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Interference Channel With Transmitter
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Abstract— This paper studies the value of limited rate
cooperation between the transmitters for managing interference
and simultaneously ensuring secrecy, in the two-user Gaussian
symmetric interference channel (IC). First, the problem is studied
in the symmetric linear deterministic IC (SLDIC) setting, and
achievable schemes are proposed, based on interference cancela-
tion, relaying of the other user’s data bits, and transmission of
random bits. In the proposed achievable scheme, the limited rate
cooperative link is used to share a combination of data bits and
random bits depending on the model parameters. Outer bounds
on the secrecy rate are also derived, using a novel partitioning
of the encoded messages and outputs depending on the relative
strength of the signal and the interference. The partitioning
helps to bound certain negative entropy terms, leading to a
tractable outer bound. The inner and outer bounds are derived
under all possible parameter settings. It is found that, for some
parameter settings, the inner and outer bounds match, yielding
the capacity of the SLDIC under transmitter cooperation and
secrecy constraints. In some other scenarios, the achievable rate
matches with the capacity region of the two-user SLDIC without
secrecy constraints derived by Wang and Tse; thus, the proposed
scheme offers secrecy for free, in these cases. Inspired by the
achievable schemes and outer bounds in the deterministic case,
achievable schemes and outer bounds are derived in the Gaussian
case. The proposed achievable scheme for the Gaussian case is
based on Marton’s coding scheme and stochastic encoding along
with dummy message transmission. One of the key techniques
used in the achievable scheme for both the models is interference
cancelation, which simultaneously offers two seemingly conflict-
ing benefits: it cancels interference and ensures secrecy. Many of
the results derived in this paper extend to the asymmetric case
also. The results show that limited transmitter cooperation can
greatly facilitate secure communications over two-user ICs.

Index Terms— Interference channel, information theoretic
secrecy, deterministic approximation, cooperation.
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I. INTRODUCTION

INTERFERENCE management and ensuring security of the
messages are two important aspects in the design of multi-

user wireless communication systems, owing to the broadcast
nature of the physical medium. The interference channel (IC)
is one of the simplest information theoretic models for analyz-
ing the effect of interference on the throughput and secrecy
of a multiuser communication system. One way to enhance
the achievable rate with secrecy constraints at the receivers is
through cooperation between the transmitters. In this work, the
role of transmitter cooperation in managing interference and
ensuring secrecy is explored by studying the 2-user IC with
limited-rate cooperation between the transmitters and secrecy
constraints at the receivers. In practice, such scenarios can
arise in a cellular network, where different users have sub-
scribed to different data contents, and are served by different
base stations belonging to the same service provider. In this
case, it is important for the service provider to support high
throughput, as well as secure its transmissions, to maximize
its own revenue. In these scenarios, the transmitters (e.g.,
base stations) are not completely isolated from each other,
and cooperation among them is possible. As the base stations
can trust each other, there is no need for secrecy constraints
at the transmitters. Such cooperation can potentially provide
significant gains in the achievable throughput in the presence
of interference, while simultaneously guaranteeing security.

To illustrate the value of transmitter cooperation in simulta-
neously managing interference and ensuring secrecy, a snap-
shot of some of the results to come in the sequel is presented in
Fig. 1. Here, the capacity of the symmetric linear deterministic
IC (SLDIC) with and without cooperation is plotted against
α ! n

m , where m = (⌊0.5 log SNR⌋)+, n = (⌊0.5 log INR⌋)+,
without any secrecy constraints at the receivers [3]. Also plot-
ted are the outer bound and the achievable rate for the 2-user
SLDIC with secrecy constraints at the receivers, developed
in Secs. III and IV, respectively. Two cases are considered:
no transmitter cooperation (C = 0) and with cooperation
between the transmitters (C = m

4 bits per channel use). The
outer bounds plotted for C = 0 with secrecy constraints at
receivers show that, as the value of α increases, there is a
dramatic loss in the achievable rate compared to the case
without the secrecy constraint. The performance significantly
improves with cooperation, and it can be seen that it is
possible to achieve a nonzero secrecy rate for all values

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2 IEEE TRANSACTIONS ON INFORMATION THEORY

Fig. 1. Data rate normalized by m for the 2-user SLDIC. Here, C is the capacity of the cooperative link between the transmitters, m = 400 bits, and n is
set based on the value of α = n/m.

of α except α = 1. This paper presents an in depth study
of the interplay between interference, security, and transmitter
cooperation in the 2-user IC setting. It demonstrates that
having a secure cooperative link in a network can significantly
improve the achievable secrecy rate.

Past Work: The interference channel has been extensively
studied over the past few decades, to understand the effects of
interference on the performance limits of multi-user communi-
cation systems. The capacity region of the Gaussian IC (GIC)
without secrecy constraints at receiver remains an open
problem, even in the K = 2 user case, except for some
special cases such as the strong/very strong interference
regimes [4], [5]. In [6], the broadcast and IC with indepen-
dent confidential messages are considered and the achievable
scheme is based on random binning techniques. The work
in [7] demonstrates that with the help of an independent
interferer, the secrecy capacity region of the wiretap channel
can be enhanced. Intuitively, although the use of an indepen-
dent interferer increases the interference at both the legitimate
receiver and the eavesdropper, the benefit from the latter
outweighs the rate loss due to the former. Some more results
on the IC under different eavesdropper settings can be found
in [8]–[10].

The effect of cooperation on secrecy has been explored
in [11]–[13]. In [11], the effect of user cooperation on the
secrecy capacity of the multiple access channel with general-
ized feedback is analyzed, where the messages of the senders
need to be kept secret from each other. In [12], the role of
user cooperation on the secrecy capacity of the broadcast
channel (BC) with relaying, where the receivers can cooperate
with each other, is considered. The achievable scheme uses a
combination of Marton’s coding scheme for the BC and a
compress and forward scheme for the relay channel. The role
of a relay in ensuring secrecy under different wireless network
settings has been studied in [14]–[16].

A linear deterministic model for relay network was intro-
duced in [17], which led to insights on the achievable schemes
in Gaussian relay networks. The deterministic model has sub-
sequently been used for studying the achievable rates with the
secrecy constraints in [18]–[20]. In [18], secret communication

over the IC is analyzed with two types of secrecy constraints:
in the first case, the secrecy constraint is specific to the agreed-
upon signaling strategy, and in the second case, the secrecy
constraint takes into account the fact that the other users
may deviate from the agreed-upon strategy. The deterministic
model has also been studied under different eavesdropper
settings in [19]–[21].

It is known that limited-rate cooperation between the trans-
mitters or receivers can significantly increase the rate achiev-
able in the 2-user IC without secrecy constraints [3], [22].
In general, the Gaussian IC with transmitter cooperation is
more difficult to analyze than Gaussian IC with receiver
cooperation, even when there are no secrecy constraints at
the receivers. For example, when the receivers can cooperate
through a link of infinite capacity, the model reduces to a
Gaussian MIMO multiple access channel (MAC). When the
transmitters cooperate through a link of infinite capacity, the
model reduces to a MIMO BC. The capacity region of
the general MAC was characterized in 1970s [23], [24]. In the
MAC, the boundary of the rate region can be achieved if the
receiver performs MMSE decoding and successive interference
cancelation of the input data streams. However, it was only
much later that a precoding strategy which achieves the bound-
ary of the BC rate region was proposed [25], [26]. Similarly,
the IC with cooperative receivers is easier to analyze than the
IC with cooperative transmitters [3], [22]. Further, the follow-
ing difficulties arise in analyzing the system with rate-limited
transmitter cooperation and secrecy constraints at the receivers.

1) There are a number of ways in which the transmitters
can use the cooperative link for encoding their transmis-
sion. The cooperation can involve the exchange of data
bits, random bits or any combination of the two.

2) It is difficult to obtain tractable outer bounds, since
the encoded messages are no longer independent due
to the cooperation between the transmitters. In addi-
tion to providing carefully selected side-information to
receivers, the secrecy constraints at the receivers need
to be exploited in a judicious manner to obtain tighter
outer bounds as compared to the outer bounds that do
not use the secrecy constraints at the receivers.
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To the best of the authors’ knowledge, the role of limited
transmitter cooperation in a 2-user IC on interference
management and secrecy has not been explored in the
literature, and is therefore the focus of this work.

Contributions: In order to make headway into this problem,
first, the problem is addressed in the linear deterministic
setting. For the SLDIC with cooperating transmitters and
secrecy constraints at the receivers, achievable schemes and
outer bounds on the secrecy rate are derived for all possible
parameter settings. This gives useful insights for the achievable
schemes and outer bounds in the Gaussian setting. Next, the
schemes are adapted to the Gaussian case. The proposed
transmission/coding strategy in the Gaussian setting uses a
superposition of a non-cooperative private codeword and a
cooperative private codeword. For the non-cooperative private
part, stochastic encoding is used [27], and for the cooperative
private part, Marton’s coding scheme is used [3], [28]. The
auxiliary codewords corresponding to the cooperative private
part are chosen such that the interference caused by the
cooperative private auxiliary codeword of the other user is
completely canceled out. This approach is different from the
one used in [3], where the interference caused by the unwanted
auxiliary codeword is approximately canceled. Further, one
of the users transmits dummy information to enhance the
achievable secrecy rate. The major contributions of this work
can be summarized as follows:

1) One of the key techniques used in the derivation of the
outer bounds for the SLDIC is the proposed partition-
ing of the encoded messages and outputs depending
on the value of α. This partitioning of the encoded
messages/outputs reveals what side-information needs
to be provided to the receivers for canceling negative
entropy terms. In addition, partitioning helps to bound
or simplify entropy terms which are not easy to evaluate
due to the dependence between the encoded messages
at the transmitters. Also, the partitioning of the encoded
messages/outputs provides a convenient handle for using
the secrecy constraints at the receivers efficiently in
deriving the outer bounds. The outer bounds are stated
as Theorems 1-4 in Sec. III.

2) For the SLDIC, the achievable scheme is based on
interference cancelation, transmission of jamming signal
(random bits) and relaying of the other user’s data bits.
The novelty in the proposed scheme lies in determin-
ing how to combine these techniques to achieve rates
that are far superior to that achievable individually by
them. To the best of authors’ knowledge, exchanging
a combination of data bits and random bits between
the transmitters for the purpose of precoding has not
been used in the literature. The details of the achievable
scheme can be found in Sec. IV.

3) Outer bounds on the secrecy rate in the Gaussian setting
are derived and stated as Theorems 6-8 in Sec. V.
As the partitioning used in deriving the outer bounds
for the deterministic case cannot be directly used in
the Gaussian case, either analogous quantities as side-
information need to be found to mimic the partitioning
of the encoded messages/outputs or the bounding steps

need to be modified taking cue from the deterministic
model. This is one of the key steps in deriving the outer
bounds on the secrecy rate.

4) Using the intuition gained from the SLDIC, achievable
schemes for the Gaussian case are proposed, which
use a combination of stochastic encoding and Marton’s
coding scheme along with dummy message transmission
by one of the users. However, in the high interference
regime, stochastic encoding alone cannot ensure secrecy
of the non-cooperative private message, as cross links
are stronger than the direct links. Hence, in addition
to stochastic encoding, dummy message transmission is
used by one of the users to ensure secrecy of the non-
cooperative private message at the unintended receiver.
In the Marton’s coding scheme, the codeword carrying
the cooperative private message is precoded such that it
is completely canceled out at the unintended receiver.
The details of the achievable scheme can be found
in Sec. VI.

5) Many of the results derived in this paper extend to
the asymmetric case also, and these are mentioned as
remarks after corresponding theorems, where applicable.

It is shown that with limited-rate transmitter cooperation,
it is possible to achieve a nonzero secrecy rate under all
parameter settings except for the α = 1 case. In particular,
for the very high interference regime (α ≥ 2), it is possible to
achieve non-zero secrecy rate for both the models, in contrast
with the non-cooperating case. In case of SLDIC, somewhat
surprisingly, it is found that, the achievable secrecy rate equals
the capacity of the same system without the secrecy constraints
in some nontrivial cases. Thus, the proposed schemes allow
one to get secure communications for free, in these cases. It is
also observed that the proposed outer bounds for the SLDIC
with cooperation are strictly tighter than the best existing outer
bound without the secrecy constraint [3] in all interference
regimes, except for the weak interference regime, where the
bounds match. The idea of using common randomness to
improve the achievable rates is an important upcoming theme
in multiuser information theory, and the proposed schemes
based on sharing random bits between the transmitters is in
the same flavor. Thus, the results in this paper provide a deep
and comprehensive understanding of the benefit of transmitter
cooperation in achieving high data rate in the IC, while also
ensuring secrecy.

Notation: Lower case or upper case letters represent scalars,
lower case boldface letters represent vectors, and upper case
boldface letters represent matrices.

Organization: Section II presents the system model.
In Secs. III and IV, the outer bounds and the achievable
schemes for the SLDIC are presented, respectively. The outer
bounds and achievable results for the GSIC can be found in
Secs. V and VI, respectively. In Sec. VII, some numerical
examples are presented to offer a deeper insight into the
bounds, to contrast the performance of the various schemes,
and to benchmark against known results. Concluding remarks
are offered in Sec. VIII. The proofs of most of the theorems
and lemmas are presented in the Appendices; some proofs are
relegated to [29] to avoid repetition of similar arguments.
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Fig. 2. (a) GSIC and (b) SLDIC with transmitter cooperation.

II. SYSTEM MODEL

Consider a 2-user Gaussian symmetric IC (GSIC) with
cooperating transmitters. The signals at the receivers are
modeled as [3]:

y1 = hd x1 + hcx2 + z1; y2 = hd x2 + hcx1 + z2, (1)

where z j ( j = 1, 2) is the Gaussian additive noise, distributed
as z j ∼ N (0, 1). The input signals are required to satisfy
the power constraint: E[|xi |2] ≤ P . Here, hd and hc are the
channel gains of the direct and cross links, respectively. The
transmitters cooperate through a noiseless and secure link of
finite rate denoted by CG . The equivalent deterministic model
of (1) at high SNR is as follows [3]:

y1 = Dq−mx1 ⊕ Dq−nx2; y2 = Dq−mx2 ⊕ Dq−nx1, (2)

where xi and yi are binary vectors of length q ! max{m, n},
D is a q × q downshift matrix with elements d j ′, j ′′ = 1 if
2 ≤ j ′ = j ′′ + 1 ≤ q and d j ′, j ′′ = 0 otherwise, and ⊕ stands
for modulo-2 addition (XOR operation).

