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Abstract—In this paper, we consider a spatial modulation
(SM) based multiple input single output (MISO) system relying
on a single Radio-Frequency chain equipped with a finite-rate
feedback channel to provide quantized channel state information
(CSI) to the transmitter. First, under the assumption of Rayleigh
flat-fading channels and perfect CSI at the transmitter (CSIT),
we analyze the symbol error probability (SEP) of an SM scheme
which perfectly compensates the channel phase and employs
constellation rotation at the different transmit antennas (TAs).
Then, we consider a more practical scenario, where scalar
quantization of the channel phase angles is employed, and the
quantized CSI is made available to the transmitter via a finite-
rate feedback channel. We analyze the SEP-reduction, PeL ,
relative to perfect CSIT, imposed by the quantized CSI at the
transmitter. We show that at a high feedback rate, PeL varies
as C′2−2B , where each channel phase angle is quantized to B
bits, and C′ is a constant. Furthermore, based on the rotational
symmetry of the M -PSK signal constellation, we propose a novel
feedback scheme, which requires (nt − 1) log2(M) fewer bits of
feedback with any performance erosion, where nt is the number
of TAs. We characterize the performance of the SM-MISO system
with finite rate feedback and validate our analysis through Monte
Carlo simulations.

Index Terms—Spatial modulation, finite rate feedback, scalar
quantization, constellation rotation, high-rate analysis.

I. INTRODUCTION

Spatial modulation (SM) is a recent technique in multi-
ple antenna communications, where, along with the classic
modulated symbol transmitted from the antenna, additional
implicit information is conveyed by the specific index of the
transmit antennas (TAs). For a system with nt TAs, log2 nt
bits are conveyed by the index of the TA to be activated
and a symbol selected from a constellation M of size M
is transmitted through the selected TA, giving a total rate
of (log2 nt + log2M) bits per channel use. Excellent recent
tutorial surveys on SM include [1]–[3]. In the early work
on SM, e.g., [4]–[11], basic signaling schemes and optimal
detectors were proposed and their corresponding symbol error
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probability (SEP) performance was analyzed. For example, in
[12], the authors derive expressions for the average bit error
probability (ABEP) of an SM system in terms of the Marcum-
Q and hypergeometric functions. However, these expressions
cannot be readily extended to the case where partial channel
state information (CSI) is available at the transmitter (CSIT)
via a finite rate feedback link.

The performance of an SM system can be improved by
making CSI available at the transmitter also; see, e.g., [13]–
[16]. In practice, the CSI has to be quantized and signaled
from the receiver to the transmitter over a finite-rate feedback
channel; this is the focus of this paper. In [16], the authors
consider SM with finite-rate feedback, and propose adaptive
power allocation algorithms for maximizing the minimum
distance between constellation points based on the CSIT. A
numerical approach is adopted, which, unfortunately, does not
lead to tractable performance analysis.

Several variants of SM based on the availability of CSIT
have been proposed in the recent literature. Link adaptation
techniques were explored in [13]–[15] for minimizing the
pairwise error probability (PEP). Selection of the optimal
modulation order by searching over different constellations
that offer a given spectral efficiency was studied in [13].
This was extended to accommodate antenna selection in [14].
The same authors also proposed algorithms for reducing both
the computational complexity and the search space of the
above techniques, hence reducing the number of candidates
and the feedback load [15]. Ntonin et al. proposed an adaptive
generalized space shift keying (GSSK) scheme, which exploits
the channel’s phase information for improving the attainable
diversity and coding gains of the modulation scheme [17],
[18]. The latter treatise also studied the effects of quantized
CSI feedback, but only through Monte Carlo simulations.
Explicitly, the performance of transmission over Rayleigh
fading channels was not analyzed in closed-form. Hence, this
contribution seeks to fill this open problem in the literature
by theoretically analyzing the performance of SM with the
aid of finite-rate feedback. In [19] and [20], the constellation
shaping conceived is both data and channel dependent, unlike
the channel-only dependent scheme studied in this work. In
[21], a scheme based on phase-shifting the transmit signal
based on CSIT is considered, because joint amplitude scaling
and phase shifting is energy inefficient and challenging from
a power-amplifier design point of view. In classical MIMO
systems, the performance under Q-CSIT has been analyzed in
detail, especially for beamforming based transmission [22]–
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[24]. These techniques and results are, however, not applicable
to SM with finite-rate feedback, since the signaling scheme
is fundamentally different. To the best of our knowledge, the
performance of SM with quantized CSI feedback has not been
studied in the literature to date.

As a first step to this end, we commence by analyzing the
performance of a Rayleigh flat-fading multiple input single
output (MISO) SM system relying on perfect CSIT. The
transmission scheme employs phase compensation at each
antenna to cancel the phase shift to be introduced by the
channel, followed by deterministic constellation rotation in
order to increase the minimum distance of the constellation
at the receiver. This philosophy was proposed in the context
of generalized space shift keying in [17], [18], and its diversity
order was derived more recently in [25].

