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Compressed Sensing

Model

y = Ax + z
where y, z ∈ RM , x ∈ RN and A ∈ RM×N

Problem Statement

Under lasso setting

x̂ = arg min
x

1

2
‖y − Ax‖2

2 + λ‖x‖1

where λ > 0 is a tunable parameter that controls the tradeoff between
sparsity and measurement fidelity in x̂ .
Under Bayesian setting

x̂MAP = arg max
x

p
(
x|y;σ2

)
with sparse promoting prior.
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Classical Sparse Recovery Algorithms

Greedy algorithms

Such as MP, OMP, IHT etc. They are fast.

Convex Relaxed

Such as BP, ISTA, AMP etc. They are slow and recovery performance is
better than greedy algorithms

Non Convex

Such as SBL. Its slow but performance is better than both convex relaxed
and greedy techniques.

Both Convex relaxed and Non Convex algorithms are iterative in nature.
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DNN based Sparse Recovery
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Deep Neural Networks

Definition

Deep learning is a class of machine learning algorithms that uses multiple
layers to progressively extract higher level features from the raw input

Learning is done via supervised or unsupervised manner.
Architecture can be dense, convolutional, etc.
Number of layers ≥ 3.
Optimizers can be RMSprop, SGD, Adam etc.
Activation functions can be ReLU, Linear, sigmoid etc.
Cost functions can be MSE, binary cross entropy etc..

Single Neuron functionality: z = ϕ(wT
j x + b)
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DNN based Sparse Recovery

Motivation

Universal approximation theorem ensures the existence of mapping
x̂ ≈ f (y)

Increased performance in terms of computational complexity and
NMSE.

Types of SRA

Blind sparse vector recovery. Uses existing architectures for sparse
recovery.

Model based Approach. Mimic existing sparse recovery algorithms
with deep neural networks. eg: LISTA, LIHT and LSBL.

Supervised Learning of SRA

Training data {(y(d), x(d))}d=D
d=1 , with labels x(d) are continuous, high

dimensional and sparse.
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SRA using Dense Neural Networks

Inferences

Training data size is huge (order of 1e6)

No of trainable parameters increases drastically with input dimension

Recovery performance

Depends on no of trainable parameters used, no of epochs, no of
different types of inputs used
Better than OMP (wrt NMSE), but inferior to that of l1 recovery
algorithms
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Learned Iterative Shrinkage Thresholding Algorithm

ISTA derivation

J =
1

2
||Ax− y||22 + λ||x||1 = J1(x) + J2(x)

∇x(J1) = ATAx− ATy = −AT (y − Ax)

∂J1

∂xj
= −(aT

∗jy −
N∑
i=1

aT
∗ja∗ixi )

= −aT
∗j(y −

N∑
i 6=j

a∗ixi ) + ||a∗j ||22xj

= −ρj + xj

Now define subgradient as

∂f (x) =
{
y |f (z) ≥ f (x) + yT (z − x) for all z ∈ dom f

}
Unnikrishnan N (SPC lab ECE) Learned Versions of Sparse Recovery Algorithms February 17, 2020 9 / 26



SRA using Learned ISTA

ISTA derivation continues

∂J2

∂xj
=


−λ, if xj < 0

[−λ, λ], if xj = 0

λ, if xj > 0

∂J

∂xj
=


−λ− ρj + xj , if xj < 0

[−λ− ρj , λ− ρj ], if xj = 0

λ− ρj + xj , if xj > 0

xopt
j =


λ+ ρj , if ρj < −λ
0, if ρj ∈ [−λ, λ]

ρj − λ, if ρj > λ

shrinkage function ηst(ρj) = sign(ρj)(|ρj | − λ)+
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SRA using Learned ISTA

ISTA derivation continues

xk+1 = ηst(xk + βAT (y − Axk))

= ηst((I− βATA)xk + βATy)

xk+1 = ηλk (Wk
2 xk + Wk

1 y)

where β ∈ (0, 1
||AT A||2

] and ηλ(·) = ηst(·)

Soft thresholding function
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Unfolded Structure of LISTA

Training data {(y(d), x
∗
(d))}d=D

d=1

No of Layers K

Parameters to be learned Θ =
{(

W k
1 ,W

k
2 , λ

k
)}K−1

k=0

Cost function minimize
Θ

Ex∗,y

∥∥xK
(
Θ, y, x0

)
− x∗

∥∥2

2

Back propagation algorithm SGD

Unnikrishnan N (SPC lab ECE) Learned Versions of Sparse Recovery Algorithms February 17, 2020 12 / 26



Modified LISTA

Modification 1 - Partial weight Coupling (CP)

xk+1 = ηst(xk + βAT (y − Axk))

xk+1 = ηλk (xk + (Wk
1 )T (y − Axk))

A is absorbed in non trainable parameters.