The parameters m and n are related to the GSIC as m =
(⌊0.5 log Ph2

d⌋)+, n = (⌊0.5 log Ph2
c⌋)+, while the capacity

of the cooperative link is C = ⌊CG⌋. The quantity α ! n
m

captures the amount of coupling between the signal and the
interference, and is central to characterizing the achievable
rates and outer bounds in case of the SLDIC and GSIC.
A schematic representation of the GSIC and SLDIC with
transmitter cooperation is shown in Fig. 2. The figure also
shows the convention followed in this paper for denoting the
bits transmitted over the SLDIC, which is the same as that
in [3]. The bits ai , bi ∈ F2 denote the information bits of
transmitters 1 and 2, respectively, sent on the i th level, with
the levels numbered starting from the bottom-most entry.

The transmitter i has a message Wi , which should be
decodable at the intended receiver i , but needs to be kept
secret from the other, unintended receiver j , j ̸= i . In the
case of the SLDIC, the encoded message (xi ) is a function
of its own data bits, the bits received through the cooperative
link, and possibly some random data bits. The encoding at the
transmitter should satisfy the causality constraint, i.e., it cannot
depend on future cooperative bits. The decoding is based on

solving the linear equations in (2) at each receiver. For secrecy,
it is required to satisfy I (Wi ; y j ) = 0, i, j ∈ {1, 2} and i ̸= j
in the case of the SLDIC [30]. The details of the encoding
and decoding scheme for the Gaussian case can be found in
Sections VI-A and VI-B. In contrast to the SLDIC, the notion
of weak secrecy is considered for the Gaussian case [27]. Also,
it is assumed that the transmitters trust each other completely
and that they do not deviate from the agreed scheme, for both
the models. This model is relevant, for example, in a scenario
when two mobile stations in a network are served by base-
stations that can cooperate with each other using a finite-rate
backhaul link. The base-stations need to ensure that each user
can only decode their intended content, and not the content
subscribed by the other user.

The results derived in the paper for the deterministic and
Gaussian models under the symmetric assumption can be
extended to the asymmetric setting in many cases, and these
are indicated as remarks in the following sections. There
are two ways in which the model considered in the paper
can be asymmetric: (a) when C12 ̸= C21, where Cij is
the capacity of the cooperative link from transmitter i to
transmitter j (i, j ∈ {1, 2}, i ̸= j). This is termed as
cooperation asymmetry. (b) The two direct channel gains and
two cross channel gains need not be equal to each other; this
is termed as channel asymmetry. In this case, the channel is
parameterized by (m1, n1, m2, n2) in the deterministic case
and (h11, h12, h22, h21) in the Gaussian case. In the sequel,
the phrase asymmetry is used to account for both channel and
cooperation asymmetry.

III. SLDIC: OUTER BOUNDS

In this section, four outer bounds on the symmetric rate
for the 2-user SLDIC with cooperation between transmitters
and perfect secrecy constraints at the receivers are stated as
Theorems 1-4. Theorem 1 is valid for all α ≥ 0, while
Theorems 2, 3, and 4 are valid for α ≥ 2, 1 < α < 2,
and α = 1, respectively. The proofs of Theorems 1-2 and
Theorem 4 have appeared in [2] and hence, these details are
omitted from the paper.

In the derivation of the outer bounds, the following difficul-
ties arise:
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Fig. 3. (a) SLDIC with m = 2 and n = 6 and (b) SLDIC with m = 3 and n = 5: Illustration of partitioning of the encoded message/output.

1) Due to cooperation between the transmitters, the
encoded messages are no longer independent. Most
existing outer bounding techniques (e.g.: [6], [7]) require
the independence of the encoded messages to simplify
the entropy terms, hence are not applicable in this case.

2) Determining when and how to use the secrecy con-
straints at the receivers along with the reliability criteria
is crucial in deriving a tractable outer bound.

To meet these challenges, a novel partitioning of the
encoded messages and outputs depending on the value of α is
proposed. This partitioning of the encoded messages/outputs
reveals what side-information needs to be provided to the
receivers and helps to bound or simplify entropy terms which
are not easy to evaluate due to the dependence between the
encoded messages at the transmitter. This partitioning also
reveals how to judiciously exploit the secrecy constraints at
the receivers in deriving the outer bounds.

The following relation is repeatedly used in the derivation
of these outer bounds: conditioned on the cooperative signals,
denoted by (vN

12, vN
21), the encoded signals and the messages

at the two transmitters are independent [3], [31]. This is
represented as the following Markov chain relationship:

(W1, xN
1 ) − (vN

12, vN
21) − (W2, xN

2 ). (3)

Finally, the overall outer bound on the symmetric secrecy rate
is obtained by taking the minimum of these outer bounds.
The best performing outer bound depends on the value of α
and the maximum possible rate, i.e., max(m, n)1{C>0} +
min(m, n)1{C=0} per user, where 1A is the indicator function,
equal to 1 if A is true, and equal to 0 otherwise.

In the derivation of the first outer bound, the encoded
message xi (i = 1, 2) is partitioned into two parts: one part
(xia) which causes interference to the unintended receiver, and
another part (xib) which is not received at the unintended
receiver. Partitioning the message in this way helps to obtain
an outer bound on 2R1 + R2, which leads to an outer bound
on the symmetric secrecy rate. The following theorem gives
the outer bound on the symmetric secrecy rate.

Theorem 1: The symmetric rate of the 2-user SLDIC with
limited-rate transmitter cooperation and secrecy constraints at

the receivers is upper bounded as:

Rs ≤

⎧
⎪⎨

⎪⎩

1
3

[2C + 3m − 2n] for α ≤ 1

1
3

[2C + n] for α > 1.
(4)

Remarks:
• When α > 1, the outer bound increases with increasing n

for a given value of C . However, it is intuitive to think that
the achievable secrecy rate should decrease with increase
in the value of α, i.e., the outer bound is loose in the
high interference regime. Interestingly, it is found that
the achievable secrecy rate also improves with increase
in the value α in the initial part of the high interference
regime, i.e., for 1 < α < 2, even when C = 0. This will
be discussed in Sec. VII-B.

• The outer bound stated above can be extended to obtain
an outer bound on 2R1 + R2 for the asymmetric setting.
Using a similar approach as used in the proof of this
theorem, one can also obtain an outer bound on R1+2R2.
Note that, these outer bounds are applicable over all the
interference regimes. The outer bounds are as follows:

2R1 + R2 ≤ C12 + C21 + max {m1, n1}
+ max {m1, n2} − n2 + max {m2, n1} − n1,

R1 + 2R2 ≤ C12 + C21 + max {m2, n2}
+ max {m1, n2} − n2 + max {m2, n1} − n1.

(5)

The next outer bound, stated as Theorem 2, focuses on
the very high interference regime, i.e., for α ≥ 2. In the
derivation of the bound, the encoded message xi (i = 1, 2)
at each transmitter is partitioned into three parts, as shown in
Fig. 3(a). The partitioning is based on whether (a) the bits
are received at the intended receiver, and are received at the
other receiver without interference, (b) the bits are not received
at the desired receiver, and received without interference at
the other receiver, and (c) the bits are not received at the
intended receiver, and are received with interference at the
other receiver. To motivate the development of the following
outer bound, first consider the C = 0 case. If receiver 1
can decode x1a sent by transmitter 1, then receiver 2 can
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decode x1a as well, since it gets these data bits without any
interference. Hence, it is not possible to send any data bits
securely on those levels. Data transmitted at the remaining
levels are not received by receiver 1, so they cannot be used for
secure data transmission either. Now, suppose a genie provides
receiver 1 with the part of the signal sent by transmitter 1
that is received without any interference at receiver 2, i.e.,
yN

2a ! (xN
1a, xN

1b). Then, by using the secrecy constraint for
the receiver 2, it is possible to bound the rate of user 1 by
I (W1; yN

1 |yN
2a). When α ≥ 2, it is possible to show that

I (W1; yN
1 |yN

2a) = 0. When C > 0, by using the above
mentioned approach and the relation in (3), an outer bound
on the symmetric secrecy rate is derived for α ≥ 2, and is
stated as the following theorem.

Theorem 2: In the very high interference regime, i.e., for
α ≥ 2, the symmetric rate of the 2-user SLDIC with limited-
rate transmitter cooperation and secrecy constraints at the
receivers is upper bounded as: Rs ≤ 2C .

Remarks:
• The outer bound in Theorem 2 can be extended to the

asymmetric case under the following condition

min {n1, n2} > m1 + m2, (6)

and the outer bound becomes

R1 ≤ C12 + C21, R2 ≤ C12 + C21. (7)

• Theorem 2 implies that, for α ≥ 2, it is not possible to
achieve a rate greater than 2C , regardless of m and n.
In particular, when C = 0, i.e., without cooperation, it is
not possible to achieve a nonzero rate. However, in the
other interference regimes, it is possible to achieve rates
greater than 2C (See Figs. 12 and 13).

The third outer bound, stated as Theorem 3 below, is applica-
ble in the high interference regime, i.e., 1 < α < 2. The
derivation of the outer bound involves partitioning of the
output and the encoded message based on whether the bits
are received with interference at the intended receiver, or
causes interference to the other receiver, as shown in Fig. 3(b).
The outer bound on the symmetric secrecy rate for the high
interference regime is stated in the following theorem.

Theorem 3: In the high interference regime, i.e., for
1 < α < 2, the symmetric rate of the 2-user SLDIC with
limited-rate transmitter cooperation and secrecy constraints at
the receivers is upper bounded as: Rs ≤ 2C + 2m − n.

The following theorem gives the outer bound on the sym-
metric secrecy rate for the α = 1 case. In this case, both
the receivers see the same signal. Hence, it is possible for
receiver 2 decode any message that receiver 1 is able to
decode, and vice-versa. Therefore, it is not possible to achieve
a nonzero secrecy rate, irrespective of C . A similar reasoning
also holds for the Gaussian case, even though the receivers
see independent noise instantiations.

Theorem 4: When α = 1, the symmetric rate of the 2-user
SLDIC with limited-rate transmitter cooperation and secrecy
constraints at the receivers is upper bounded as: Rs = 0.

Proof: The proof is straightforward and therefore rele-
gated to [29].

A consolidated expression for the outer bound, obtained
by taking minimum of the outer bounds in Theorems 1-4, is
stated as the following corollary. In particular, the minimum
of the outer bounds in Theorems 1 and 3 is taken for the high
interference regime, and the minimum of the outer bounds
in Theorems 1 and 2 is taken in the very high interference
regime.

Corollary 1: An outer bound on the symmetric secrecy rate
of the SLDIC, obtained by taking the minimum of the outer
bounds derived in this work, is given by:

Rs

m
≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2β
3 − 2α

3 + 1 for α < 1
0 for α = 1
2β
3 + α

3 for 1 < α < 2, β > α − 3
2

or α ≥ 2, β > α
4

2β − α + 2 for 3
2 < α < 2, 0 ≤ β < α − 3

2
2β for α ≥ 2, 0 ≤ β ≤ α

4 ,

(8)

where β ! C
m .

Remarks:
• Under cooperation asymmetry, all the outer bounds devel-

oped in the deterministic model still hold. This requires
replacing 2C with C12 + C21 in the expression for the
outer bound. This is due to the fact that the entropy term
H (v12, v21) can be upper bounded by C12 + C21.

• There are cases where it is non-trivial to extend these
bounds to the asymmetric scenario (e.g.: Theorem 3).
One of the key techniques used in the derivation of
these outer bounds is the partitioning of the encoded
messages/outputs and careful selection of the side-
information to be provided to the receiver. This parti-
tioning and side-information does not easily generalize
to the asymmetric scenario.

Next, the achievable schemes for the SLDIC are presented.

IV. SLDIC: ACHIEVABLE SCHEMES

A. Weak Interference Regime (0 ≤ α ≤ 2
3 )

In this regime, the proposed scheme uses interference can-
celation. It is easy to see that data bits transmitted on the lower
m − n levels [1 : m − n] remain secure, as these data bits do
not cause interference at the unintended receiver. Hence, it is
possible to transmit m−n bits securely, when C = 0, as shown
in Fig. 4(a). However, with cooperation (C > 0), it is possible
to transmit on the top levels by appropriately xoring the data
bits with the cooperative bits in the lower levels prior to
transmission. These cooperative bits are precoded (xored) with
the data bits at the levels [1 : min{n, C}] to cancel interference
caused by the data bits sent by the other transmitter. When
C = n, it can be shown that the proposed scheme achieves
the maximum possible rate of max{m, n} bits. When C > n,
C −n bits can be discarded and n cooperative bits can be used
for encoding as above, to achieve max{m, n} bits. Hence, in
the sequel, it will not be explicitly mentioned that C ≤ n. The
proposed encoding scheme achieves the following symmetric
secrecy rate:

Rs = m − n + C. (9)
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Fig. 4. SLDIC: (a) m = 4, n = 2, C = 1 and Rs = 3, (b) m = 5 and n = 4, C = 1 and Rs = 3.

A high level description of the achievable scheme is illustrated
in Fig. 4(a). The details of the encoding scheme and the
derivation of (9) can be found in [1].

Remarks:
1) In this regime, the proposed achievable scheme meets

the symmetric capacity of the SLDIC without secrecy
constraints [3] for all values of C (See Figs. 12 and 13).
Thus, the secrecy constraints at the receivers do not
reduce the symmetric capacity region of the SLDIC.

2) In this regime, the proposed scheme does not involve
transmission of a jamming signal (or random bits), even
when C = 0. In the next subsection, it will be seen
that the transmission of the jamming signal improves
the achievable secrecy rate, when the capacity of the
cooperative link is not sufficient to cancel interference
at the unintended receiver.

B. Moderate Interference Regime ( 2
3 < α < 1)

In this regime, the proposed scheme uses interference can-
celation along with the transmission of random bits. Without
transmitter cooperation, it is possible to transmit at least
m − n bits securely, as in the weak interference regime.
Depending on the value of C and α, with the help of
transmission of random bits, it is possible to send additional
data bits on the higher levels [m − n + 1 : m] by carefully
placing data bits along with zero bits and random bits.