Against this background, we study the performance of
the above scheme under Q-CSIT, obtained via a finite rate
feedback channel from the receiver to the transmitter. The
receiver sends (nt−1)B bits of information about the channel
to the transmitter once in every channel instantiation, through
a delay-free and noise-free feedback link. We consider scalar
quantization of the phase angles (note that one angle can be
compensated for at the receiver and therefore need not be
quantized) for its simplicity and analytical tractability.

The main contributions in this paper are as follows:
1) Assuming perfect CSIT, we derive approximate closed-

form analytical expressions for the SEP performance of
a phase compensation and constellation rotation based
transmission scheme for SM-MISO systems for transmis-
sions over Rayleigh fading channels.

2) We also analyze the performance of the above scheme in
a more practical system, when Q-CSIT becomes available
via a finite rate feedback channel. Considering the loss
in probability of error PeL as the metric, we derive a
theoretical expression for PeL under Q-CSIT.

3) We show that PeL decreases exponentially upon increas-
ing the number of feedback bits B per phase angle,
as C ′/22B , where C ′ is a constant. This allows us to
quantify the feedback rate required for guaranteeing an
upper bound on the loss in PEP due to the quantized
feedback.

4) We consider the case where M -PSK is employed as
the classic signal constellation. We propose a novel
phase compensation scheme that exploits the rotational
symmetry of the constellation, for achieving the same
PeL performance as the above scheme, while requiring
(nt − 1) log(M) fewer bits of feedback.

5) We extend the phase compensation and constellation ro-
tation scheme to systems equipped with multiple receive
antennas (RAs). Using simulations, we compare the aver-
age pairwise error probability of the above scheme to that
of transmit antenna selection (TAS). We find that TAS
outperforms SM relying on CSIT, but the performance
gap is reduced as the number of RAs is increased.

6) We empirically study the performance of a more practical
case, where the signals of the TAs are correlated, and
show that the above scheme is significantly more robust
to this correlation than the conventional SM system.

We validate our analysis, and draw conclusions on the design
and performance of SM-MISO systems with Q-CSIT, through
simulations. For example, we find that a feedback rate of
about 3 bits per phase angle is sufficient for achieving a
performance comparable to that of the scheme with perfect
CSIT, at reasonable SNRs.

In the next section, we elaborate on the system model.

II. SYSTEM MODEL

We consider an SM-MISO system equipped with nt TAs
and a single antenna at the receiver. In the complex baseband
notation, the wireless channel can be represented by the vector
h = [h1, . . . , hnt ], where hl ∈ C denotes the channel signaling
from the lth TA to the receiver. For our analysis, we assume
that the channel is Rayleigh flat-fading. With SM, the symbol
transmitted over the nt TAs can be represented by s ∈ Mnt ,
where s = [0, . . . , 0, sil, 0, . . . , 0]T , where sil denotes the ith

symbol in the signal constellation, being transmitted from the
lth TA. Since only one antenna at the transmitter is turned on
at any given time, all the remaining entries in s are zero.

When CSI is available at the transmitter, the data symbol s is
multiplied by a phase compensation matrix W = diag(w) that
depends on the CSI, to get the channel input x as x = Ws.
The channel output y can then be expressed as

y =
√
ρhx + z, (1)

where z is the complex additive white Gaussian noise
(AWGN) with zero mean and unit variance, and ρ is the SNR.

III. PERFORMANCE OF PHASE COMPENSATION AND
CONSTELLATION ROTATION WITH CSIT

In this section, we analyze the attainable performance of
a phase compensation and constellation rotation scheme con-
ceived for SM based on perfect CSIT. The phase compensation
cancels the phase angle introduced by the channel at each
antenna; while the deterministic constellation rotation helps to
better separate the constellation points at the receiver. It can
also be optimized for reducing the peak-to-mean ratio. Thus,
the phase compensation vector w is given as

w = [1, exp(−jφ2), . . . , exp(−jφnt)]T , (2)

where φi = ϕi − ϕ1, 2 ≤ i ≤ nt, and ϕi = ∠hi, 1 ≤ i ≤ nt
is the phase angle of hi. The above exploits the fact that one
phase angle (ϕ1) can be compensated for at the receiver, and
therefore does not have to be sent to the transmitter over the
feedback channel [23]. The constellation rotation scheme is as
follows. The signal constellation transmitted on antenna l is
rotated by the deterministic phase angle (l − 1)θ0, where θ0
is dependent on the rotational symmetry of the constellation.
For the M -PSK constellation, we set θ0 = 2π/(Mnt). Hence,
in the sequel, we will use sil to denote the ith symbol from
the rotated constellation, and transmitted on the lth antenna.
The achievable diversity order of this scheme was analyzed in
[17], [18], [25]; in this paper, we are interested in analyzing
the SEP performance, under quantized CSIT.