Trainable parameters reduced to Θ =
{(

W k
1 , λ

k
)}K−1

k=0

Modification 2 - Support Selection (SS)

At each LISTA layer (kth layer) before applying soft thresholding, select a
certain percentage (pk%) of entries with largest magnitudes, and trust
them as true support and won’t pass them through thresholding.

xk+1 = ηp
k

λk
(Wk

2 xk + Wk
1 y)
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Modification 2 Continues

(ηp
k

λk
(v))i =

{
vi , if |vi | > λk and i ∈ Spk (v)

ηλk (vi ), if i /∈ Spk (v)

where Spk (v) is the support set of p% largest magnitude entries in kth

layer, v = Wk
2 xk + Wk

1 y

Combined model - LISTA-cpss

xk+1 = ηp
k

λk
(xk + (Wk

1 )T (y − Axk))
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Learned Iterative Hard Thresholding (LIHT)

IHT

xk+1 = hλ(xk + βAT (y − Axk))

= hλ((I− βATA)xk + βATy)

= hλ(Wk
2 xk + Wk

1 y)

where β ∈ (0, 1
||AT A||2

] and hλ is modified hard thresholding function.
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Unfolded Structure of LIHT

Training data {(y(d), x
∗
(d))}d=D

d=1

No of Layers K

Parameters to be learned Θ =
{(

W k
1 ,W

k
2 , λ

k
)}K−1

k=0

Cost function minimize
Θ

Ex∗,y

∥∥xK
(
Θ, y, x0

)
− x∗

∥∥2

2

Back propagation algorithm SGD
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SRA using Learned Sparse Bayesian Learning

SBL - problem formulation

y = Ax + z
where y, z ∈ RM , A ∈ RM×N , x ∈ RN , ||x||0 ≤ K < M � N

z ∼ N (0, σ2I) and x ∼ N (0,Rx), Rx = diag{ 1
α1
, . . . , 1

αN
}

Find sparsest x from y under gaussian prior.

Solution

x̂MAP = arg max
x

p(x|y, σ2,Rx)

= RxAT (ARxAT + σ2I)−1y

Estimation of αi is by EM algorithm. tth iterate is
1
αt
i

= (x t−1
i )2 + (Φt−1)i ,i

Where Φ is the error covariance matrix. Once the estimate of αi∀i ∈ [N]
is known then using above equation sparse solution can be estimated.

Unnikrishnan N (SPC lab ECE) Learned Versions of Sparse Recovery Algorithms February 17, 2020 17 / 26



L-SBL Block Diagram

1

αt+1
= f (xt , xt−1, . . . ,Φt ,Φt−1, . . . )

xt+1 = RxAT (ARxAT + σ2I)−1y

Φt+1 = Rx − RxAT (ARxAT + σ2I)−1ARx
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Performance Comparison
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Performance Comparison Continues
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Convergence Comparison
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Convergence of ISTA, FISTA, AMP and LISTA for A ∈ RM×N M = 30,N = 50,
sparsity around 10
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Conclusion And Future Scope

Conclusion
1 Tested LISTA-cpss, LIHT and LSBL.
2 LISTA-cpss

Each layer of LISTA is equivalent to one iteration of ISTA.
Faster convergence in LISTA compared to ISTA.
For any measurement matrix (under certain conditions) LISTA network
is trainable.
Faster training (with less number of inputs(order of 1e3) and less
number of trainable parameters).
Less computational complexity.

3 Various sparse recovery algorithms such as OMP, IHT, BP, AMP,
ISTA, FISTA, SBL are tested and results are compared

4 NMSE performance of LISTA is similar to ISTA

5 LSBL outperforms LISTA and LIHT
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Future Scope

1 Try support selection in L-SBL for better performances. Incorporate
sparsity information to deep neural net model.

2 Train these networks with structured sparse inputs.
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Thank You

Unnikrishnan N (SPC lab ECE) Learned Versions of Sparse Recovery Algorithms February 17, 2020 26 / 26


	Compressed Sensing
	DNN based Sparse Recovery
	SRA using Dense Neural Networks
	Learned ISTA
	Learned IHT
	Learned SBL
	Performance Comparison
	Conclusion
	References