The proposed scheme achieves the following symmetric
secrecy rate:

Rs = m − n + B(m − n) + q + C, (10)

where B !
⌊

g
3r2

⌋
, g ! {n − (r2 + C)}+, r2 ! m − n,

q ! min
{
(t − r2)+, r2

}
, and t ! g%{3r2} is the remainder

obtained when g is divided by 3r2.
In the above equation, the first term corresponds to the

number of data bits transmitted securely without using random
bits transmission or cooperation. The term B(m − n) + q
corresponds to the number of data bits that can be securely

transmitted using the help of random bits transmission. The
last term C represents the gain in rate achievable due to
cooperation.

A high level description of the achievable scheme is illus-
trated in Fig. 4(b). The details of the encoding scheme and
the derivation of (10) can be found in [1].

Remark: In this regime, it is possible to transmit data bits
securely in the higher levels [m − n + 1 : m] by intelligently
choosing the placement of data and random bits, in addition
to interference cancelation.

C. Interference Is as Strong as the Signal (α = 1)

In this case, from Theorem 4, it is not possible to achieve
a nonzero secrecy rate.

D. High Interference Regime (1 < α < 2)

The achievable scheme is similar to that proposed for the
moderate interference regime, but it differs in the manner the
encoding of the message is performed at each transmitter.
The proposed scheme achieves the following secrecy rate:

1) When (1 < α ≤ 1.5):

Rs = B(n − m) + q + C, (11)

where B !
⌊

g
3r2

⌋
, g ! (m − C)+, q !

min
{
(t − r2)+, r2

}
, t ! g%{3r2} and r2 ! n − m.

2) When (1.5 < α < 2):

Rs =

⎧
⎨

⎩

2m − n + C for 0 ≤ C ≤ 4n − 6m
4n − 6m + CT1

+ CT2 + CT3 + rd for 4n − 6m < C ≤ n,

(12)

where CT1 ! min
{⌈

Crem
2

⌉
, 2m − n

}
, Crem ! (C ′ −

CT3)
+, CT3 ! min

{
2m − n, C ′′}, C ′ ! C − (4n − 6m),

C ′′ !
⌈

C ′
3

⌉
, CT2 ! min

{
2m − n, (Crem − CT1)

+}
and

rd ! min
{
2m − n − CT3 , 2m − n − CT2

}
.
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Fig. 5. SLDIC with m = 2, n = 4 and C = 1. (a) Random bits sharing Rs = 2. (b) Data bits sharing Rs = 1.

The details of the encoding scheme and some illustrative
examples can be found in [29].

Remarks:
1) When C = 0 and 1.5 < α < 2, the proposed scheme is

capacity achieving. The outer bound in Theorem 3 helps
to establish this.

2) One can note that the achievable schemes for the moder-
ate (Sec. IV-B) and high interference regime (Sec. IV-D)
use a combination of interference cancelation and trans-
mission of a jamming signal (random bits transmission).
When precoding is done using the other user’s signal,
it cancels the interference and also ensures secrecy.
In the technique based on random bits transmission,
the transmitter self-jams its own receiver, so that the
receiver cannot decode the other user’s data. But, in
this process, transmitter causes interference to the other
receiver, thereby adversely impacting the achievable rate
of secure communication. Thus, self jamming in that
form only helps if the benefit to the secrecy rate due to
the interference caused at the own receiver outweighs
the negative impact of the interference caused at the
other receiver. However, when the jamming signal can be
canceled out at an unintended receiver by transmission
of the same random bits by the other transmitter, its
adverse impact is completely alleviated, leading to larger
achievable rates.

E. Very High Interference Regime (α ≥ 2)

In this case, when C = 0, it is not possible to achieve
nonzero secrecy rate as established by the outer bound in
Theorem 2. However, with cooperation (C > 0), it is possible
to achieve nonzero secrecy rate. The proposed scheme uses
interference cancelation, time sharing, and relaying the other
user’s data bits. In contrast to the achievable schemes for
other interference regimes, the transmitters exchange data
bits, random bits, or both, depending on the capacity of the
cooperative link. The proposed scheme achieves the following
secrecy rate:

1) When m is even:

Rs =

⎧
⎪⎪⎨

⎪⎪⎩

2C for 0 < C ≤ m
2

m
2 + C for m

2 < C ≤ n − 3m
2

n
2 − m

4 + C
2 for n − 3m

2 < C < n − m
2

C for n − m
2 ≤ C ≤ n.

(13)

2) When m is odd:

Rs =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min{2C, m} for 0 < C ≤ m+1
2

m + min
{
C − m+1

2 , n − 2m
}

for m+1
2 < C ≤ 2n−3m+1

2

n − 2m + 1
2

[
Cul

1 + 2Cuu
1

]

+ 1
2

[
Cuu

2 + Clu
1 + Cul

2

]
for 2n−3m+1

2 < C ≤ n,

(14)

where Cuu
1 !

⌈C
2

⌉
, Cul

1 ! (m − Cuu
1 )+, Cuu

2 ! (C −
Clu

2 − Cr
2)+, Clu

1 ! (C − Cuu
1 − Cr

1)+, Cul
2 ! Cll

1 ,
Cll

1 ! min{2Cr
1, (m − Clu

1 )+)}, Cll
2 ! Cul

1 and Cr
2 !

max
{⌈

Cll
2

2

⌉
,

⌊
Cul

2
2

⌋}
, Cr

1 !
⌈

Cul
1
2

⌉
.

The details of the achievable scheme can be found in
Appendix B. The achievable scheme when m is odd is similar
to that when m is even, and can be found in [29].

Remarks:
1) When 0 < C ≤ ⌈m

2 ⌉, the capacity achieving scheme
involves exchanging only random bits through the
cooperative links. This is useful in scenarios where
the transmitters trust each other to follow the agreed-
upon scheme, but are not allowed to share their data
bits through the cooperative link. The outer bound in
Theorem 2 establishes the optimality of the proposed
scheme. The achievable scheme is illustrated for ran-
dom bits sharing and data bits sharing for C = 1 in
Figs. 5(a) and 5(b), respectively.

2) When m
2 < C < n − m

2

(
or m+1

2 < C ≤ n
)

and m is
even (or odd) valued, the proposed scheme shares a
combination of random bits and data bits through the
cooperative links. In Fig. 6, a schematic representation
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Fig. 6. SLDIC with m = 2, n = 4 and C = 2: R1 = 2 and R2 = 3 is achievable in the first time slot. In the second time slot, the role of
transmitters 1 and 2 is reversed and users 1 and 2 achieve a rate of R1 = 3 and R2 = 2, respectively.

of the achievable scheme for m = 2 and n = 4, with
C = 2 bits is shown for the first time slot. In the
second time slot, the encoding for transmitters 1 and 2 is
reversed. In the second time slot, users 1 and 2 achieve
a rate of R1 = 3 and R2 = 2, respectively. Hence,
a symmetric rate of Rs = 2.5 is achievable.

Interestingly, it turns out that the symmetric capacity region
of the SLDIC does not change if the perfect secrecy constraint
at the receiver is replaced with the strong or the weak notion
of secrecy, when the proposed scheme is capacity achieving.
This result is stated as the following theorem.

Theorem 5: The symmetric secrecy capacity region of the
deterministic SLDIC with transmitter cooperation satisfies the
following relationship, when the proposed scheme is capacity
achieving:

Cperfect = Cstrong = Cweak, (15)

where Cperfect, Cstrong and Cweak correspond to the capacity
region with the perfect, strong and weak notions of secrecy,
respectively.

Proof: Any communication scheme satisfying the perfect
secrecy condition will automatically satisfy the strong and
weak secrecy condition. Similarly, a communication scheme
satisfying strong secrecy will automatically satisfy the weak
secrecy condition. Hence, the following holds

Cperfect ⊆ Cstrong ⊆ Cweak. (16)

The achievable results in Sec. IV are obtained under perfect
secrecy constraints at the receivers. It is not difficult to show
that the outer bounds on the secrecy rate in Theorems 1-4
do not change if the perfect secrecy is replaced with the
weak notion of secrecy. When the achievable rates meet the
corresponding outer bounds, the relation in (15) holds.

Finally, this section is concluded with the following
remarks:

1) When C = n, i.e., the cooperative link is as strong as
the interference, and when α ̸= 1, the proposed scheme
achieves the maximum possible rate of max{m, n}.

2) In [32], it is shown that the proposed outer bound in
Theorem 1 in Sec. III is tight for 3

4 < α < 1 and 1 <
α < 1.5, when C = 0. Hence, the secrecy capacity is
characterized for these regimes of α also. However, the
symmetric secrecy capacity region of the 2-user SLDIC,
when 1

2 < α ≤ 3
4 and C = 0, remains an open problem.

3) It is possible to extend the achievable scheme based
on interference cancelation (involving exchange of data
bits between the transmitters) as well as the scheme
based on transmission of random bits to the asymmetric
case for the deterministic model. However, it is not
straightforward to extend the achievable schemes which
rely on the exchange of both data and random bits to
the asymmetric case. The extension requires a careful re-
working of a scheme for sharing random bits and data
bits in the asymmetric setting.

In the following section, outer bounds for the GSIC are
presented.

V. GSIC: OUTER BOUNDS

In this section, the outer bounds on the secrecy rate for
the GSIC with limited-rate transmitter cooperation are stated
as Theorems 6-8. The extension of the outer bounds from
the deterministic model to the Gaussian model is non-trivial,
because of the following well known differences between the
models:

1) In the deterministic model, interference or superposition
of signals is modeled using the XOR operation. Hence,
the levels do not interact with each other.

2) In the deterministic model, noise is modeled using
truncation.

3) In the Gaussian model, due to finite rate cooperation
between the transmitters, the differential entropy terms
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contain discrete as well as continuous random variables.
This makes the derivation of the outer bounds more
difficult in the Gaussian case.

Due to the above differences, the partitioning used in the
derivation of the outer bounds for the deterministic case is
not directly applicable to the Gaussian case. To overcome
this problem, either analogous quantities that serve as side-
information need to be found to mimic the partitioning of
the encoded messages/outputs, or the bounding steps need to
be modified taking cue from the deterministic model. This is
discussed in detail in this section.

The outer bound derived in Theorem 1 partitions the
encoded message into two parts: xN

ia (received at receiver j ,
j ̸= i ) and xN

ib (not received at receiver j , j ̸= i ). However,
it is not possible to partition the message in this way for
the Gaussian case. Hence, in the derivation of Theorem 6,
sN

i = hcxN
i + zN

j ( j ̸= i) is used as a proxy for xN
ia .

In this section, the following notation is used: SNR ! h2
d P ,

INR ! h2
c P and ρ ! E[x1x2].

Theorem 6: The symmetric rate of the 2-user GSIC with
limited-rate transmitter cooperation and secrecy constraints at
the receiver is upper bounded as follows:

Rs ≤ max
0≤|ρ|≤1

1
3

[
2CG + 0.5 log det

(
$ȳ|s̄

)

+ 0.5 log
(

1 + SNR + INR + 2ρ
√

SNR INR
)]

, (17)

where $ȳ|s̄ = $ȳ − $ȳ,s̄$
−1
s̄ $T

ȳ,s̄,

$ȳ=

⎡

⎢⎢⎣

1 + SNR + INR 2
√

SNR INR
+2ρ

√
SNR INR +ρ(SNR + INR)

2
√

SNR INR 1 + SNR + INR
+ρ(SNR + INR) +2ρ

√
SNR INR

⎤

⎥⎥⎦,

$ȳ,s̄ =
[√

SNR INR + ρINR INR + ρ
√

SNR INR
INR + ρ

√
SNR INR

√
SNR INR + ρINR

]
,

and

$s̄ =
[

1 + INR ρINR
ρINR 1 + INR

]
,

and det(·) represents the determinant of a matrix.
Proof: The proof is provided in Appendix C.

Remarks:
1) The outer bound in Theorem 6 for the Gaussian model

can be extended to obtain an outer bound on 2R1 + R2
under the asymmetric setting. The outer bound becomes1

2R1 + R2

≤ max
0≤|ρ|≤1

C12 + C21 + 0.5 log det
(
$ȳ|s̄

)

+ 0.5 log
(

1 + SNR1 + INR1 + 2ρ
√

SNR1 INR1

)
,

(18)

1With a slight abuse of notation, Ci j has been used to represent the capacity
of the cooperative link from transmitter i to transmitter j for both the
deterministic and the Gaussian models in the asymmetric case.

where $ȳ|s̄ = $ȳ − $ȳ,s̄$
−1
s̄ $T

ȳ,s̄,

$ȳ =
[

$ȳ,11 $ȳ,12
$ȳ,21 $ȳ,22

]
,

$ȳ,11 ! 1 + SNR1 + INR1 + 2ρ
√

SNR1 INR1,

$ȳ,12 !
√

SNR1 INR2 +
√

SNR2 INR1

+ρ
(√

SNR1 SNR2 +
√

INR1 INR2

)
,

$ȳ,21 !
√

SNR1 INR2 +
√

SNR2 INR1

+ρ
(√

SNR1 SNR2 +
√

INR1 INR2

)

and $ȳ,22 ! 1 + SNR2 + INR2 + 2ρ
√

SNR2 INR2,

$ȳ,s̄=

⎡

⎢⎢⎢⎢⎣

√
SNR1 INR2 ρ

√
SNR1 INR1

+ρ
√

INR1 INR2 +INR1

ρ
√

SNR2 INR2
√

SNR2 INR1
+INR2 +ρ

√
INR1 INR2

⎤

⎥⎥⎥⎥⎦
,

and

$s̄ =
[

1 + INR2 ρ
√

INR1 INR2
ρ
√

INR1 INR2 1 + INR1

]
,

where SNR1 ! h2
11 P1, SNR2 ! h2

22 P2, INR1 ! h2
12 P2,

and INR2 ! h2
21 P1.

2) Using a similar approach as used in the proof of
Theorem 6, an outer bound on R1 + 2R2 can be
obtained.

The outer bound on the secrecy rate presented in the
following theorem is based on the idea used in deriving outer
bounds in Theorems 2 and 3 for case of the SLDIC. But,
in the Gaussian setting, it is not possible to partition the
encoded message as was done for the SLDIC. For example,
in Theorem 2, a part of the output at receiver 2 which does
not contain the signal sent by transmitter 1 is provided as
side information to receiver 1. Hence, the approach used in
the derivation of the outer bound in case of SLDIC cannot
be directly used for the Gaussian case. To overcome this
problem, for the Gaussian case, first xN

2 is provided as side
information to receiver 1; this eliminates the interference
caused by transmitter 2. Then, the receiver 1 is provided with
yN

2 as side-information. The outer bound on the symmetric
secrecy rate is stated in the following theorem.