The received signal, given by (1), can then be rewritten as

y =
√
ρ|hl|sil + z. (3)
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At the receiver, we assume perfect knowledge of the CSI
h, and consider the joint maximum likelihood (ML) detection
of the TA index and the symbol index, given by

[l′, i′] = arg max
l∈{1,...,nt},i∈M

p
(
y|sil,h

)
= arg max

l,i

∣∣y − hlxil∣∣2 ,
(4)

where xil denotes the input to the channel when the lth TA is
transmitting the ith constellation symbol. The receiver makes
a symbol error if∣∣y − hlxil∣∣2 > min

m∈{1,...,nt},k∈M:(m,k)6=(l,i)

∣∣y − hmxkm∣∣2 . (5)

The pairwise error probability (PEP) of decoding the trans-
mit symbol (l, i) pair as the pair (l′, i′), conditioned on the
CSI h, is given by [21]

Ω
(l′,i′)
(l,i) |h = Q

(√
ρ

2

∣∣∣hlxil − hl′xi′l′ ∣∣∣) (6)

≈ k exp

(
−ρ

4

∣∣∣hlxil − hl′xi′l′ ∣∣∣2), (7)

where the latter is due to a Chernoff bound based approxima-
tion, and k is a constellation-dependent constant. Averaging
over the channel statistics, the PEP can then be written as

Ω
(l′,i′)
(l,i) = Eh

{
Ω

(l′,i′)
(l,i) |h

}
. (8)

Using the union bound, the probability of error can be written
as [26]

Pe =
1

ntM

∑
(l∈{1,...,nt,i∈M)

∑
(l′,i′)6=(l,i)

Ω
(l′,i′)
(l,i) . (9)

It thus remains to derive an expression for Ω
(l′,i′)
(l,i) . Given

the scheme described above, Ω
(l′,i′)
(l,i) in (8) can be written as

Ω
(l′,i′)
(l,i) = k Eh

{
exp

(
−ρ

4

∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2)} . (10)

When l = l′, that is, when decoding the received signal as
another symbol from the same TA, it can be shown that we
have:

Ω
(l,i′)
(l,i) =

4k

4 + di
′2
i ρ

, (11)

where di
′

i =
∣∣∣sil − si′l ∣∣∣. When l 6= l′, we arrive at:

Ω
(l′,i′)
(l,i) =

k

c2 − d2

[
1 +

d√
c2 − d2

(π
2

+ tan−1
(

d√
c2 − d2

))]
(12)

where c , 1 + ρ/4, d , ρ<{si′l′
(
sil
)∗}/4. The proof of

(12) is provided in Appendix A. At high SNRs, using the
approximation of c ≈ ρ/4, it may be readily seen that (12)
varies as 1/ρ2. However, due to (11), we see that the system
has a diversity order of one. This is a consequence of the
fact that even if CSIT is available, only a single TA is used
to transmit each data symbol. In Sec. VI, we illustrate the
accuracy of the above error probability expressions through
Monte Carlo simulations.

In the next subsection, we discuss the detrimental effect
of spatial correlation between the TAs on the performance.
We also present a natural extension of the above phase
compensation as well as constellation rotation scheme to an
SM system relying on multiple antennas at the receiver.

1) Performance Under Spatial Correlation: Above, we
considered the MISO channels between the TAs and the
RA to be statistically independent. This is valid when the
antennas are spaced sufficiently far apart, and it is also a
useful assumption because it facilitates tractable performance
analysis.

To gain insight into the effect of spatial correlation that
may be present in practical systems where the antennas are
insufficiently separated to experience independent fading, let
us consider the extreme case where the antennas are perfectly
correlated. Then, for conventional SM, it is not possible to
determine the TA index using the received data symbols, since
the channels of the different TAs are identical. The CSIT-
based scheme considered in this work, by contrast, relies on
rotated versions of the base constellation. For example, when
QPSK signaling is employed, the constellation rotation leads
to an effective constellation that may be viewed as a higher-
order M-PSK constellation. Similarly, non-constant modulus
constellations would map to a superposition of rotated versions
of the base constellation. This effective constellation remains
decodable at the receiver, unlike the conventional SM system.

For intermediate correlation values, there would be a scaling
and superposition of the base constellation, where the scaling
coefficients would be correlated. In this case, it may be readily
seen that the performance impact on the conventional SM
system would be much more severe than on the constellation
rotation based scheme. We illustrate this through simulations
in Sec. VI.

2) Extension to Multiple Antennas at the Receiver: The
CSIT-based transmission scheme described in Sec. III is
based on compensating the phase rotation introduced by the
complex-valued channel between each TA to the RA. When
there are nr > 1 RAs, this is not directly applicable, since
there are now nr complex-valued channels between each TA
and the receiver. Hence the question is, which of the nr
channels should be used for the phase compensation? Here, we
present a natural extension of the phase compensation scheme,
that can be applied when there are multiple RAs. We propose
to use the above analysis to compute the probability of error
when the phase constellation and constellation rotation scheme
is applied to each of the RAs in turn, and select the best
antenna based on the probability of error.

Note that this involves only nr probability of error com-
putations, which is not expensive. Moreover, since phase
compensation and constellation rotation is applied based on
a single selected antenna, this scheme can be implemented
with a the aid of a single receive RF chain, preserving the
spirit of SM systems, hence requiring minimal hardware cost
at both the transmitter and receiver.

