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Introduction

• Compressive Sensing (CS): Solve for x ∈ R
N×1 from an

underdetermined system of linear equations

y = Φx

where

• y ∈ R
M×1 is the known measured vector, M < N

• Φ is a random measurement matrix

• To uniquely recover x, it must be sparse in a given basis Ψ ∈ R
N×N1

• Complete: N = N1

• Overcomplete: N < N1

x = Ψs

where s is K − sparse

• Problem: Recover s from y = As, where A = ΦΨ
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• Distributed CS: Recovery of jointly sparse vectors from multiple

measurement vectors (MMV)

• To reconstruct S from Y = AS, where Y = [y1, . . . , yL] ∈ R
M×L,

S = [s1, . . . , sL] ∈ R
N×L

• Recovery algorithms

• Greedy methods (Simultaneous OMP etc.)

• Bayesian methods (M-SBL etc.)

• Relaxed mixed norm minimization methods
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Questions!!!

• Traditional recovery algorithms do not rely on the use of training

data

• Large training data are generally available

• Examples: Camera recordings of the environment, images of the

same class etc.

• Can we learn the structure of the sparse vectors in S by a data

driven approach using the available training data?

• Sparse vectors need not be joint sparse in many practical applications

• But the entries can be dependent

• How do we effectively use the learned structure to reconstruct the

sparse vectors?
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Overview of Proposed Method

• Two step greedy reconstruction algorithm

• Step 1: Support recovery:

• In iteration j + 1, for each column si , find P(si [n] 6= 0 |Rj ),

i = 1, . . . , L, n = 1, . . . ,N and Rj = Y − ASj

• Recurrent neural network (RNN) with long short term memory

(LSTM)

• Step 2: Signal recovery by solving least squares
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Block Diagram of LSTM
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Forward pass for LSTM

yg (t) = g (W4r (t) +Wrec4v (t − 1) + b4)

i (t) = σ (W3r (t) +Wrec3v (t − 1) +Wp3c (t − 1) + b3)

f (t) = σ (W2r (t) +Wrec2v (t − 1) +Wp2c (t − 1) + b2)

c (t) = f (t) ◦ c (t − 1) + i (t) ◦ yg (t)

o (t) = σ (W1r (t) +Wrec1v (t − 1) +Wp1c (t) + b1)

v (t) = o (t) ◦ h (c (t))
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Proposed Method
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Training data generation

• Residuals

• One hot vectors of the correct support

Learning method

• Cross entropy loss function

L (Λ) = min
Λ
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Lr ,i ,τ,j (Λ) = −s0,r ,i ,τ (j) log (sr ,i ,τ (j))

where Λ are the model parameters to be learnt

• Experimental results provided
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THANK YOU!
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