Theorem 7: The symmetric rate of the 2-user GSIC with
limited-rate transmitter cooperation and secrecy constraints at
the receiver is upper bounded as follows:

Rs ≤ max
0≤|ρ|≤1

[
0.5 log

(
1+ SNR+SNR2(1 − ρ2)

1+ SNR+INR+2ρ
√

SNR INR

)

+ 2CG

]
. (19)

Proof: The proof is provided in Appendix D.
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Remark: The outer bound in Theorem 7 can be extended to
the asymmetric setting, and the outer bound becomes

R1 ≤

max
0≤|ρ|≤1

[
0.5 log

(
1 + SNR1 + SNR1 SNR2(1 − ρ2)

1 + SNR2 + INR2 + 2ρ
√

SNR2 INR2

)

+ C12 + C21

]
. (20)

Using a similar approach as used in the proof of Theorem 7,
an outer bound on R2 can be obtained.

The outer bound presented in the following theorem is
similar to the outer bound presented in Theorem 4 in case
of the SLDIC. This kind of outer bound exists in the literature
(see, for example, [20]), but for the sake of completeness, it
is presented in the following theorem. The proof is provided
in [29]. Unlike the results in Theorems 6 and 7, this outer
bound does not depend on the capacity of the cooperative
link.

Theorem 8: The symmetric rate of the 2-user GSIC with
limited-rate transmitter cooperation and secrecy constraints at
the receiver is upper bounded as follows:

Rs ≤ max
0≤|ρ|≤1

0.5 log
[
1 + SNR + INR + 2ρ

√
SNR INR−

(2
√

SNR INR + ρ(SNR + INR))2

1 + SNR + INR + 2ρ
√

SNR INR

]

. (21)

Remark: The outer bound in Theorem 8 can be extended to
the asymmetric setting, and the outer bound becomes

R1

≤ max
0≤|ρ|≤1

0.5 log
(

1 + SNR1 + INR1 + 2ρ
√

SNR1 INR1

−
(√

SNR1 INR2+√
SNR2 INR1+ρ (SNR12+INR12)

)2

1+ SNR2+ INR2 + 2ρ
√

SNR2 INR2

)

,

(22)

where SNR12 ! √
SNR1 SNR2 and INR12 ! √

INR1 INR2.
Using a similar approach as used in the proof of Theorem 8,

an outer bound on R2 can be obtained.

A. Relation Between the Outer Bounds for SLDIC and GSIC

In the following, it is shown that at high SNR and
INR, the outer bounds developed for the Gaussian case
(Theorems 6 and 7) are approximately equal to the outer
bounds for the SLDIC, when C = 0.2 In Fig. 7, the outer
bounds on the achievable secrecy rate in Theorems 6-8 are
compared as a function of α, for CG = 0 and CG = 1,
when P = 20 dB and hd = 1. This validates that the
approaches used in obtaining outer bounds in the two models
are consistent with each other.

In the following, for ease of presentation, it is assumed
that 0.5 log SNR and 0.5 log INR are integers. Recall that,
the parameters m and n of the SLDIC are related to the
GSIC as m = (⌊0.5 log SNR⌋)+ and n = (⌊0.5 log INR⌋)+,
respectively.

2When C ̸= 0, from Fig. 7, it appears that the approximate equivalence of
the bounds for the GSIC and SLDIC will still hold.

Fig. 7. Comparison of different outer bounds on the secrecy rate for the
GSIC with P = 20 dB and hd = 1. In the legend, OB stands for the outer
bound.

1) Outer Bound in Theorem 6: Consider the following
bound in the proof of Theorem 6, when CG = 0:

N[R1 + 2R2]
≤ h(yN

1 ) + h(yN
1 , yN

2 |̃sN
1 , s̃N

2 ) − h(̃zN
1 )

−h(̃zN
2 ) − h(zN

1 ) + Nϵ′′,
≤ h(yN

1 ) + h(yN
1 |̃sN

1 ) + h(yN
2 |̃sN

2 ) − h(̃zN
1 )

−h(̃zN
2 ) − h(zN

1 ) + Nϵ′′,
or R1 + 2R2

≤ 0.5
[
log(1+ SNR + INR) + 2 log

(
1 + SNR + INR

1 + INR

)]
,

≈ 0.5[log(SNR + INR)+ 2 log(SNR+ INR) − 2 log INR],
(23)

where the last equation is obtained for high SNR and INR.
Using the above mentioned definitions of m and n, (23)
reduces to:

Rs ≤
{

1
3 [3m − 2n] for α ≤ 1
n
3 for α > 1.

(24)

The above is the same as the outer bound for the SLDIC in
Theorem 1, when C = 0.

2) Outer Bound in Theorem 7: When CG = 0, the outer
bound in Theorem 7 reduces to the following, in the high
SNR and high INR regime:

Rs ≤ 0.5 log
(

1 + SNR + SNR2

1 + SNR + INR

)
,

= 0.5 log
(

1 + 2SNR + INR + SNR2
)

−0.5 log (1 + SNR + INR),

≈ 0.5
[
log max

(
SNR2, INR

)
− log(INR)

]
. (25)

Using the above mentioned definitions of m and n, (25)
reduces to:

Rs ≤
{

2m − n for 1 < α < 2
0 for α ≥ 2.

(26)

The above is the same as the outer bound for the SLDIC in
Theorem 2, when C = 0.
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In the following section, achievable schemes on the secrecy
rate for the GSIC are presented.

VI. GSIC: ACHIEVABLE SCHEMES

A. Weak/Moderate Interference Regime (0 ≤ α ≤ 1)

The achievable scheme is based on the approach used in
Secs. IV-A and IV-B, for the SLDIC. Again, the achievable
scheme proposed for the deterministic model is not directly
applicable to the Gaussian case due to the differences between
the two models mentioned earlier. In the case of the SLDIC,
the achievable scheme used a combination of interference
cancelation, transmission of random bits, or both, depending
on the value of α and C . That scheme is extended to the
Gaussian setting, as follows.

The message at transmitter i is split into two parts: a non-
cooperative private part (wpi ) and a cooperative private part
(wcpi ). The non-cooperative private message is encoded using
stochastic encoding [27], and the cooperative private part is
encoded using Marton’s coding scheme [3], [28]. For the
SLDIC, data bits transmitted at the lower levels [1 : m−n] are
not received at the unintended receiver. Hence, these data bits
remain secure. However, there is no one-to-one analogue of
this in the GSIC, so the scheme does not extend directly. In the
Gaussian case, for the non-cooperative private part, stochastic
encoding is used to ensure secrecy. The transmitter i encodes
the non-cooperative part wpi ∈ Wpi = {1, 2, . . . , 2N Rpi }
into xN

pi . A stochastic encoder is specified by a conditional
probability density f pi (x pi,k |wpi) (i = 1, 2), where x pi ∈ Xpi
and wpi ∈ Wpi , and it satisfies the following condition:

∑

x pi,k ∈Xpi

f pi (x pi,k |wpi ) = 1, k = 1, 2, . . . , N, (27)

where f pi (x pi,k |wpi ) is the probability that x pi,k is output by
the stochastic encoder, when message wpi is to be transmitted.

The cooperative private message wcp1 ∈ Wcp1 =
{1, 2, . . . , 2N Rcp1 } and wcp2 ∈ Wcp2 = {1, 2, . . . , 2N Rcp2 }
at transmitters 1 and 2 are encoded using Marton’s coding
scheme. One of the key aspects of the achievable scheme
is in the proposed method for encoding of the cooperative
private message, which is chosen to ensure that this part of
the message is completely canceled out at the non-intended
receiver. This corresponds to the scheme used for interference
cancelation in the SLDIC. This serves two purposes: it cancels
interference over the air, and simultaneously ensures secrecy.
The transmitter 2 sends a dummy message along with the
cooperative private message and the non-cooperative private
message. Note that stochastic encoding is sufficient to ensure
secrecy of the non-cooperative private message. However, the
additional dummy message sent by the transmitter 2 can
enhance the achievable secrecy rate, depending on the values
of α and C . In this case, both the receivers treat the dummy
message as noise.

1) Encoding and Decoding: For the non-cooperative private

part, transmitter i (i = 1, 2) generates 2N(Rpi +R′
pi ) i.i.d.

sequences of length N at random according to

P(xN
pi ) =

N∏

k=1

P(x pi,k ). (28)

The 2N(Rpi +R′
pi ) codewords in the codebook Cpi are randomly

grouped into 2N Rpi bins, with each bin containing 2N R′
pi

codewords. Any codeword in Cpi is indexed as xN
pi(wpi , w′

pi )

for wpi ∈ Wpi and w′
pi ∈ W ′

pi = {1, 2, . . . , 2N R′
pi }. In order

to transmit wpi , transmitter i selects a w′
pi ∈ W ′

pi randomly
and transmits the codeword xN

pi (wpi , w′
pi ).

In order to transmit a dummy message, transmitter 2 gener-
ates 2N Rd2 i.i.d. sequences of length N at random according to

P(xN
d2) =

N∏

k=1

P(xd2,k). (29)

The 2N Rd2 codewords in codebook Cd2 are randomly grouped
into 2N R′

d2 bins, with each bin containing 2N R′′
d2 codewords

(and thus Rd2 = R′
d2 + R′′

d2). Any codeword in Cd2 is indexed
as xN

d2(w
′
d2, w

′′
d2), where w′

d2 ∈ W ′
d2 = {1, 2, . . . , 2N R′

d2 } and
w′′

d2 ∈ W ′′
d2 = {1, 2, . . . , 2N R′′

d2 }. During encoding, transmit-
ter 2 selects w′

d2 ∈ W ′
d2 and w′′

d2 ∈ W ′′
d2 independently at

random and sends the codeword xN
d2(w

′
d2, w

′′
d2).

For the cooperative private message, the transmitter gener-
ates the cooperative private vector codeword xN

cp(wcp1, wcp2)
based on Marton’s coding scheme according to

P(xN
cp, uN

1 , uN
2 ) =

N∏

k=1

P(xcp,k, u1,k, u2,k), (30)

where uN
1 and uN

2 are auxiliary codewords. The choice of these
codewords are discussed in the proof of Theorem 9. Finally,
the non-cooperative private codeword and cooperative private
codeword are superimposed to form the transmit codeword at
the transmitter 1 and the non-cooperative private codeword,
cooperative private codeword and the dummy message code-
word are superimposed to form the transmit codeword at the
transmitter 2:

xN
1 (wcp1, wcp2, wp1, w

′
p1) = xN

cp[1] + xN
p1,

and

xN
2 (wcp1, wcp2, wp2, w

′
p2, w

′
d2, w

′′
d2) = xN

cp[2] + xN
p1 + xN

d2,

(31)

where xN
cp is defined in (71) in the proof of Theorem 9.

For decoding, receiver i looks for a unique message tuple
such that (yN

i , uN
i ( ˆ̃wcpi), xN

pi (ŵpi , ŵ′
pi )) is jointly typical.

Based on the above coding strategy, the following theorem
gives the achievable result on the secrecy rate.

Theorem 9: In the weak/moderate interference regime, the
following rate is achievable for the GSIC with limited-
rate transmitter cooperation and secrecy constraints at the
receivers:

R1 + R′
p1 ≤ I (u1, x p1; y1),

R1 + R′
p1 ≤ I (x p1; y1|u1) + min

{
CG , I (u1; y1|x p1)

}
,

(32)



MOHAPATRA AND MURTHY: ON THE CAPACITY OF THE TWO-USER SYMMETRIC IC 13

where R′
p1 = I (x p1; y2|x p2, u2). The achievable secrecy

rate for the user 2 can be obtained by exchanging the
indices 1 and 2 in (32).

Proof: The proof is provided in Appendix F.
The achievable symmetric secrecy rate for the GSIC is stated

in the following Corollary.
Corollary 2: Using the achievable result in Theorem 9

and time-sharing between transmitters, following symmetric
secrecy rate is achievable for the GSIC with limited-rate
transmitter cooperation:

Rs = 1
2

[
R∗

1(1) + R∗
1 (2)

]
, (33)

where R∗
1 (1) and R∗

1 (2) are the achievable secrecy rates for
transmitter 1 in the first and second time slots, respectively,
which are obtained by maximizing Rs over parameters θi , ηi
and βi (i = 1, 2). The achievable rates for users 1 and 2 in
the first time slot are as follows:

R1(1)≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.5 log
(

1 + σ 2
u +h2

d Pp1

1+h2
c Pd2+h2

c Pp2

)
− R′

p1,

0.5 log
(

1 + h2
d Pp1

1+h2
c Pd2+h2

c Pp2

)
+ min {CG ,

0.5 log
(

1 + σ 2
u

1+h2
c Pd2+h2

c Pp2

)}
− R′

p1,

(34)

R2(1)≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.5 log
(

1 + σ 2
u +h2

d Pp2

1+h2
d Pd2+h2

c Pp1

)
− R′

p2,

0.5 log
(

1 + h2
d Pp2

1+h2
d Pd2+h2

c Pp1

)
+ min {CG ,

0.5 log
(

1 + σ 2
u

1+h2
d Pd2+h2

c Pp1

)}
− R′

p2,

(35)

where R′
p1 = 0.5 log

(
1 + h2

c Pp1

1+h2
d Pd2

)
, R′

p2 =

0.5 log
(

1 + h2
c Pp2

1+h2
c Pd2

)
, σ 2

u ! (h2
d − h2

c)
2σ 2

z , σ 2
z ! θ1

θ1+θ2

P1
h2

d+h2
c
,

Pp1 ! θ2
θ1+θ2

P1, Pp2 = η1
η1+η2

P ′, Pd2 = η2
η1+η2

P ′,

P ′ = (P2 − (h2
d + h2

c)σ
2
z ), Pi ! βi P (i = 1, 2) and

0 ≤ (θi , ηi ,βi ) ≤ 1. The rate equations for the second
time slot can be obtained by exchanging indices 1 and 2 in
(34) and (35).

Proof: The proof is provided in Appendix G.

B. High/Very High Interference Regime (α > 1)

The achievable scheme is based on the approach used for
the SLDIC in case of high interference regime. The achievable
scheme for the SLDIC in Sec. IV-D used a combination
of interference cancelation, relaying of the other user’s data
bits, and transmission of random bits. In the case of the
SLDIC, as some of the interfering links are not present to the
intended receiver, the levels corresponding to these links can
be directly used for the other user’s data transmission. But,
in the Gaussian setting, it is not possible to relay the other
user’s data directly in this manner. The relationship between
the corresponding achievable schemes for the SLDIC and the
GSIC will be made precise in the following paragraphs.