In Sec. VI, we demonstrate the performance improvement
that can be obtained by selecting the best from nr RAs. In
particular, we show that the proposed scheme significantly re-
duces the performance gap between the full diversity transmit
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antenna selection (TAS) scheme and SM relying on CSIT.

IV. SM WITH FINITE RATE FEEDBACK

In this section, we present the main results of this paper,
which is the performance analysis of SM-MISO systems with
Q-CSIT. Here, the receiver sends a B-bit scalar-quantized
(SQ) version of the phase angles that have to be available at
the transmitter, once per channel instantiation. Since (nt − 1)
phase angles have to be quantized, the feedback overhead of
the system is (nt − 1)B. As in much of the past work on
quantized CSIT, we assume that the feedback channel is both
delay- and error-free.

Due to the quantization errors, the channel phase compen-
sation vector w in (2) becomes

w = [1, exp(−jφ̂2), . . . , exp(−jφ̂nt)]T , (13)

where φ̂i, 2 ≤ i ≤ nt is the quantized version of φi.
Again, we employ SQ at the receiver, where each of the

(nt − 1) phase angle differences are quantized independent of
each other to obtain φ̂i, 2 ≤ i ≤ nt. Now, with Rayleigh flat-
fading, the entries of h are i.i.d. complex Gaussian. Hence φi
is uniformly distributed over [0, 2π). With SQ, the quantization
regions are Rp , [(2p− 1)π/N, (2p+ 1)π/N ], 0 ≤ p ≤
N − 1, where N , 2B . If φi ∈ Rp, the receiver sends the
index p back to the transmitter and the transmitter uses the
centroid ofRp as the quantized phase angle, i.e., φ̂i = 2πp/N ,
whenever φi ∈ Rp.

In this work, we use the excess probability of error [22],1

i.e., the difference between the probability of error with Q-
CSIT and with perfect CSIT, as our metric for quantifying the
performance degradation due to the use of Q-CSIT instead of
perfect CSIT.

Along similar lines as (9) , the probability of error with
Q-CSIT, P̂e, can be written as

P̂e =
1

ntM

∑
(l∈{1,...,nt},i∈M)

∑
(l′,i′) 6=(l,i)

Ω̂
(l′,i′)
(l,i) , (14)

where Ω̂
(l′,i′)
(l,i) is the PEP under Q-CSIT, defined as

Ω̂
(l′,i′)
(l,i) , k Eh

{
exp

(
−ρ

4

∣∣∣hlwlsil − hl′wl′si′l′ ∣∣∣2)} . (15)

Hence, the probability of error degradation PeL , P̂e − Pe
is given by

PeL =
1

ntM

∑
(l∈{1,...,nt},i∈M)

∑
(l′,i′) 6=(l,i)

Ω
(l′,i′)
L(l,i)

, (16)

where Ω
(l′,i′)
L(l,i)

, Ω̂
(l′,i′)
(l,i) − Ω

(l′,i′)
(l,i) is the PEPL and Ω

(l′,i′)
(l,i) is

the PEP under perfect CSIT given by (10). Note that once we
find PeL , P̂e can be obtained from P̂e = Pe + PeL , with Pe
calculated by substituting (11) and (12) into (9).

1In [22], the authors use the relative loss in probability of error, which the
excess probability of error normalized by the probability of error with perfect
CSIT. The two metrics are similar in terms of capturing the effect of Q-CSIT.

In order to calculate PeL , we have to analyze Ω
(l′,i′)
L(l,i)

, which
can be written as

Ω
(l′,i′)
L(l,i)

= k Eh

{
exp

(
−ρ

4

∣∣∣hlwlsil − hl′wl′si′l′ ∣∣∣2)
− exp

(
−ρ

4

∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2)} . (17)

When l = l′, the above expression reduces to 0, since hlwl
being common to the two terms in the first exponential can be
brought out, and note that |wl| = 1. As shown in Appendix B,
for l 6= l′, equation (17) can be written as

Ω
(l′,i′)
L(l,i)

=
kρ

8
<
{
si
′

l′s
i∗
l

}(
1− Ñ2

(
2− 2 cos

(
1

Ñ

)))

×

−(c2 + 2d2
) (

π
2 + tan−1

(
d√

c2−d2

))
(c2 − d2)

5
2

+
(c2 − 4d2)

d(c2 − d2)2
−
(

1

d(c2 − d2)

)]
, (18)

where Ñ , N/ (2π), c , 1 + ρ
4 , and d , ρ

4<{s
i′

l′

(
sil
)∗}.

