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Sample-Efficient Algorithms for Recovering Structured Signals
From Magnitude-Only Measurements
G. Jagatap and C. Hegde

Sparse phase retrieval: Recover x ∈ Rn, s-sparse, from magnitude
only measurements

yi = |a>i x|, i ∈ [m]

Used in modeling imaging systems where only light intensity is
measurable, not phase

Contributions
Recovery algorithm CoPRAM with sample complexity s2 logn when
ai are Gaussian

Under power law decay assumption on coefficients of x, sample
complexity shown to be s logn

Results for block sparse case
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The algorithm: good initialization + alternating minimization
Compute
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and declare indices of top Mjj as support

Initialize x as top singular vector of
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An alternating minimzation step
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On the Minimal Overcompleteness Allowing Universal Sparse
Representation
R. Mulayoff and T. Michaeli

Sparse representation over redundant dictionaries
Represent any/most x ∈ Rn as a linear combination of k < d
columns of dictionary Φ ∈ Rd×n

Minimum n that allows this representation

Contributions
For certain regimes of error and sparsity level, can have universal
representation with moderate redundancy

Results for both random and deterministic x

Minimum overcompleteness scales roughly as
(

1
ε

) d
k−1
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Normalized k-sparse representation error: For a given Φ, x

ε(Φ, x) = min
α∈Rn

‖x− Φα‖
‖x‖

s.t. ‖α‖0 ≤ k

Require ε(Φ, x) ≤ ε

Parameters of interest: Sparsity ratio, Overcompleteness ratio

s = k

d
, o = n

d

Characterize minimal overcompleteness s.t. all/most x ∈ Rn have
a sparse representation
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Estimating the Coefficients of a Mixture of Two Linear Regressions
by Expectation Maximization
J. M. Klusowski, D. Yang, and W. D. Brinda

Mixture of linear regressions (MoLR)

Yi = Ri(X>i θ∗) + εi, i ∈ [n],

where Xi
iid∼ N (0, I)

Ri
iid∼ Rademacher(1/2)

εi
iid∼ N (0, σ2)

Estimate θ∗

Contributions
Convergence guarantees for EM applied to MoLR, provided good
initialization

Guarantees based on cosine similarity between target θ∗ and
initialization θ0
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Connections to phase retrieval: Squaring observations in the
symmetric MoLR gives phase retrieval model

Y 2
i = Ỹi = |X>i θ∗|2

Can use ideas from phase retrieval for the initialization step

For iteration t, authors provide upper bound on the error
‖θ∗ − θ(t)‖
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Other interesting papers

Optimization-Based AMP for Phase Retrieval: The Impact of
Initialization and `2 Regularization. J. Ma, J. Xu, and A. Maleki
Noisy Adaptive Group Testing: Bounds and Algorithms. J.
Scarlett
Determining the Number of Samples Required to Estimate
Entropy in Natural Sequences. A. D. Back, D. Angus, and J.
Wiles
Symmetry, Saddle Points, and Global Optimization Landscape of
Nonconvex Matrix Factorization. X. Li, J. Lu, R. Arora, J.
Haupt, H. Liu, Z. Wang, and T. Zhao
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