In the proposed scheme, user 1 sends a non-cooperative pri-
vate message (wp1) and a cooperative private message (wcp1).
The other user transmits a cooperative private message (wcp2)

along with a dummy message (wd2). For the SLDIC, the
achievable scheme required transmission of random bits for
ensuring secrecy of data bits, in addition to the data bits
that were sent with the help of cooperation. Similarly, for
the GSIC, the proposed scheme requires stochastic encoding
and transmission of a dummy message by the other user,
in order to ensure secrecy of the non-cooperative private
message sent by user 1. It is important to note that stochastic
encoding alone cannot ensure secrecy of the non-cooperative
private part of the message. For the cooperative private part
of the message (wcpi ), the coding scheme is the same as that
mentioned in Sec. VI-A.

The transmission of the dummy message xd2 by
transmitter 2 can be considered as using another stochastic
encoder fd2, which is specified by a probability density func-
tion fd2(xd2,k), with xd2,k ∈ Xd2 and

∑

xd2,k∈Xd2

fd2(xd2,k)=1.

The rate Rd2 of the dummy message sent by transmitter 2
and the rate sacrificed by transmitter 1 in stochastic encoding
in order to confuse the eavesdroppers at receivers 1 and 2,
respectively, are chosen such that the non-cooperative private
message sent by transmitter 1 remains secure at receiver 2,
and receiver 1 is able to decode the dummy message.
At transmitter 1, the cooperative private message and the
non-cooperative private message are superimposed to form
the transmit codeword (xN

1 ). Finally, at transmitter 2, the
cooperative private message and the dummy information are
superimposed to form the transmit codeword (xN

2 ). In contrast
to the achievable scheme for the weak/moderate interference
regime, the dummy message sent by one of the transmitters i
is required to be decodable at the receiver j (i ̸= j).

1) Encoding and Decoding: The encoding for the non-
cooperative private message at transmitter 1 and the coop-
erative private message at both the transmitters are the same
as described in Sec. VI-A1. In order to transmit the dummy
message, transmitter 2 chooses xN

d2(wd2) for wd2 ∈ Wd2. The
codewords transmitted from the two transmitters are given by:

xN
1 (wcp1, wcp2, wp1, w

′
p1) = xN

cp[1] + xN
p1,

and

xN
2 (wcp1, wcp2, wd2) = xN

cp[2] + xN
d2, (36)

where xN
cp is defined in (71) in the proof of Theorem 9.

For decoding, receiver 1 looks for a unique message
tuple such that (yN

1 , uN
1 ( ˆ̃wcp1), xN

d2(ŵd2), xN
p1(ŵp1, ŵ′

p1)) is
jointly typical. Receiver 2 looks for a index ŵcp2 such that
(yN

2 , uN
2 ( ˆ̃wcp2)) is jointly typical.

Based on the above coding strategy, the following theorem
gives the achievable result on the secrecy rate.

Theorem 10: In the high interference regime, the following
rate is achievable for the GSIC with limited-rate transmitter
cooperation and secrecy constraints at the receivers:

R1 + R′
p1 ≤ min

[
I (u1, x p1; y1|xd2), I (x p1; y1|u1, xd2)

+ min
{

I (u1; y1|x p1, xd2), CG
}]

,
R1 + R′

p1 + Rd2 ≤ min
[
I (u1, x p1, xd2; y1),

I (x p1, xd2; y1|u1) + min
{

I (u1; y1|x p1, xd2), CG
}
,

I (x p1; y1|u1, xd2) + I (u1, xd2; y1|x p1)
]
,
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R1 + R′
p1 + 2Rd2 ≤ I (x p1, xd2; y1|u1)+ I (u1, xd2; y1|x p1),

R2 ≤ min {I (u2; y2), CG} , Rd2 ≤ I (xd2; y1|u1, x p1), (37)

where R1 ! Rp1 + Rcp1, R2 ! Rcp2, R′
p1 ! I (x p1; y2|u2),

and Rd2 ! I (xd2; y2|x p1, u2).
Proof: The proof is provided in Appendix H.

The achievable symmetric secrecy rate is stated in the follow-
ing Corollary.

Corollary 3: Using the achievable result in Theorem 10 and
time-sharing between transmitters, the following symmetric
secrecy rate is achievable for the GSIC with limited-rate
transmitter cooperation:

Rs = 1
2

[
R∗

1(1) + R∗
1 (2)

]
, (38)

where R∗
1 (1) and R∗

1 (2) are the achievable secrecy rates for
transmitter 1 in the first and second time slots, respectively,
which are obtained by maximizing Rs over parameters θi , ηi
and βi (i = 1, 2). The achievable rates for users 1 and 2 in
the first time slot are as follows:

R1(1)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
[
0.5 log(1 + σ 2

u + h2
d Pp1), 0.5 log(1 + h2

d Pp1)
+ min

{
0.5 log(1 + σ 2

u ), CG
}]

− R′
p1,

min
[
0.5 log(1 + σ 2

u + h2
d Pp1 + h2

c Pd2),
0.5 log(1 + σ 2

u + h2
c Pd2) + min

{
0.5 log(1 + σ 2

u ), CG
}
,

0.5 log(1 + h2
d Pp1) + 0.5 log(1 + σ 2

u + h2
c Pd2)

]

−(R′
p1 + Rd2),

0.5 log(1+h2
d Pp1+h2

c Pd2) + 0.5 log(1 + σ 2
u + h2

c Pd2)
−(R′

p1 + 2Rd2)

and

R2(1) = min

{

0.5 log

(

1 + σ 2
u

1 + h2
d Pd2 + h2

c Pp1

)

, CG

}

,

(39)

where R′
p1 = 0.5 log

(
1 + h2

c Pp1

1+h2
d Pd2

)
, Rd2 = 0.5 log(1 +

h2
d Pd2), σ 2

u ! (h2
d − h2

c)
2σ 2

z , σ 2
z ! θ1

θ1+θ2

P1
h2

d+h2
c
, Pp1 !

θ2
θ1+θ2

P1, Pd2 ! (P2 − (h2
d + h2

c)σ
2
z )+, Pi ! βi P and

0 ≤ (θi ,βi ) ≤ 1. The achievable rate equation for the second
time slot can be obtained by exchanging indices 1 and 2
in (39).

Proof: The proof is similar to the proof of Corollary 2,
and can be found in [29].

Remarks:
• The terms R′

p1 = I (x p1; y2|x p2, u2) and R′
p1 =

I (x p1; y2|u2) in Theorems 9 and 10, respectively, cor-
respond to the loss in rate due to stochastic encoding.
As the capacity of the cooperative link increases, more
power is assigned to the cooperative private message
and hence, the loss in rate due to stochastic encoding
decreases.

• When 1 < α < 2 and CG = 0, the proposed scheme
cannot achieve non-zero secrecy rate without transmission

of dummy message in case of GSIC. In the case of
the SLDIC also, the proposed scheme uses random bits
transmission to achieve non-zero secrecy rate.

• When CG ≈ ⌈0.5 log
(
1 + h2

c P
)
⌉, the achievable secrecy

rate is very close to the outer bound (See Fig. 17).
• In all the interference regimes, the proposed scheme

always achieves nonzero secrecy rate with cooperation
(i.e., C > 0 and CG > 0) in case of SLDIC as well as
GSIC, except for the α = 1 case.

• The achievable schemes stated in Theorems 9 and 10
for the Gaussian case can be extended to the asymmetric
case, when h j i < hii (Theorem 9) and h j i > hii
(Theorem 10), respectively. For Theorem 9, the condition
h j i < hii is required to enable transmitter i to send
the non-cooperative message securely to receiver i using
stochastic encoding. For Theorem 10, the condition h j i >
hii is required due to the fact that the dummy message
sent by transmitter i needs to be decodable at receiver j
( j ̸= i) and should not be decodable at receiver i .
However, for the extension, the choice of the auxiliary
codewords for the cooperative private message needs to
be modified as mentioned in the proof of Theorem 9.

C. Relation Between the Achievable Rates for SLDIC and GSIC

In the following, it is shown that the achievable rates for
both the models are approximately the same at high SNR and
INR, when (0 ≤ α ≤ 1

2 ) and for all the values of the capacity
of the cooperative link. For ease of presentation, it is assumed
that 0.5 log SNR, 0.5 log INR and CG are integers. Without
loss of generality, it is also assumed that hd = 1.

Consider the lower bound on the secrecy rate for trans-
mitter 1 derived in Corollary 2, when the transmit power of
the dummy message is set to zero. Correspondingly, notice
that, in the deterministic case, transmission of jamming signal
(random bits transmission) is not used in this regime of α.
Consider the following power allocation

Pp1 = Pp2 = 1
h2

c
,

σ 2
1z = σ 2

2z = σ 2
z = 1

2

(
P − 1

h2
c

)
,

and

Pd2 = 0. (40)

For high SNR (SNR ≫ 1), the power allocation to the non-
cooperative private message in (40) is always feasible. With
this power allocation, the two bounds on R1 in (34) reduce to

R1 ≤ 0.5 log
(

1 + 1
2

[
1
2
(1 − h2

c)
2
(

P − 1
h2

c

)
+ 1

h2
c

])
− 0.5,

(41)

R1 ≤ 0.5 log
(

1 + 1
2

1
h2

c

)
+ min {CG ,

0.5 log
(

1 + 1
4
(1 − h2

c)
2
(

P − 1
h2

c

))

︸ ︷︷ ︸
I1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
− 0.5. (42)
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First consider the bound given in (41).

R11

= 0.5 log

(

1+ 1
2

[
1
2

(
1− INR

SNR

)2(
SNR− SNR

INR

)
+ SNR

INR

])

− 0.5,
(a)≈ 0.5 log

SNR
4

− 0.5,

= m − 1.5, (43)

where (a) is obtained using the fact that for
(
0 ≤ α ≤ 1

2

)
,

SNR ≥ INR2 and SNR, INR ≫ 1.
When CG ≤ I1, the RHS of (42) becomes

R12 = 0.5 log
(

1 + 1
2h2

c

)
+ CG − 0.5,

= 0.5 log
(

1 + 1
2

SNR
INR

)
+ CG − 0.5,

≈ m − n + CG − 1. (44)

When CG > I1, the RHS of (42) becomes

R13 = 0.5 log
(

1 + SNR
2INR

)
+ 0.5 log

(

1 + 1
4

(
1 − INR

SNR

)2

×
(

SNR − SNR
INR

))
− 0.5. (45)

One can show that R11 ≤ R13, and hence, the approximate
achievable secrecy rate for high SNR and INR becomes

R1 = min {m − 1.5, m − n + CG − 1} . (46)

From (9), the result in the deterministic case for this range
of α is

R1 = min {m, m − n + C} . (47)

From (46) and (47), it is clear that the achievable results for
both the models are approximately equal for all values of CG ,
when

(
0 ≤ α ≤ 1

2

)
.

In the other interference regimes, it is tedious to establish
a precise connection between the achievable results for the
deterministic model and the Gaussian model, due to the com-
plexity of the rate expressions of both the models. Nonetheless,
it can be noticed that there exists a close resemblance in
the behavior of the rate plots against α for both the models
(See Figs. 12 and 15, Figs. 13 and 16).

VII. DISCUSSION AND NUMERICAL EXAMPLES

A. Comparison With Existing Results

Some observations on how the bounds derived in this work
stand in relation to existing works are as follows:

1) When C = 0 and α = 1
2 , the achievable rate result for

the SLDIC in Section IV-A reduces to the achievable rate
result for the SLDIC in [18] with semi-secret constraint
at each receiver. The semi-secret constraint at each
receiver depends on trusting the other transmitters.

2) When (0 ≤ α ≤ 1
2 ), the achievable rate result

for the SLDIC in Sec IV-A is found to match
with the achievable result for the SLDIC in [3]

Fig. 8. Achievable secrecy rate for the GSIC with large CG , and the
capacity of GMBC with two transmit antennas and one receive antenna at
each receiver [33]. For the GSIC and GMBC the individual power constraints
at each transmitter are P = 100 and P = 200, respectively. The channel
gain to the intended receivers in both cases is hd = 1. In the legend,
AS: proposed stands for the achievable scheme proposed in this work.

(See Figs. 12 and 13). As α increases, in [3], the
receiver can decode some part of interference and can
achieve higher rate. Here, due to the secrecy constraints,
the receivers cannot decode other users’ messages, and
hence, the achievable scheme is completely different.
Also, for some values of α, the achievable scheme
proposed in this paper for the SLDIC requires the
exchange of only random bits through the cooperative
link, in contrast with the achievable scheme in [3].

3) When CG = 0, the system reduces to the 2-user GSIC
without cooperation, which was studied in [6]. The
achievable rate result in Theorem 9 and Corollary 2
reduce to the results reported in [6] in this case.

4) When CG = 0, the achievable result in Theorem 10
reduces to the achievable result in [7, Th. 3] for the
high/very high interference regime (α > 1) for the
wiretap channel with a helping interferer.

5) When the capacity of the cooperative links are suffi-
ciently large, then the GSIC with transmitter cooperation
reduces to a 2-user Gaussian MIMO broadcast chan-
nel (GMBC) with two antennas at transmitter and one
antenna at each receiver. The achievable rate result in
Corollaries 2 and 3 are found to be very close to the
achievable rate result in [33, Th. 1] for the GMBC, as
shown in Fig. 8.

6) The proposed outer bounds for the GSIC with limited
rate transmitter cooperation in Theorems 6-8 are com-
pared with existing outer bounds for the GSIC with
secrecy constraints at each receiver [7], [34], when
CG = 0, in Fig. 9. It can be observed that the outer
bounds derived in this work improve over the best known
outer bounds in the literature even in the absence of
cooperation, i.e., when CG = 0.

In the following sections, some numerical examples are
presented for the deterministic and Gaussian cases, to get
insights into the bounds for different values of C , over different
interference regimes.
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Fig. 9. Outer bound on the symmetric secrecy rate for GSIC with CG = 0,
P = 100 and hd = 1. In the legend, TP stands for the outer bound derived
in [7], HY stands for the outer bound on secrecy rate in [34] and MM stands
for the outer bound derived in this work.

Fig. 10. Outer bound on the secrecy rate of the SLDIC with m = 5 and
n = 4. The capacity of the SLDIC without secrecy constraints is known in
the literature [3]. In the legend, OB and AS stand for the outer bound and
achievable scheme derived in this work, respectively.

