, 2010)
T
QLR(na 2 d) e = FE lng > ecrit

and reqularization parameter p, > c¢1 T 1ngL P then with probability greater
than 1 — 2exp ( — co(7 — 2)logp) — 1:
(a) Uniqueness: For each node s € V, the {1-reqularized logistic convex

program has a unique solution. (Non-trivial since p > n = not strictly convez).

(b) Correct exclusion: The estimated sign neighborhood N (s) correctly
excludes all edges not in the true neighborhood.

(c) Correct inclusion: For 0,,;, > csTVdp,,, the method selects the correct
signed neighborhood.

Consequence: For 0,,;, = Q(1/d), it suffices to have n = Q(d° log p).




Assumptions

Define Fisher information matrix of logistic regression:

Q* :=Ep- V2 f(0*; X)].
Al. Dependency condition: Bounded eigenspectra:

Cmin S Amzn(Qg’S)a and Amam(QE’S) S Cmaa;-
)\ma:r; (EQ* [XXT]) < Dmax-

A2. Incoherence There exists an v € (0, 1] such that

[Q5c5(Q5s) oo < 1—v.
where [| Al oo 00 1= max; 3 [y
@ bounds on eigenvalues are fairly standard

@ incoherence condition:

» partly necessary (prevention of degenerate models)
» partly an artifact of /;-regularization

@ incoherence condition is weaker than correlation decay
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* Ising models are a specific parametric graphical model family, suited to the
case where the variables are binary.



Multinomial, Gaussian Graphical Models

* Ising models are a specific parametric graphical model family, suited to the
case where the variables are binary.

* When variables are categorical, taking values in a finite set:
» Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)

» Applications: natural language processing, image analysis, bioinformatics



Multinomial, Gaussian Graphical Models

* Ising models are a specific parametric graphical model family, suited to the
case where the variables are binary.

 When variables are thin-tailed continuous
» Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012)

» Applications: widely used In b|0|nformat|cs e.g. genomic networks from
micro-array data "

2P L Rosetta Informatics
Compendium of gene
RS e ' expression profiles



Multinomial, Gaussian Graphical Models

* Ising models are a specific parametric graphical model family, suited to the
case where the variables are binary.

* When variables are categorical, taking values in a finite set:

» Multinomial/Discrete Graphical Models (Jalali, R., Vasuki, Sanghavi, 2011)
* When variables are thin-tailed continuous

» Gaussian Graphical Models (R., Raskutti, Wainwright, Yu, 2012)

- Similar results as in the Ising model case: estimate constrained node-
conditional distributions, and combine to estimate overall graph
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Parametric Graphical Models

- Classical parametric graphical model families —Ising, Multinomial/discrete,
Gaussian models

» suited for binary, categorical/discrete, and thin-tailed continuous data
respectively

- What if we have data that does not fall into these categories: skewed
continuous, or count-valued for instance

» Are there more general parametric graphical model families?

» Exponential Family Graphical Models (Yang, R., Allen, Liu 2012, 2014)
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* Ising Models
» hode-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models

» hode-conditional distribution: Multinomial



Recap: Classical Parametric Graphical Models

* Ising Models

» node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models

» node-conditional distribution: Multinomial
« Gaussian Graphical model

» hode-conditional distribution: univariate Gaussian



Recap: Classical Parametric Graphical Models

* Ising Models
» node-conditional distribution: Bernoulli
- Multinomial/Discrete Graphical Models
» node-conditional distribution: Multinomial
« Gaussian Graphical model
» node-conditional distribution: univariate Gaussian

 Perhaps there’s a pattern here ...



Sackground:

—xponential Family

Distributions

e Most common univariate distributions: Gaussian, Exponential,
Bernoulli, Binomial, Poisson, Negative binomial, ...

o A broad class of distributions sharing a certain form:

P(X;0) =exps Y 6; + C(X) — A(0) }
\ 1EL y
o Ingredients:
0={0;}ict Parameters
= {Bi(X)}iez
C(X) Base measure

A(0) = log { Y exp(6, B(X)) + C(X)}
X

|_og-partition function



Towards Exponential Family Graphical Models

- Suppose each node-conditional distribution is specified by some exponential
family distribution:

P(XS‘XV\S) — exp{Es(XV\s) + CS(XS) — /Z\S(XV\S)}
Es(Xv\s) Parameters
Cs(X) Base measure
As(9) Log-partition function

- Key Question: Does there exist a consistent joint distribution, and if so, is it
unique?



—xponential Family Graphical Models

- Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are
specified by exponential family distributions as in previous slide. Then there

exists a unique joint distribution consistent with these node-conditional
distributions, and moreover it takes the following form:

P(X) = exp{ZQs +> ) O + ..

scV teN(s)

k
+> > Oy +3 0 CGo(Xs) — A(@)}
..... t, EN(s) j=2 s



—xponential Family Graphical Models

- Theorem (Yang, R., Allen, Liu, 2012): Suppose node-conditional distributions are
specified by exponential family distributions as in previous slide. Then there

exists a unique joint distribution consistent with these node-conditional
distributions, and moreover it takes the following form:

P(X) = exp{ZQs +> ) O + ..

scV teN(s)

k
+> > Oy +3 0 CGo(Xs) — A(@)}
..... t, EN(s) j=2 s

 The joint distribution moreover is a graphical model distribution with respect

to a graph G specified by the local Markov independencies satisfied by the
node-conditional distributions



—xample: Poisson Graphical Models

P(X)=expq » O:sXs+ > O X Xe+ Y log(Xs!) — A(6) ¢ .

S (s,t)eE S
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—xample: Mixed Graphical Models

P(Y,Z)ocexp{ dOrve+ > 05704 ) 0¥

s€Vy s'eVyz (s,t)EEy
3 05, 2o 2ok 3 05 V2o Y log(vil)
(s’ , t")EE, (s,s’)EEy, seVy

Poisson-Ising Models



—xample: Mixed Graphical Models

@ Combine ‘Level Il RNA-sequencing’ data and ‘Level Il non-silent somatic mutation
and level |1l copy number variation data’ for 697 breast cancer patients.
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Poisson-Ising Models

@ (Yellow) Gene expression via RNA-sequencing, count-valued
@ (Blue) Genomic mutation, binary mutation status
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Learning Exponential Family Graphical Models

- By construction, estimating exponential family graphical models is equivalent
to estimate node-conditional univariate exponential family distributions

« Graph Structure Learning Procedure:

» Estimate graph-structure constrained node-conditional distributions, and
estimate node-neighborhoods

» Stitch node-neighborhoods together to form global graph estimate

- Similar statistical guarantees for graphical model structure recovery as in
Ising, Gaussian graphical model case can be showed even under this general
setting (Yang, R., Allen, Liu 2014)



—xperiments: Poisson Graphical Models

» Poisson Graphical Model: 4NN Grid structure
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B = n/(clogp)



Thank You!



