On learning k-parities and disjunctions

Presented by, Monika Bansal

SPC Lab Department of ECE Indian Institute of Science

September 19, 2015

Overview

1 Introduction

2 Learning Model

 3 Learning Algorithms for k-parities Algorithm 1 (halving algorithm) Algorithm 2 Algorithm 3

 Learning Algorithm for disjunctions Algorithm 1 (halving algorithm) Algorithm 2 (WINNOW)

Introduction

On-line learning setup:

hidden vector $f \in \{0,1\}^n$ with |f| = klearning examples $x_1, x_2, ... \in \{0,1\}^n$ true labels $y_1, y_2, ... \in \{0,1\}$ predicted labels $\hat{y}_1, \hat{y}_2, ... \in \{0,1\}$

Parity label

Disjunction label

```
y_i = \sum_j x_j f_j \pmod{2} y_i = 1 if \sum_j x_j f_j \ge 1,
0 if \sum_i x_i f_i = 0
```

Introduction

Concept: A function $f : X \to Y$ where, $X = \{0, 1\}^n$ instance space $Y = \{0, 1\}$ label set

Concept class: Set of concepts \mathcal{C}

Examples:

- Concept class of k-parities: $x_{i_1} \otimes x_{i_2} \dots \otimes x_{i_k}$
- Concept class of disjunctions: $x_{i_1} \vee x_{i_2} \dots \vee x_{i_k}$

Learning Model

• Mistake Bound Model:

Given a fixed concept class C, come up with an algorithm A such that, $\forall f \in C, \forall$ sequence of examples $(x_1, x_2, ...), A$ makes at most m mistakes.

• PAC Learning Model:

A learning algorithm is said to be PAC-learn C with approximation parameter ϵ and confidence parameter δ if \forall distributions D and all target functions $f \in C$, the algorithm draws at most s samples, runs for time at most t and outputs a function f^* such that, w.p. $1 - \delta$

$$\Pr_{x \leftarrow \mathcal{D}}[f(x) \neq f^*(x)] < \epsilon$$

Transformation from mistake bound model to PAC learning

• Mistake bound model: Mistake bound *m*, Running time per round *t*

• **PAC learning model:** Sample complexity $O(\frac{1}{\epsilon}m + \frac{1}{\epsilon}log\frac{1}{\delta})$, Running time $O(\frac{1}{\epsilon}mt + \frac{t}{\epsilon}log\frac{1}{\delta})$

Learning Algorithms for k-parities Algorithm 1 (halving algorithm)

Given a target class \mathcal{C} , $x \in X$ and $N_{CONSIST} = \mathcal{C}$

$$\hat{y} = 1$$
 if $|N_{CONSIST}(x, 1)| > |N_{CONSIST}(x, 0)|$

where, $N_{\mathcal{C}}(x,0)$: set of those functions that are **0** at x in \mathcal{C} $N_{\mathcal{C}}(x,1)$: set of those functions that are **1** at x in \mathcal{C}

Update:

$$N_{CONSIST} := N_{CONSIST}(x, y)$$

Mistake occurs if $\hat{y} \neq y$

 $M_{HALVING}(\mathcal{C}) \leq \log_2 |\mathcal{C}|$

"Learning Parities in the Mistake-Bound Model" Authors: H.Buhrman, David, A.matsliah

> Let $\{e_1, e_2..., e_n\}$ standard basis for $\{0, 1\}^n$ $\pi = C_1, ..., C_t$ Define $S = \{s \subseteq [t] : |s| = k\}$, hence $|S| = {t \choose k}$ subspace $M_s = span(U_s)$ where, $U_s \triangleq \bigcup_{i \in s} C_i$ $|M_s| < 2^{k \lceil n/t \rceil}$

• Every $f \in \{0,1\}^n$ with $|f| \le k$ is in some M_s

• $|\bigcup_{s\in\mathcal{S}}M_s| \leq \sum_{s\in\mathcal{S}}|M_s| \leq {t \choose k}2^{k\lceil n/t\rceil}$