Now, the PEP degradation in (18) can be written as

Ω
(l′,i′)
L(l,i)

= Cli,l′i′

(
1−

(
N

2π

)2(
2− 2 cos

(
2π

N

)))
, (19)

where Cli,l′i′ is a constant that depends only on and the pair
of symbols sil and si

′

l′ .
From (16), we thus get

PeL = C

[
1−

(
N

2π

)2(
2− 2 cos

(
2π

N

))]
, (20)

where
C =

1

ntM

∑
(l,i)

∑
(l′,i′)6=(l,i)

Cli,l′i′ . (21)

In the above, C is now a constant that depends only on the
signal constellation and on the SNR. The equation (20) is
useful for understanding the effect of the number of quantiza-
tion regions N on PeL . For example, using the approximation
cos(x) ≈ 1 − x2/2! + x4/4! which is valid for small x, i.e.,
for large N , we arrive at:

PeL =
π2C

3

1

N2
. (22)

Furthermore, it may be readily shown that C decreases with
the SNR as 1/ρ2 at high SNRs. Hence, we have the following
result:

Proposition 1. (Variation of PeL with N and ρ): For high-
rate quantization and high SNRs, the probability of error
degradation PeL is inversely proportional to the square of
both the number N of quantization levels per phase angle,
and the SNR, ρ.

Recall that the probability of error Pe decreases as 1/ρ.
Since, the probability of error degradation PeL decreases much
faster with the SNR than Pe itself, at high SNRs, there will be
a constant gap between the perfect and quantized CSIT cases,
in terms of the SNR required for achieving a given Pe.
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V. ROTATIONAL SYMMETRY BASED PHASE
COMPENSATION (RSPC)

In this section, we propose a new phase compensation
scheme for reducing the required number of feedback bits,
based on the rotational symmetry of the signal constellation.

Again, we consider the M -PSK signal constellation, which
has a rotational symmetry of 2π

M . For this constellation, com-
plete phase compensation is not necessary. It is sufficient
to de-rotate the channel to the nearest modulo- 2πM phase
angle. The effective constellation at the receiver would be a
rotated version of the constellation, but the rotation angle is
a multiple of 2π/M , which is known at the receiver. Hence,
data decoding is possible by simply accounting for the constel-
lation rotation at the receiver. Thus, instead of quantizing the
channel-induced phase angle which is uniformly distributed in
the range [0, 2π), it suffices to quantize a phase angle that is
uniformly distributed in the range [0, 2π/M). This reduces the
feedback rate requirement for a given accuracy of quantization
by a factor of log2(M) bits per phase angle.

Using the scheme described above, the channel phase range
of [0, 2π/M) is quantized to Brspc bits using a uniform scalar
quantizer. Then, by following the steps in the derivation of the
probability of error degradation in Sec. IV, PeL is still given by
(22), but with N replaced by MNrspc, where Nrspc = 2Brspc , and
the factor M arises because of the fact that the quantization
range is now reduced to [0, 2π/M) instead of [0, 2π). Hence,
to achieve the same PeL , we need N = MNrspc, which
translates to Brspc = B − log2(M), i.e., log2(M) fewer
bits of feedback would suffice per phase angle. Thus, the
RSPC scheme proposed in this section achieves the same PeL
performance as in Sec. IV, while requiring (nt − 1) log2(M)
fewer bits of feedback.

VI. SIMULATION RESULTS

In this section, we present our Monte Carlo simulation
results for the SEP performance of SM-MISO with both
perfect and quantized CSIT, compare them to previous results,
and validate the theoretical expressions. The simulation set-
up consists of an nt = 4 TA MISO system using uncoded
QPSK transmission (M = 4). The wireless channel undergoes
Rayleigh fading, where the baseband channel coefficients
are generated constant for a channel-use and then they are
independently faded based on standard complex normal dis-
tribution. The SEP is computed by averaging the performance
over 104 symbol, channel and noise instantiations.

Figure 1 plots the SEP as a function of the SNR in
dB for conventional SM transmission [9], SM with phase
compensation and constellation rotation based on perfect CSIT
that was proposed in [17], [18] and analyzed in this paper, as
well as for SQ-based finite-rate feedback using B = 2, 3, 4
and 5 bits per phase angle. We see that the perfect CSIT
offers about 6 dB SNR advantage over the conventional SM
transmission at an SEP of 10−2. Also shown in figure 1 is
the theoretical performance in the presence of perfect CSIT
derived in (9), and the close agreement of the simulation
and union bound based theoretical result is evident from the
graph. Finally, we note that 5 bits of feedback per phase angle
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Fig. 1. Comparison of SEP at different feedback rates, for nt = 4 and
M = 4. Also plotted are the performance of conventional SM and the phase
compensation and constellation rotation scheme based on perfect CSIT.

practically closes most of the gap between the conventional
SM-MISO and the perfect CSIT based transmission scheme.

Figure 2 shows the SEP as a function of the SNR in dB
for the scheme described in Sec. V, which exploits the 4-
fold rotational symmetry of the QPSK constellation. It can be
seen that the RSPC scheme achieves the same performance
as the complete phase compensation scheme in Fig. 1, with
log2(M) = 2 fewer bits of feedback per antenna, as expected.
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Fig. 2. Comparison of SEP at different feedback rates for the RSPC scheme
described in Sec. V, for nt = 4 and M = 4.