B. Numerical Examples in Case of SLDIC

In Fig. 10, the outer bound in Theorem 1 is plotted along
with the achievable secrecy rate given in (10) for the (m, n) =
(5, 4) case. Also plotted is the per user capacity of the
SLDIC with transmitter cooperation, but without the secrecy
constraints [3]. It can be observed that the proposed scheme is
optimal, when C = 1 and C ≥ 4. However, it is not possible
to achieve the capacity without the secrecy constraint, when
C ≤ 3. When C ≥ 4, there is no loss in the achievable
rate due to the secrecy constraint at receivers. In Fig. 11,
the minimum of the outer bounds in Theorems 1 and 2 is
plotted as a function of C , with (m, n) = (3, 6). Also plotted
is the achievable secrecy rate given in (14). From the plot, it
can be observed that it is not possible to achieve a nonzero
secrecy rate without cooperation between the transmitters, i.e.,
when C = 0. The achievable scheme, which uses random
bits sharing through the cooperative link and interference

Fig. 11. Outer bound on the secrecy rate of the SLDIC with m = 3 and
n = 6. The capacity of the SLDIC without secrecy constraints is known in
the literature [3]. In this case the inner and outer bound match for C = 0, 1,
and are fairly close at higher values of C . For C = 1, the capacity achieving
scheme uses random bits sharing through the cooperative link.

cancelation, is optimal for C = 1. It can be observed that
the secrecy constraint results in a positive rate penalty, in the
sense that it is not possible to achieve the capacity without the
secrecy constraint, for C ≤ 5.

In Figs. 12 and 13, the outer bound on the symmetric rate
is plotted against α for a given value of C , along with the per
user capacity of the SLDIC with transmitter cooperation, but
without the secrecy constraints [3], and the inner bounds for
the SLDIC with secrecy constraints at the receiver. In order
to generate these plots, m is chosen to be 400 and n is varied
from 0 to 4m, and the rates are normalized by m.

In Fig. 12, the achievable secrecy rate and the capacity
without secrecy constraints [3] match when 0 ≤ α ≤ 1

2 . Hence,
for this regime, it is not required to derive an outer bound.
When 1

2 < α ≤ 2
3 , in the absence of the secrecy constraint,

the capacity increases with increase in the value of α, as the
receivers are able to decode some part of the interference.
However, with the secrecy constraint, the receiver cannot
decode the other user’s message, and, hence, the achievable
rate decreases with α. When 2

3 < α < 1, the achievable
secrecy rate meets the outer bound at some of the points and
the fluctuating behavior of the achievable rate is due to the
floor-operation involved in the rate expression. In this regime,
the transmission of random bits help to compensate for the
loss in rate, to some extent. At α = 1, there exists a point
of discontinuity, as no nonzero secrecy rate is achievable.
Intuitively, one would expect that the achievable secrecy rate
should monotonically decrease with α, because of the reason-
ing mentioned above. Interestingly, the achievable secrecy rate
increases with increase in the value of α, when 1 < α ≤ 1.5,
although the increase is not monotonic in nature due to the
floor operation involved in the rate expression. The increase
in the achievable secrecy rate arises due to the improved ability
of the transmitters to jam the data bits at the unintended
receivers by sending random bits as, α increases. However,
when 1.5 < α < 2, the achievable secrecy rate decreases with
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Fig. 12. Rate normalized w.r.t. m for the SLDIC with C = 0. Although there
exists a gap between the inner and outer bounds with the secrecy constraint,
they match at many points too. In particular, in the initial part of the weak
interference regime, i.e., for 0 < α < 1

2 and regime (α ≥ 1.5), the capacity
of the SLDIC is achieved by the proposed scheme.

Fig. 13. Normalized rate w.r.t. m for the SLDIC with C = 50. In this case,
we obtain the capacity of the SLDIC in the initial part of the weak interference
regime (0 < α ≤ 1

2 ) and in the very high interference regime (α ≥ 2).

increase in the value of α and the outer bound meets the inner
bound. When α ≥ 2, it is no longer possible to achieve a
nonzero secrecy rate.

In Fig. 13, compared to the C = 0 case, the achievable
secrecy rate is higher in all the interference regimes due
to the cooperation, except when α = 1. The cooperation
between the transmitters not only eliminates the interference,
but at the same time ensures secrecy. Also, the utility of
random bit transmission decreases with increase in the value
of C . Interestingly, it is possible to achieve a nonzero secrecy
rate even when α ≥ 2, and the achievable scheme is optimal
in this case.

C. Numerical Examples in Case of GSIC

In Fig. 14, the achievable result in Corollary 2 is plotted
against α, for different values of CG , with two types of
power allocations. In the first case, no power is allotted for
transmitting the dummy message. The power allocations for

Fig. 14. Comparison of achievable schemes in Corollary 2 with different
power allocations: P = 20 dB and hd = 1.

the non-cooperative private message and cooperative private
message are discussed below. For the SLDIC, in the weak and
moderate interference regimes, the data bits transmitted on the
lower levels [1 : m − n] will not be received at the unintended
receiver. For the GSIC, this corresponds to transmitting the
non-cooperative private message such that it is received at
the noise floor of the unintended receiver. In the existing
literature, this type of power allocation has been used for the
private message3 in the Han-Kobayashi (HK)-scheme [35],
and hence, this special case is termed as HKPA (HK-type
power allocation) scheme in this paper. The remaining power
is allotted for transmitting the cooperative private message.
In the second case, the achievable result in Corollary 2,
which involves transmission of a dummy message, is plotted.
When CG = 0 and α > 0.4, the scheme in Corollary 2
outperforms the HKPA scheme. The gain in the achievable
rate largely arises from the transmission of the dummy mes-
sage. When CG = 1, the gap between the two schemes
decreases, except for the initial part of the weak interference
regime. In Fig. 15, the achievable symmetric secrecy rate in
Corollaries 2 and 3 are plotted against α, for CG = 0 and
P = 100. Also plotted is the outer bound on the symmet-
ric rate in case of GSIC without the secrecy constraint at
receiver [3]. While plotting the outer bound with secrecy
constraint, the minimum of the outer bounds derived in this
work and outer bounds in [3], [6], and [34] is taken for the
CG = 0 case. When (0 ≤ α ≤ 1), the achievable secrecy
rate decreases with increase in the value α. At α = 1, the
achievable secrecy rate becomes zero. The figure also reveals
an interesting trade off between stochastic encoding and
dummy message transmission in the high interference regime.
Initially, as α increases, receiver i can decode more of the
interference caused due to the dummy message transmission
by transmitter j , j ̸= i , which, along with a relatively minimal
rate loss due to stochastic encoding, leads to a net increase
in rate with α. However, with further increase in α, the loss

3In [35], there is no secrecy constraint at the receiver and the terminology
private arises due to the fact that this part of the message is not required to
be decodable at the unintended receiver.
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Fig. 15. Secrecy rate in case of GSIC with P = 100 and CG = 0.
In the legend, OB stands for the outer bound and AS stands for the achievable
scheme. Interestingly, the achievable secrecy rate increases with increase in
the value of α, when 1 < α ≤ 1.5. However, when 1.5 < α < 2, the
achievable secrecy rate decreases with increase in the value of α.

Fig. 16. Secrecy rate in case of GSIC with P = 100 and CG = 1.

in rate due to stochastic encoding eventually outweighs the
gain in rate due to the receiver’s ability to decode the dummy
message, as the transmissions need to be protected against a
stronger cross-channel. Hence, for α ≥ 1.5, the achievable
secrecy rate starts decreasing with α.

In Fig. 16, the achievable symmetric secrecy rate is plotted
against α for P = 100 and CG = 1, along with the outer
bounds. For plotting the outer bound with secrecy constraints,
the minimum of the outer bounds derived in this work and
the outer bound in [3] is used. When α > 1, the achievable
secrecy rate initially increases, and later decreases with α.
Finally, the achievable secrecy rate saturates when (α ≥ 2),
and this is due to the fact that it is no longer possible to
transmit any non-cooperative private message and the gain in
the achievable secrecy rate as compared to CG = 0 case is only
due to the cooperation. Hence, when CG > 0, the proposed
scheme achieves nonzero secrecy rate in all the interference
regimes except for the α = 1 case. Hence, as the value of CG

Fig. 17. Secrecy rate in case of GSIC with P = 100 and CG = 10.
In the later part of the very high interference regime, the achievable secrecy
rate matches with the outer bound without secrecy constraint. Hence, there is
no loss in the achievable rate due to the secrecy constraint at receiver.

increases, it is required to assign lower powers for transmitting
the dummy message and the non-cooperative private message.
By assigning lower power to the non-cooperative private
message, the penalty in the achievable secrecy rate due to
stochastic encoding also decreases. In the following example,
no power is allocated for transmitting the non-cooperative
private message and the dummy message.

In Fig. 17, the achievable symmetric secrecy rate is plotted
against α for P = 100 and CG = 10, along with the outer
bounds. Here, the achievable secrecy rate and outer bounds are
very close to each other. In this case, both the users transmit
cooperative private messages only.

VIII. CONCLUSIONS

This work explored the role of limited-rate transmitter
cooperation in facilitating secure communication over the
2-user IC. For the deterministic case, the achievable scheme
used a combination of interference cancelation, random bit
transmission, relaying of the other user’s data bits, and time
sharing, depending on the values of α and C . Also, outer
bounds on the secrecy rate were derived for the deterministic
case. The novelty in the derivation of the outer bound lies in
providing side information to receiver in a carefully chosen
manner, use of the secrecy constraints at the receivers, and
partitioning the encoded message/output, depending on the
value of α. The study of the deterministic model gave useful
insights for obtaining achievable schemes and outer bounds
on the secrecy rate for the Gaussian case. The achievable
scheme used a combination of Marton’s coding scheme and
stochastic encoding along with dummy message transmission.
It was found that, with limited-rate cooperation, it is possible
to achieve nonzero secrecy rate in almost all cases, except
when α = 1. A fundamental finding of this work is that a
limited rate secure cooperative link between the transmitters
of a 2-user IC can greatly enhance the achievable rates for
secure communication. Future work could investigate the value
of other forms of limited rate cooperation between nodes.
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Another related problem could be the study of the case where
the nodes cannot completely trust each other. The achievable
schemes and outer bounds results proposed in this paper can
give useful insight and facilitate further studies of the IC with
secrecy constraints.

APPENDIX

A. Proof of Theorem 3

Using Fano’s inequality, rate of user 1 is bounded as

N R1 ≤ I (W1; yN
1 ) + Nϵ1,

(a)
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1a, W1) + Nϵ1,
(c)= H (vN

12, vN
21) + H (xN

2a, yN
1b|vN

12, vN
21, xN

1a)

−H (xN
2a, yN
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21) + H (yN
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12, vN
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1a, xN
2a)

−H (yN
1b|vN

12, vN
21, xN

1a, xN
2a, W1) + Nϵ1, (48)

where (a) is due to a genie providing yN
2a to receiver 1;

(b) is obtained using the secrecy constraint at receiver 2; (c)
is obtained by partitioning of the encoded message and output
as shown in Fig. 3(b); and (d) is obtained using the relation
in (3).

Once again, as the encoded messages at transmitters are
correlated, it is not straightforward to bound or simplify the
entropy terms in (48). To overcome this problem, the output
y1b is partitioned into two parts as follows:

• y(1)
1b : contains x1a sent by transmitter 1 and the interfer-

ence caused by transmitter 2 due to transmission on the
levels [2m − n + 1 : m]

• y(2)
1b : contains x1b sent by transmitter 1 and the interfer-

ence caused by transmitter 2 due to transmission on the
levels [1 : 2m − n]

The partitioning of y1b = (y(1)
1b , y(2)

1b ) is illustrated in the
Fig. 3(b). Now consider the second term in (48):

H (yN
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2a, y(1)N

1b ), (49)

where x(1)
ic and x(2)

ic correspond to the bits transmitted on the
levels [min(n−m, 2m−n)+1 : n−m−min(n−m, 2m−n)+1]
and [1 : min(n − m, 2m − n)] of transmitter i , respectively.

The above equation is obtained using the fact that
I (xN

2b, x(1)N
2c ; xN

1a|vN
12, vN

21, xN
2a) = 0. This can be obtained

using the relation in (3). In a similar way, the third term in (48)
can be simplified as follows:

H (yN
1b|vN

12, vN
21, xN

1a, xN
2a, W1)

= H (xN
2b, x(1)N

2c |vN
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From (49) and (50), and dropping the last term in (50), (48)
becomes

N R1 ≤ H (vN
12, vN

21) + H (y(2)N
1b |vN

12, vN
21, xN

1a, xN
2a, y(1)N

1b )

+Nϵ1,

or R1 ≤ H (v12, v21) + H (y(2)
1b ) ≤ 2C + 2m − n. (51)

In the above equation, the term H (v12, v21) is upper bounded
by 2C . From the definition of y(2)

1b , it can be seen that the term
H (y(2)

1b ) can be upper bounded by 2m − n. This completes the
proof.

B. Details of the Achievable Scheme for the SLDIC When
(α ≥ 2) and m is Even

1) When 0 < C ≤ m
2 : In this case, interestingly, transmitters

share only random bits through the cooperative links. Each
transmitter generates C random bits distributed as Bern

( 1
2

)

independent of the data bits. The achievable scheme involves
transmitting the data bits xored with the random bits. The
same random bits are transmitted by the other transmitter, so
as to cancel them out at the desired receiver. In contrast to the
achievable schemes in Secs. IV-B and IV-D, the random bits
transmission causes jamming to the unintended receiver only.
Through careful observation it is found that sharing random
bits through the cooperative links can achieve higher secrecy
rate compared to sharing data bits only.