Initialize: $N_s = M_s$ for all $s \in S$ Compute:

$$n_0 = \sum_{s \in S} |N_s(x, 0)|$$
$$n_1 = \sum_{s \in S} |N_s(x, 1)|$$

$$\hat{y} = 1$$
 if $n_1 > n_0$
Update: $N_s := N_s(x, y)$ for each $s \in S$,
Mistake Bound:

$$M_{Algo2} \leq log\left(\sum_{s \in S} |M_s|\right) \leq k \lceil n/t \rceil + \lceil log \binom{t}{k} \rceil$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Running time: $O(\binom{t}{k}(kn/t)^2)$

"On learning k-parities with and without noise" Authors: A.Bhattacharyya, A.Gadekar, N.Rajgopal

$$\pi = C_1, ..., C_T, \qquad T = \alpha t$$

$$S_1, ..., S_m \subset [T], \text{ Random subsests with } |S_i| = \alpha k$$

$$M_i = span(U_{j \in S_i} C_j)$$

$$|M_i| \le 2^{\alpha k \lceil n/T \rceil} \le 2^{kn/t + \alpha k} = 2^{(1+o(1))kn/t}$$
Initialise: $N_i = M_i$ for all $i \in [m]$

$$\hat{y} = 1 \qquad \text{if} \qquad \sum_{i \in [m]} |N_i(x, 1)| \ge \sum_{i \in [m]} |N_i(x, 0)|$$
Update: $N_i := N_i(x, y)$ for each $i \in [m]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Choose *m* such that for every set $A \subset [T]$ of size *k*, $A \subset S_i$ for some $i \in [m]$ with nonzero probability.

$$\mathbf{Pr}(A \subset S_i) = \binom{T-k}{\alpha k - k} / \binom{T}{\alpha k}$$

$$\mathbf{Pr}[\forall i \in [m], A \not\subset S_i] = \left(1 - \binom{T-k}{\alpha k - k} / \binom{T}{\alpha k}\right)^m \le e^{-m\binom{T-k}{\alpha k - k} / \binom{T}{\alpha k}}$$

$$m = 2 \frac{\binom{T}{\alpha k}}{\binom{T-k}{\alpha k-k}} \underbrace{\log \binom{T}{k}}_{k} = \tilde{O}\left(\frac{\binom{T}{\alpha k}}{\binom{T-k}{\alpha k-k}}\right)$$

Due to Union bound

If α is a large enough constant,

$$\frac{\binom{\mathsf{T}}{\alpha k}}{\binom{\mathsf{T}-k}{\alpha k-k}} \leq e^{-k/4.01} \binom{t}{k}$$

Mistake bound:

$$log\left(\sum_{i} |N_{i}|\right) \leq log\left[\tilde{O}\left(\frac{\binom{\prime}{\alpha k}}{\binom{T-k}{\alpha k-k}}\right)2^{(1+o(1))kn/t}\right] \\ \leq (1+o(1))kn/t + log\binom{t}{k} - \Omega(k) + logO\left(log\binom{t}{k}\right)$$

(T)

Running time:

$$O(ml^2) \leq e^{-k/4.01} \cdot {t \choose k} \cdot \tilde{O}((kn/t)^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Learning Algorithm for disjunctions

Algorithm 1 (halving algorithm): Same as of k-parities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Algorithm 2 (WINNOW)

 w_i is non-negative real-valued weight and $(x_1, x_2, .., x_n) \in X$

If
$$\sum_{i=1}^n w_i x_i > heta$$
 then $\hat{y} = 1$

If
$$\sum_{i=1}^n w_i x_i \leq heta$$
 then $\hat{y} = 0$

learner's prediction	correct response	update action	update name
1	0	$w_i := 0$ if $x_i = 1$ w_i unchanged if $x_i = 0$	elimination step
0	1	$w_i := \alpha \cdot w_i \text{ if } x_i = 1$ $w_i \text{ unchanged if } x_i = 0$	promotion step

Mistake bound: $\alpha k (log_{\alpha} \theta + 1) + \frac{n}{\theta}, \alpha > 1$ and $\theta \ge 1$

Goal

• To come up with the connection between Group Testing algorithms and learning algorithms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Comment on the performances.