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Introduction

e Compressive Sensing (CS): Solve for x € RN*! from an

underdetermined system of linear equations
y = ®x

where
e y € RM*1 is the known measured vector, M < N
e @ is a random measurement matrix
e To uniquely recover x, it must be sparse in a given basis W € RN*M
e Complete: N = N,
e Overcomplete: N < N;
x = Ws

where s is K — sparse

e Problem: Recover s from y = As, where A = ®W



e Distributed CS: Recovery of jointly sparse vectors from multiple
measurement vectors (MMV)
e To reconstruct S from Y = AS, where Y = [y;,...,y;] € RM*L
S =[s1,...,s] € RNxL
e Recovery algorithms
e Greedy methods (Simultaneous OMP etc.)

e Bayesian methods (M-SBL etc.)
o Relaxed mixed norm minimization methods



Questions!!!

e Traditional recovery algorithms do not rely on the use of training
data

e Large training data are generally available
e Examples: Camera recordings of the environment, images of the

same class etc.
e Can we learn the structure of the sparse vectors in S by a data
driven approach using the available training data?
e Sparse vectors need not be joint sparse in many practical applications
e But the entries can be dependent
e How do we effectively use the learned structure to reconstruct the

sparse vectors?



Overview of Proposed Method

e Two step greedy reconstruction algorithm
e Step 1: Support recovery:
e In iteration j + 1, for each column s;, find P(si[n] # 0|R;),
i=1,...,L,n=1,...,Nand R; =Y —AS;
e Recurrent neural network (RNN) with long short term memory

(LSTM)

e Step 2: Signal recovery by solving least squares



Block Diagram of LSTM
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Forward pass for LSTM
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Proposed Method
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Training data generation

e Residuals

e One hot vectors of the correct support
Learning method
e Cross entropy loss function
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where A are the model parameters to be learnt

e Experimental results provided
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