Next, the variation of the probability of error degradation
PeL versus the number of feedback bits B at the SNR values
of ρ = 4, 12 and 16 dB is shown in Fig. 3. Here, we compare
the simulation results to the theoretical calculation of PeL
obtained from (20). The close agreement of the simulation
and theoretical result is clear from the graph. It can also be
seen that PeL decreases exponentially with B, as expected
from (22).

In Fig. 4, we study the effect of spatial correlation at the
transmitter. We model the correlation coefficient between the
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antenna indexed by i and j as ρ|i−j|, where ρ ∈ [0, 1], i.e.,
the nt × nt spatial correlation matrix R has entries given
by [R]i,j = ρ|i−j| [27]. As expected from the discussion in
Sec. III-1, the performance of the conventional SM system
significantly deteriorates when the signals of the antennas are
spatially correlated (i.e., when ρ > 0), while the phase com-
pensation and constellation rotation scheme is significantly
more robust, only suffering a modest performance drop even
at ρ as high as 0.9.

Fig. 5 compares the constellation rotation and phase com-
pensation scheme against transmit antenna selection (TAS),
for various number of RAs. At the receiver, for fairness of
comparison and in-line with the spirit of SM systems, we
consider a system with multiple antenna elements and a single
receive RF chain. With TAS, we select the transmit-receive
antenna pair associated with the largest channel magnitude for
communication, and employ an uncoded 16-PSK constellation.
This corresponds to four bits per channel use, the same as that
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Fig. 5. Comparison of transmit antenna selection and SM with CSIT with
multiple antennas at the receiver.

of the SM system. For the SM system with CSIT, we use the
scheme proposed in Sec. III-2 for receive antenna selection,
and perform phase compensation and constellation rotation
corresponding to the selected receive antenna. We observe
that for nr = 1, TAS outperforms SM relying on CSIT, as
expected, which is due to the higher diversity gain offered by
TAS. However, as nr increases, the gap reduces significantly,
since the SM system is also capable of exploiting the receive
diversity.

VII. CONCLUSIONS

In this paper, we investigated the impact of both full and
quantized CSIT in an SM-MISO system, where the CSI at the
transmitter was used for phase compensation and deterministic
constellation rotation. In the case of perfect CSIT, we obtained
a closed-form analytical expression for the PEP. Furthermore,
using the union bound, we presented an expression for the
SEP performance also. Next, we analyzed the performance
of the scheme when the phase angles are quantized to a
finite number of bits using scalar quantization and sent to the
transmitter over a delay- and error-free finite-rate feedback
link. We derived the SEP degradation relative to the perfect
CSIT case, which led to a closed-form expression for the
SEP performance under quantized CSIT. We showed that the
SEP degradation decreases inversely with the square of the
number of quantization levels as well as the SNR. Through
simulations, we illustrated the close agreement between the
theoretical as well as analytical expressions, and showed that
about B = 5 bits of feedback per phase angle is sufficient
to attain nearly the same performance as with perfect CSIT.
Future work could involve extension of the results to the
MIMO scenario, the use of vector quantization techniques,
and the associated performance analysis.
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APPENDIX A
CALCULATION OF PEP UNDER PERFECT CSIT

In this section, we derive the pairwise error probability
(PEP) of decoding the ith symbol transmitted from the lth

antenna as the i′th symbol from the l′th antenna, when perfect
CSI is available at the transmitter. The PEP, denoted by Ω

(l′,i′)
(l,i) ,

is given by

Ω
(l′,i′)
(l,i) = Eh

{
exp

(
−ρ

4

∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2)} . (23)

Let X = |hl|, Y = |hl′ |, a = sil and b = si
′

l′ . Since X and Y
are Rayleigh distributed, (23) can be written as

Ω
(l′,i′)
(l,i) =

∞∫
x=0

∞∫
y=0

2xe−x
2

2ye−y
2

e−
ρ
4 |ax−by|

2

dxdy. (24)

Let x = r cos(θ) and y = r sin(θ). Then, the right hand side
of the above can be written as

Ω
(l′,i′)
(l,i) = 2

π
2∫

θ=0

∞∫
r=0

e−r
2(1+ ρ

4 (1−<(ab
∗) sin(2θ)))

× r3 sin(2θ)drdθ.

Let K(θ) =

(1 +
ρ

4

)
︸ ︷︷ ︸

c

− ρ

4
<(ab∗)︸ ︷︷ ︸
d

sin(2θ)

. Then,

Ω
(l′,i′)
(l,i) = 2

∫ π/2

θ=0

sin(2θ)

∫ ∞
r=0

r3e−K(θ)r2drdθ

=

∫ π/2

θ=0

sin(2θ)

(c− d sin(2θ))2
dθ

=

 c cos(2θ)

2(c2 − d2)(d sin(2θ)− c)
−
d tan−1

(
d−c tan(θ)√

c2−d2

)
(c2 − d2)3/2

π/2
0

=
1

c2 − d2

[
1 +

d√
c2 − d2

(
π

2
+ tan−1

(
d√

c2 − d2

))]
.