In this case, the signal of transmitter 1 is encoded as follows:

x1 =

⎡

⎣
0(m−2C)+×1
a2C×1
0(n−m)×1

⎤

⎦ ⊕

⎡

⎣
0(n−2C)×1

d1
2C×1

⎤

⎦ ⊕

⎡

⎣
0(m−2C)+×1

d2
2C×1

0(n−m)×1

⎤

⎦,

(52)

where a ! [a2C, a2C−1, . . . , a1]T , d1 ! [eC , dC , . . . , e1, d1]T

and d2 ! [dC , eC , . . . , d1, e1]T .
The proposed scheme achieves the following secrecy rate:

Rs = 2C. (53)

Note that, with data bits sharing, it is possible to achieve

Rs = C. (54)

Hence, under the proposed scheme, one can achieve higher
rate by sharing random bits than by sharing the data bits.
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2) When ( m
2 < C ≤ n − 3m

2 ): In this case, the transmitters
exchange m

2 random bits and (C − m
2 ) data bits. The random

bits are used in an analogous fashion as described in the
previous subsection. The links corresponding to the levels from
[m + 1 : n − m] are present only at the unintended receiver
and data bits transmitted on these levels are therefore received
without interference at that receiver. Hence, any data bits of
the other user relayed using these levels will remain secure.
In this case, the signal of transmitter 1 is encoded as follows:

x1 =
⎡

⎣
am×1

0(n−m)×1

⎤

⎦ ⊕
⎡

⎣
0(n−m)×1

d1
m×1

⎤

⎦ ⊕
⎡

⎣
d2

m×1

0(n−m)×1

⎤

⎦

⊕

⎡

⎢⎣
0(n−C− m

2 )×1
bc

(C− m
2 )×1

0m×1

⎤

⎥⎦, (55)

where a ! [am, am−1, . . . , a1]T , d1 ! [e m
2
, d m

2
, . . . , e1, d1]T ,

d2 ! [d m
2
, e m

2
, . . . , d1, e1]T and bc !

[b m
2 +C , b m

2 +C−1, . . . , bm+1]T .

The proposed scheme achieves the following secrecy rate:

Rs = m
2

+ C. (56)

3) When (n − 3m
2 < C < n − m

2 ): The novelty of the
proposed scheme is in precoding the data bits of the user partly
with the other user’s data bits and/or with random bits. The
random bits used for precoding may be generated at its own
transmitter or obtained from the other transmitter through the
cooperative link. Then, data bits or random bits are transmitted
on selected levels of the SLDIC, such that the random bits are
canceled out at the intended receiver, or the data bits of the
other user are canceled out at the unintended receiver. The
details of the achievable scheme are as follows.

The achievable scheme uses transmission of random bits,
interference cancelation, time sharing and relaying of the
other user’s data bits. The transmitters share a combination
of random bits and data bits through the cooperative links.
To simplify the exposition of the achievable scheme, first
consider the α = 2 case. In this case, both the transmitters
share m

2 random bits along with C1 ! C − m
2 data bits.

In the first time slot, transmitter 1 sends m random bits
(di and ei ) on alternate levels in [1 : m]. In order to eliminate
the interference caused by these random bits at receiver 2,
the data bits of transmitter 2 are precoded (xored) with these
m random bits and transmitted on the levels from [m+1 : 2m]
from transmitter 2. The random bits are not canceled out at
receiver 1. Further, receiver 1 has no knowledge of these
random bits. Hence, it cannot decode the bits intended to
receiver 2. Also, the data bits of transmitter 2 received through
the cooperative link are transmitted at the upper levels [n −
C1+1 : n] from transmitter 1. Again, in order to ensure secrecy
at receiver 1, transmitter 2 sends the same data bits at levels
[m − C1 + 1 : m] along with the C1 data bits of transmitter 1,
also received through cooperation. This not only cancels the
interference due to the bits sent on levels [n − C1 + 1 : n] at
receiver 1, but also enables transmitter 2 to relay the data bits
of transmitter 1.

In the remaining upper levels [m +1 : n −C1], transmitter 1
sends its own data bits xored with random bits. Transmitter 2
sends the same random bits on levels [1 : C1] to cancel the
random bits at receiver 1. In this way, transmitter 1 sends
m − C1 data bits of its own and C1 data bits of transmitter 2,
in the first time slot. Simultaneously, transmitter 2 is able to
send m data bits of its own and C1 data bits of transmitter 1.
In the second time slot, the roles of transmitters 1 and 2 are
reversed.

In contrast to the achievable schemes for other interference
regimes, transmitters exchange both random bits and data bits
through the cooperative links. However, as the capacity of the
cooperative links increases, it is required to exchange fewer
number of random bits.

When α > 2, it is straightforward to extend the achievable
scheme described above. Both the transmitters exchange m

2
random bits and C ′ ! C − m

2 data bits. Out of C ′ data bits
obtained through cooperation, n − 2m data bits are securely
relayed using the levels [m + 1 : n − m]. The m random bits
and the remaining C1 ! C ′−n+2m data bits obtained through
cooperation are used in a similar manner as explained for the
α = 2 case. The signal of transmitter 1 in the first time slot
is encoded as follows:

x1 =
⎡

⎣
0(n−m)×1

d1
m×1

⎤

⎦ ⊕
⎡

⎣
bc

C1×1
a(m−C1)×1 ⊕ d2

(m−C1)×1
0(n−m)×1

⎤

⎦

⊕
⎡

⎣
0m×1
b′c

(n−2m)×1
0m×1

⎤

⎦, (57)

where d1 ! [em/2, dm/2, . . . , e1, d1]T , bc !
[bn, bn−1, . . . , bn−C1+1]T , a ! [am−C1, . . . , a2, a1]T ,
d2 ! [dq , eq , . . . , d1, e1]T if m − C1 is even,
d2 ! [eq+1, dq , eq , . . . , d1, e1]T if m−C1 is odd, q ! ⌊m−C1

2 ⌋
and b′c ! [bn−m, bn−m−1 . . . , bm+1]T .

The signal of transmitter 2 in the first time slot is encoded
as follows:

x2 =
⎡

⎣
bm×1 ⊕ e2

m×1

0(n−m)×1

⎤

⎦⊕
⎡

⎣
0(n−m)×1
bl

C1×1 ⊕ ac
C1×1

e1
(m−C1)×1

⎤

⎦⊕
⎡

⎣
0m×1
a′c

(n−2m)×1
0m×1

⎤

⎦,

(58)

where b ! [bm, bm−1, . . . , b1]T , e2 !
[em/2, dm/2, . . . , e1, d1]T , bl ! [bn, bn−1, . . . , bn−C1+1]T ,
ac ! [am, am−1, . . . , am−C1+1]T , e1 ! [dq, eq , . . . , d1, e1]T

if m − C1 is even, e1 ! [eq+1, dq , eq , . . . , d1, e1]T if m − C1
is odd, q ! ⌊m−C1

2 ⌋ and a′c ! [an−m, an−m−1, . . . , am+1]T .
In the second time slot, the encoding for transmitters 1 and 2

is reversed. The proposed scheme achieves the following
secrecy rate:

Rs = n
2

− m
4

+ C
2

. (59)

4) When (n − m
2 ≤ C ≤ n): In this case, both the

transmitters share C data bits and the achievable scheme uses
interference cancelation. The signal of transmitter 1 is encoded
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as follows:

x1 =
⎡

⎣
0(n−C+m)+×1

a(C−m)×1

⎤

⎦ ⊕
⎡

⎣
0(n−C)+×1

bC×1

⎤

⎦ , (60)

where a ! [aC, aC−1, . . . , am+1]T and b !
[bC , bC−1, . . . , b1]T .

The proposed scheme achieves the following secrecy rate:

Rs = C. (61)

C. Proof of Theorem 6

Using Fano’s inequality, the rate of user 1 is upper
bounded as

N R1 ≤ I (W1; yN
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or h(̃sN
2 |vN

12, vN
21) ≤ h(yN

1 ) − N R1 + NϵN ,

where s̃N
2 ! hcxN

2 + z̃N
1 , (62)

where (a) and (b) follow by using the fact that the entropy
cannot increase by additional conditioning; (c) follows by
using the relation in (3), and (d) is obtained using the fact
that the secrecy capacity region of an IC with confidential
messages is invariant under any joint channel noise distribution
P(z1, z2) that leads to the same marginal distributions P(z1)
and P(z2) [34]. Although this invariance property is stated for
GIC in [34], it is not difficult to see that this property holds
for the GIC with limited-rate transmitter cooperation also.

Adopting similar steps as was used to obtain (62), the
following bound on the conditional entropy is obtained.

h(̃sN
1 |vN

12, vN
21) ≤ h(yN

2 ) − N R2 + NϵN ,

where s̃N
1 ! hcxN

1 + z̃N
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The rate of user 1 can also be bounded as
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2 |vN
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1 , s̃N

2 ) − h(yN
2 )

−h(zN
1 ) + Nϵ′, (64)

where (a) is obtained using the secrecy constraint at receiver 2;
(b) is due to the genie providing yN

2 to receiver 1; (c) is
obtained using the relation h(yN

1 , yN
2 , s̃N

1 , s̃N
2 ) = h(yN

1 , yN
2 ) +

h(̃sN
1 , s̃N

2 |yN
1 , yN

2 ); (d) is obtained using chain rule for mutual
information, and (e) is obtained using the fact that removing
conditioning cannot decrease the entropy and conditioning
cannot increase the entropy.

Using (62) and (63), (64) becomes

N[2R1 + R2] ≤ H (vN
12) + H (vN

21) + h(yN
1 )

+h(yN
1 , yN

2 |̃sN
1 , s̃N

2 ) − h(̃zN
1 )

−h(̃zN
2 ) − h(zN

1 ) + Nϵ′′,

or

R ≤ max
0≤|ρ|≤1

1
3

[
2CG + 0.5 log (1 + SNR + INR

+2ρ
√

SNR INR
)

+ 0.5 log det
(
$ȳ|s̄

)]
.

(65)

In the above equation, ρ, det(·) and $ȳ|s̄ are as defined in
the statement of the theorem. The second term in (65) is
obtained using the fact that, under a given power constraint, the
differential entropy is maximized by the Gaussian distribution.
Hence, the following holds:

h(y1) ≤ 0.5 log
(

2πe
(

1 + SNR + INR + 2ρ
√

SNR INR
))

,

(66)

where SNR and INR are as defined in the statement of the
theorem. The last term in (65) is obtained as follows.

h(y1, y2|̃s1, s̃2) ≤ 0.5 log det
(
2πe$ȳ|s̄

)
, (67)

where $ȳ|s̄ ! $ȳ − $ȳ,s̄$
−1
s̄ $T

ȳ,s̄, $ȳ ! E[ȳȳT ], $ȳ,s̄ !
E[ȳs̄T ], $s̄ ! E[s̄s̄T ], ȳ ! [y1 y2]T , and s̄ ! [̃s1 s̃2]T .
The evaluation of these terms are given in the statement of
the theorem. This completes the proof.
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D. Proof of Theorem 7

Using Fano’s inequality, the rate of user 1 is upper
bounded as

N R1

≤ I (W1; yN
1 ) + NϵN ,

(a)≤ I (W1; yN
1 , xN

2 ) + NϵN ,

= I (W1; xN
2 ) + I (W1; yN

1 |xN
2 ) + NϵN ,

= I (W1; xN
2 ) + h(s′N

1 |xN
2 ) − h(s′N

1 |xN
2 , W1) + NϵN ,

where s′N
1 ! hdxN

1 + zN
1 ,

= I (W1; xN
2 ) + I (W1; s′N

1 |xN
2 ) + NϵN ,

(b)= I (W1; xN
2 , s′N

1 ) + NϵN ,
(c)
≤ I (W1; s′N

1 ) − I (W1; yN
2 ) + I (W1; xN

2 |s′N
1 ) + Nϵ′

N ,
(d)≤ I (W1; s′N

1 , yN
2 ) − I (W1; yN

2 ) + I (W1; xN
2 |s′N

1 ) + Nϵ′
N ,

= I (W1; s′N
1 |yN

2 ) + I (W1; xN
2 |s′N

1 ) + Nϵ′
N ,

(e)
≤ I (W1; s′N

1 |yN
2 ) + I (W1; xN

2 , vN
12, vN

21|s′N
1 ) + Nϵ′

N ,

= I (W1; s′N
1 |yN

2 ) + I (W1; vN
12, vN

21|s′N
1 )

+I (W1; xN
2 |s′N

1 , vN
12, vN

21) + Nϵ′
N ,

≤ I (W1; s′N
1 |yN

2 ) + H (vN
12, vN

21|s′N
1 ) + h(xN

2 |s′N
1 , vN

12, vN
21)

−h(xN
2 |s′N

1 , vN
12, vN

21, W1) + Nϵ′
N ,

( f )
≤ h(s′N

1 |yN
2 ) − h(s′N

1 |yN
2 , W1) + H (vN

12, vN
21) + Nϵ′

N ,

or R1 ≤ max
0≤|ρ|≤1

[
2CG + 0.5 log $s′|y2

]
, (68)

where (a) is due to the genie providing xN
2 to receiver 1;

(b) is obtained using chain rule for mutual information;
(c) is obtained using secrecy constraint at receiver 2; (d) is
due to the genie providing yN

2 as side information to
receiver 1, where xN

2 is eliminated, (e) is obtained using
the relation I (W1; xN

2 , vN
12, vN

21|s′N
1 ) = I (W1; xN

2 |s′N
1 ) +

I (W1; vN
12, vN

21|s′N
1 , xN

2 ) and (f) is obtained using the relation
in (3) and the fact that removing conditioning does not
decrease the entropy. The last inequality is obtained using
the fact that, under a given power constraint, the differential
entropy is maximized by the Gaussian distribution. The term
$s′|y2 is evaluated as follows.

$s′|y2 = E[s′2
1] − E[s′

1 y2]2 E[y2
2 ]−1

= 1 + SNR + SNR2(1 − ρ2)

1 + SNR + INR + 2ρ
√

SNR INR
. (69)

This completes the proof.
The following lemma is useful in bounding the mutual

information in the proof of Theorem 9.

E. A Useful Lemma

Lemma 1:

I (xN
p1, xN

d2; yN
2 |xN

p2, uN
2 ) ≤ N

[
I (xp1, xd2; y2|xp2, u2) + ϵ3

]
,

(70)

where ϵ3 is small for sufficiently large N .
Proof: The proof is provided in [29].

F. Proof of Theorem 9

The proof involves analyzing the error probability at the
encoder and decoder along with equivocation computation.
One of the novelties in obtaining the achievable scheme lies
in the choice of the cooperative private auxiliary codewords
u1, and u2 so that the codeword carrying the cooperative
private part of the message (wcpi ) is canceled out at the unin-
tended receiver. This simultaneously eliminates interference
and ensures secrecy of the cooperate private message. For
ensuring secrecy of the non-cooperative private message, it is
required to show that the weak secrecy constraint is satisfied
at the receiver j , i.e., H (Wpi |yN

j ) ≥ N[Rpi − ϵs ]. In the
equivocation computation, the main novelty lies in choosing
the value of the rate sacrificed in confusing the unintended
receiver (R′

pi ) and rate of the dummy message (Rdi ) so that
the weak secrecy constraint is satisfied. The error probability
analysis of the achievable schemes is relatively straightfor-
ward. Hence, these details are omitted and can be found
in [29].