(25)

APPENDIX B
CALCULATION OF LOSS IN PEP

The loss in PEP due to the quantization of the CSI available
at the transmitter is given by

Ω
(l′,i′)
L(l,i)

= k Eh

{
exp

(
−ρ

4

∣∣∣hlwlsil − hl′wl′si′l′ ∣∣∣2)
− exp

(
−ρ

4

∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2)} . (26)

Using e−A − e−B = e−B
[
e−(A−B) − 1

]
≈ e−B [B −A],

which is valid when (B −A) is small, i.e., for
high-rate quantization, the right hand side of (26)
can be written as kρEh {(α1 − α2)} /4, where

α1 , exp

(
−ρ
∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2 /4) ∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2

and
α2 , exp

(
−ρ
∣∣∣|hl| sil − |hl′ | si′l′ ∣∣∣2 /4) ∣∣∣hlwlsil − hl′wl′si′l′ ∣∣∣2.

We will now discuss the simplification of Eh {α1} and
Eh {α2} separately.

1) Solving for Eh {α1}: Let X = |hl|, Y = |hl′ |, a = sil
and b = si

′

l′ . Note that, under M -PSK signaling, |a| = |b| = 1.
Then, Eh {α1} can be written as

EX,Y
{

exp
(
−ρ

4
|aX − bY |2

)
|aX − bY |2

}
=

∞∫
x=0

∞∫
y=0

2xe−x
2

2ye−y
2

|ax− by|2 e−
ρ
4 |ax−by|

2

dxdy (27)

Substituting x = r cos(θ), and y = r sin(θ), we arrive at

Eh {α1} = 2

∫ π/2

θ=0

∫ ∞
r=0

r5 sin(2θ) (1−<(ab∗) sin(2θ))

× e
(
−r2

(
1+ ρ

4−
<(ab∗)

2σ2
sin(2θ)

))
drdθ. (28)

Let K = c−d sin(2θ) where c , 1+ρ/4 and d , ρ<(ab∗)/4,
as before, and γ1 , <(ab∗). Then, we get

Eh {α1} = 2

π/2∫
θ=0

sin(2θ) (1− γ1 sin(2θ))

∞∫
r=0

r5e−Kr
2

drdθ

= 2

π/2∫
θ=0

sin(2θ) (1− γ1 sin(2θ))
1

K3
dθ. (29)

Substituting for K and simplifying leads to:

Eh {α1} = 2

∫ π/2

θ=0

[
sin(2θ) (1− γ1 sin(2θ))

(c− d sin(2θ))
3

]
dθ

=
1

4

2
(
c2γ1 − 3cd+ 2d2γ1

)
tan−1

(
d−c tan(θ)√

c2−d2

)
(c2 − d2)

5
2

+
cos(2θ)(c3γ1 + c2d− 4cd2γ1 + 2d3)

d(c2 − d2)2(d sin(2θ)− c)

+
c cos(2θ)(cγ1 − d)

d(c2 − d2)(d sin(2θ)− c)2

]π
2

0

= −

(
c2γ1 − 3cd+ 2d2γ1

) (
π
2 + tan−1

(
d√

c2−d2

))
2 (c2 − d2)

5
2

+
(c3γ1 + c2d− 4cd2γ1 + 2d3)

2cd(c2 − d2)2
− (cγ1 − d)

2cd(c2 − d2)
. (30)

2) Solving for Eh {α2}: By splitting the expression for
Eh {α2} into different Voronoi regions formed by SQ of the
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phase angles, we can write

Eh {α2} =

N−1∑
p,q=0

P (hl ∈ Rp)P (hl′ ∈ Rq)

Ehl∈Rp,hl′∈Rq
{
e
− ρ4

∣∣∣|hl|sil−|hl′ |si′l′ ∣∣∣2 ∣∣∣hlwlsil − hl′wl′si′l′ ∣∣∣2}
=

1

N2

N−1∑
p=0

N−1∑
q=0

Ehl∈Rp,hl′∈Rq
{
e
− ρ4

∣∣∣|hl|sil−|hl′ |si′l′ ∣∣∣2

×
(∣∣∣|hl| ejφlwpsil − |hl′ | ejφl′wqsi′l′ ∣∣∣2)︸ ︷︷ ︸

γ

}
. (31)

Simplifying, we get

Eh {α2} =
1

N2

N−1∑
p=0

N−1∑
q=0

E|hl|,|hl′ |,φl∈Rp,φl′∈Rq

{
e

(
− ρ4

∣∣∣|hl|sil−|hl′ |si′l′ ∣∣∣2)
γ

}

=
1

N2

N−1∑
p=0

N−1∑
q=0

E|hl|,|hl′ |

{
e

(
− ρ4

∣∣∣|hl|sil−|hl′ |si′l′ ∣∣∣2)

Eφl∈Rp,φl′∈Rq {γ}

}
. (32)

In arriving at (32), we exploited the fact that scalar quantiza-
tion of the phase angles is performed, i.e., the channel gain hi
lies inside the Voronoi region Rp, if the channel phase angle
φi lies in Rp. The amplitude |hi| can, of course, take any
nonnegative value. By bringing the summation inside, it can
be written as

Eh {α2} = E|hl|,|hl′ |

{
e

(
− ρ4

∣∣∣|hl|sil−|hl′ |si′l′ ∣∣∣2)

1

N2

N−1∑
p=0

N−1∑
q=0

Eφl∈Rp,φl′∈Rq {γ}

}
. (33)

The simplification of Eφl∈Rp,φl′∈Rq {γ} is given by (34) at
the top the next page. We thus have

Eφl∈Rp,φl′∈Rq {γ} = |hl|2 + |hl′ |2 − 2 |hl| |hl′ | γ2, (35)

where

γ2 =

(
N

2π

)2 ∫ (2p+1)π
N

φl=
(2p−1)π

N

∫ (2q+1)π
N

φl′=
(2q−1)π

N[
<
{
si
′

l′s
i∗
l

}
cos
(

(φl − φl′)− (φ̂p − φ̂q)
)

−=
{
si
′

l′s
i∗
l

}
sin
(

(φl − φl′)− (φ̂p − φ̂q)
)]

dφldφl′ . (36)

Let A = φ̂p − φ̂q = 2π
N (p− q). Then,∫ (2q+1)π

N

φl′=
(2q−1)π

N

∫ (2p+1)π
N

φl=
(2p−1)π

N

cos ((φl − φl′)−A) dφldφl′

= 2− 2 cos

(
2π

N

)
. (37)

Similarly,∫ (2q+1)π
N

φl′=
(2q−1)π

N

∫ (2p+1)π
N

φl=
(2p−1)π

N

sin ((φl − φl′)−A) dφldφl′ = 0.

(38)
Hence, from (36),

γ2 = <
{
si
′

l′s
i∗
l

}(
2− 2 cos

(
2π

N

))
. (39)

Substituting (39) and (35) in (33), we get

Eh{α2} = E|hl|,|hl′ |

{
e

(
− ρ4

∣∣∣|hl|sil−|hl′ |si′l′ ∣∣∣2)

(
|hl|2 + |hl′ |2 − 2 |hl| |hl′ | γ2

)}
, (40)

which is similar to (27) and can be written, following the same
procedure, as

Eh{α2} = 2

∫ π/2

θ=0

∫ ∞
r=0

r5 sin(2θ) (1− γ2 sin(2θ))

e(−r
2(1+ ρ

4−
ρ
4<(ab

∗) sin(2θ)))drdθ

= 2

∫ π/2

θ=0

[
sin(2θ) (1− γ2 sin(2θ))

(c− d sin(2θ))
3

]
dθ. (41)

Now, (41) is similar to the first equation in (30). Hence, it can
be simplified using the same procedure as in (30), and thus,
the right hand side of Ω

(l′,i′)
L(l,i)

= Eh

{
kρ
4 (α1 − α2)

}
can be

written as

kρ

8
(γ1 − γ2)

−
(
c2 + 2d2

)(
π
2 + tan−1

(
d√

(c2−d2)

))
(c2 − d2)

5
2

+
(c2 − 4d2)

d(c2 − d2)2
−
(

1

d(c2 − d2)

)]
(42)

=
kρ

8
<
{
si
′

l′s
i∗
l

}(
1−

(
N

2π

)2(
2− 2 cos

(
2π

N

)))
[
−

(
c2 + 2d2

)(
π
2 + tan−1

(
d√

(c2−d2)

))
(c2 − d2)

5
2

+
(c2 − 4d2)

d(c2 − d2)2
−
(

1

d(c2 − d2)

)]

= Cli,l′i′

(
1−

(
N

2π

)2(
2− 2 cos

(
2π

N

)))
, (43)

where

Cli,l′i′ =
kρ

8

−
(
c2 + 2d2

)(
π
2 + tan−1

(
d√

(c2−d2)

))
(c2 − d2)

5
2

+
(c2 − 4d2)

d(c2 − d2)2
−
(

1

d(c2 − d2)

)]
<
{
si
′

l′s
i∗
l

}
. (44)
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Eφl∈Rp,φl′∈Rq {γ} =
(
N

2π

)2 ∫
φl∈Rp,φl′∈Rq

| |hl| ejφlwpsil − |hl′ | e
jφl′wqs

i′
l′ |

2dφldφl′

=

(
N

2π

)2

(2p+1)π
N∫

φl=
(2p−1)π

N

(2q+1)π
N∫

φl′=
(2q−1)π

N

(∣∣∣|hl| ej(φl−φ̂p)sil − |hl′ | ej(φl′−φ̂q)si′l′ ∣∣∣2) dφldφl′

=

(
N

2π

)2

(2p+1)π
N∫

φl=
(2p−1)π

N

(2q+1)π
N∫

φl′=
(2q−1)π

N

(
|hl|2 + |hl′ |2 − 2 |hl| |hl′ | <

{
si
′
l′ s
i∗
l e

j((φl−φ̂p)−(φl′−φ̂q))
})

dφldφl′ (34)

The above expression for the loss in PEP Ω
(l′,i′)
L(l,i)

can be used
to study the effects of Q-CSIT instead of perfect CSIT in our
schemes, as detailed in Section IV.
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