Choice of u1 and u2: The cooperative private auxiliary
codewords ui (i = 1, 2), are chosen such that the interference
caused by the codeword u j at receiver i (i ̸= j) is nulled
out. This not only eliminates the interference caused by
the cooperative private part, but also ensures secrecy of the
cooperative private message. Choose xcp , u1 and u2 to be
jointly Gaussian, and such that

xcp = w1zv1z + w2zv2z,

u1 = [hd hc] v1zw1z, and u2 = [hc hd ] v2zw2z, (71)

where v1z ! [hd − hc]T , v2z !
[−hc hd ]T and w1z and w2z are independent
Gaussian distributed with variance σ 2

1z and σ 2
2z ,

respectively. Recall that wiz (i = 1, 2) is the codeword
representing the cooperative private message wcpi of
transmitter i . The choice of σ 2

1z and σ 2
2z is discussed in the

proof of Corollary 2 (Appendix G).
Remark: For the extension to the asymmetric setting, the

choice of the auxiliary codewords for the cooperative private
message needs to be modified as follows:

u1 = [h11 h12] v1zw1z = (h11h22 − h12h21)w1z,

and

u2 = [h21 h22] v2zw2z = (h11h22 − h12h21)w2z, (72)

where v1z ! [h22 − h21]T , v2z ! [−h12 h11]T , w1z
and w2z are independent Gaussian distributed with variance
σ 2

1z and σ 2
2z , respectively. The rest of the proof follows along

similar lines as explained below.
1) Equivocation Computation: The equivocation at the

receiver 2 is bounded as follows.

H (W1|yN
2 ) = H (Wp1, Wcp1|yN

2 ),

= H (Wp1|yN
2 ) + H (Wcp1|yN

2 , Wp1). (73)

First, consider the term H (Wcp1|yN
2 , Wp1). The output at the

receiver 2 is

y2 = u2 + hd xd2 + hcx p1 + z2. (74)



MOHAPATRA AND MURTHY: ON THE CAPACITY OF THE TWO-USER SYMMETRIC IC 23

As u1 and u2 are chosen to be independent of each other, i.e.,
I (u1; u2) = 0, and wcp1 is chosen independent of wp1, the
following holds:

H (Wcp1|yN
2 , Wp1) = H (Wcp1). (75)

Hence, it is only required to show that

H (Wp1|yN
2 ) ≥ N

[
Rp1 − ϵs

]
. (76)

The term H (Wp1|yN
2 ) can be bounded as follows:

H (Wp1|yN
2 )

≥ H (Wp1|yN
2 , xN

p2, uN
2 , W ′′

d2),

(a)= H (Wp1, yN
2 |xN

p2, uN
2 , W ′′

d2) − H (yN
2 |xN

p2, uN
2 , W ′′

d2),

(b)= H (Wp1, yN
2 , xN

p1, xN
d2|xN

p2, uN
2 , W ′′

d2)

−H (xN
p1, xN

d2|yN
2 , uN

2 , xN
p2, Wp1, W ′′

d2)

−H (yN
2 |xN

p2, uN
2 , W ′′

d2),

= H (xN
p1, xN

d2|xN
p2, W ′′

d2)

+H (Wp1, yN
2 |xN

p1, xN
d2, uN

2 , xN
p2, W ′′

d2)

−H (xN
p1, xN

d2|yN
2 , xN

p2, Wp1, W ′′
d2)

−H (yN
2 |xN

p2, uN
2 , W ′′

d2),

≥ H (xN
p1) + H (xN

d2|W ′′
d2) + H (yN

2 |xN
p1, xN

d2, uN
2 , xN

p2, W ′′
d2)

−H (yN
2 |xN

p2, uN
2 )−H (xN

p1, xN
d2|yN

2 , uN
2 , xN

p2, Wp1, W ′′
d2),

(c)= H (xN
p1) + H (xN

d2|W ′′
d2) + H (yN

2 |xN
p1, xN

d2, uN
2 , xN

p2)

−H (yN
2 |xN

p2, uN
2 )−H (xN

p1, xN
d2|yN

2 , uN
2 , xN

p2, Wp1, W ′′
d2),

= N
[

Rp1 + R′
p1 + R′

d2

]
− I (xN

p1, xN
d2; yN

2 |uN
2 , xN

p2)

−H (xN
p1, xN

d2|yN
2 , uN

2 , xN
p2, Wp1, W ′′

d2), (77)

where (a) and (b) are obtained using the relations in
(78) and (79), respectively; and (c) is obtained using the fact
that W ′′

d2 → (xN
p1, xN

d2, xN
p2, uN

2 ) → yN
2 forms a Markov chain.

This can be shown with the help of a functional dependency
graph [36].

H (Wp1, yN
2 |xN

p2, uN
2 , W ′′

d2)

= H (yN
2 |xN

p2, uN
2 , W ′′

d2) + H (Wp1|yN
2 , xN

p2, uN
2 , W ′′

d2),

(78)

H (Wp1, yN
2 , xN

p1, xN
d2|xN

p2, uN
2 , W ′′

d2)

= H (Wp1, yN
2 |xN

p2, uN
2 , W ′′

d2)

+ H (xN
p1, xN

d2|yN
2 , xN

p2, uN
2 , Wp1, W ′′

d2). (79)

Using Lemma 1 in Appendix E, it can be shown that

I (xN
p1, xN

d2; yN
2 |uN

2 , xN
p2) ≤ N I (x p1, xd2; y2|u2, x p2) + Nϵ′.

(80)

Thus the remaining key step in showing that the condition
in (76) is satisfied is to bound the last term in (77). To bound
this term, consider the joint decoding of W ′

p1 and W ′
d2 at

receiver 2 assuming that a genie has given Wp1 and W ′′
d2

as side information to receiver 2. For a given Wp1 = wp1
and W ′′

d2 = w′′
d2, assume that w′

p1 and w′
d2 are sent by

transmitters 1 and 2, respectively and receiver 2 knows the
sequence yN

2 = y N
2 and uN

2 = uN
2 . For a given Wp1 = wp1

and W ′′
d2 = w′′

d2, receiver 2 declares that j and l was sent
if (xN

p1(wp1, j), xN
d2(l, w

′′
d2), yN

2 ) is jointly typical and such
( j, l) exists and is unique. Otherwise, an error is declared.
Now, define the following event

E1
j l =

{
(xN

p1(wp1, j), xN
d2(l, w

′′
d2), yN

2 )∈T N
ϵ (Pxp1,xd2,y2|u2,xp2)

}
,

(81)

where T N
ϵ (PX p1 Xd2Y2|U2 X p2) denotes, for given typical

sequences u2 and xp2, the set of jointly typical sequences
y1, xp1, and u1 with respect to PX p1 Xd2Y2|U2 X p2 . Without loss
of generality, assume that xN

p1(wp1, 1) and xN
d2(1, w′′

d2) were
sent. Then, by the union of events bound, the following is
obtained:

P N
e1 = P

(
E1c

11

⋃
∪ j ̸=1,l ̸=1 E1

j l

)
,

≤ P(E1c

11) + 2N R′
p1 2−N[I (x p1;y2|xd2,u2,x p2)−3ϵ]

+ 2N R′
d2 2−N[ I (xd2;y2|x p1,u2,x p2)−3ϵ]

+ 2
N

(
R′

p1+R′
d2

)

2−N[I (x p1,xd2;y2|u2,x p2)−3ϵ]. (82)

Hence, the probability of error P N
e1 is arbitrarily small for

large N , provided the following conditions are satisfied:

R′
P1 ≤ I (x p1; y2|xd2, u2, x p2),

R′
d2 ≤ I (xd2; y2|x p1, u2, x p2),

R′
p1 + R′

d2 ≤ I (x p1, xd2; y2|u2, x p2). (83)

When the conditions in (83) are satisfied and for sufficiently
large N , using Fano’s inequality,

1
N

H (xN
p1, xN

d2|yN
1 , uN

2 , xN
p2, Wp1 = wp1, W ′′

d2 = w′′
d2)

≤ 1
N

[1 + P N
e1 log 2N[R′

p1+R′
d2]] ≤ δ1. (84)

Using the above, the last term in (77) is bounded as follows:

H (xN
p1, xN

d2|yN
2 , uN

2 , xN
p2, Wp1, W ′′

d2) =
∑

wp1,w
′′
d2

P(wp1, w
′′
d2)

×H (xN
p1, xN

d2|yN
2 , uN

2 , xN
p2, Wp1 = wp1, W ′′

d2 = w′′
d2),

≤ Nδ1. (85)

Using (80) and (85), (77) becomes

H (Wp1|yN
2 )

≥ N
[

Rp1 + R′
p1 + R′

d2 − I (x p1, xd2; y2|u2, x p2) − ϵ1

]
,

(86)

where ϵ1 = ϵ′ + δ1. By choosing R′
p1 + R′

d2 =
I (x p1, xd2; y2|u2, x p2) − ϵ11, (86) becomes

H (Wp1|yN
2 ) ≥ N

[
Rp1 − ϵs

]
, where ϵs = ϵ1 + ϵ11. (87)

Hence, by choosing R′
p1 = I (x p1; y2|x p2, u2) − ϵ′

11 and
R′

d2 = I (xd2; y2|x p1, x p2, u2)−ϵ′′
11, secrecy is ensured for the

non-cooperative private message of transmitter 1, and also, the
achievability condition in (83) is satisfied.

For receiver 1, also, it is only required to show that the
non-cooperative private message of transmitter 2 remains
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secure. To bound the equivocation at receiver 1, consider the
following:

H (Wp2|yN
1 ) ≥ H (Wp2|yN

1 , xN
p1, uN

1 , W ′
d2). (88)

Then, by following similar steps as used in case of receiver 2,
it can be shown that the choice of R′

p2 = I (x p2; y1|x p1, u1)−
ϵ′

2 and R′′
d2 = I (xd2; y1|x p1, x p2, u1) − ϵ′′

2 , ensures secrecy
of the non-cooperative private message of transmitter 2. This
completes the proof.

G. Proof of Corollary 2

In the first and second time slots, transmitters 1 and 2 send
the following encoded messages:

x1(1) = xcp[1](1) + x p1(1),

and x2(1) = xcp[2](1) + x p2(1) + xd2(1),

x1(2) = xcp[1](2) + x p1(2) + xd1(2),

and x2(2) = xcp[2](2) + x p2(2), (89)

where xcp is as defined in (71) and xcp[i ]( j) corresponds to the
i th element of the vector at the j th time slot. In the following,
the achievable secrecy rate and power allocation for different
messages are discussed in the case of the first time slot. Hence,
for simplicity, the time index is omitted. The mutual informa-
tion terms given in Theorem 9 are evaluated as follows. From

Theorem 9, R′
p1 and R′

p2 are set as 0.5 log
(

1 + h2
c Pp1

1+h2
d Pd2

)
and

0.5 log(1 + h2
c Pp2

1+h2
c Pd2

), respectively. The first equation in (32)
becomes

R1 ≤ 0.5 log

(

1 + σ 2
u + h2

d Pp1

1 + h2
c Pd2 + h2

c Pp2

)

− R′
p1. (90)

The second equation in (32) becomes

R1 ≤ 0.5 log

(

1 + h2
d Pp1

1 + h2
c Pd2 + h2

c Pp2

)

+ min
{
CG , 0.5 log

(
1 + σ 2

u

1 + h2
c Pd2 + h2

c Pp2

)}
− R′

p1.

(91)

The achievable rate for user 2 becomes

R2 ≤ 0.5 log

(

1 + σ 2
u + h2

d Pp2

1 + h2
d Pd2 + h2

c Pp1

)

− R′
p2, (92)

R2 ≤ 0.5 log

(

1 + h2
d Pp2

1 + h2
d Pd2 + h2

c Pp1

)

+ min

{

CG , 0.5 log

(

1 + σ 2
u

1 + h2
d Pd2 + h2

c Pp1

)}

−R′
p2. (93)

The encoded message at transmitters 1 and 2 are

x1 = hdw1z − hcw2z + x p1, and

x2 = hdw2z − hcw1z + x p2 + xd2. (94)

To simplify the power allocation, the variance of w1z and w2z
are chosen to be the same, i.e, σ 2

1z = σ 2
2z = σ 2

z . In order to

satisfy the power constraint at the transmitters, the following
conditions need to be satisfied:

(h2
d + h2

c)σ
2
z + Pp1 ≤ P1 and (h2

d + h2
c)σ

2
z + Pp2+ Pd2 ≤ P2,

(95)

where Pi = βi P (i = 1, 2), 0 ≤ βi ≤ 1 and P is the maximum
power available at either transmitter. The power for the non-
cooperative private message, cooperative private message and
dummy message are chosen as follows:

σ 2
z = θ1

θ1 + θ2

P1

h2
d + h2

c
, Pp1 = θ2

θ1 + θ2
P1,

Pp2 = η1

η1 + η2
P ′, Pd2 = η2

η1 + η2
P ′, and

P ′ = (P2 − (h2
d + h2

c)σ
2
z )+. (96)

where (θi , ηi ) ∈ [0, 1]. The parameters θi and ηi act as power
splitting parameters for transmitters 1 and 2, respectively. The
parameter βi acts as a power control parameter. Hence, θi ,
ηi and βi are chosen such that the rates in (90)-(93) are
maximized, and the minimum of (90) and (91) gives the
achievable secrecy rate for transmitter 1 i.e., R∗

1 (1); and the
minimum of (92) and (93) give the achievable secrecy rate for
the transmitter 2 i.e., R∗

2 (1). This completes the proof.

H. Proof of Theorem 10

In contrast to the achievable scheme for the weak/moderate
interference regime, the dummy message sent by one of the
users i is required to be decodable at the receiver j ( j ̸= i).
Intuitively, since the cross links are stronger than the direct
links, stochastic encoding alone is not sufficient to ensure
secrecy of the non-cooperative private message. Hence, the
dummy message sent by transmitter i acts as a self-jamming
signal, preventing receiver i from decoding the message from
the other transmitter j ̸= i . At the same time, ensuring that the
dummy message is decodable at receiver j enables receiver j
to cancel the interference caused by the dummy message,
allowing it to decode its own message. Thus, although the
cross-links are strong, receiver i is unable to decode the
message from transmitter j because of the jamming signal;
and this helps user j achieve a better rate. In the next time
slot, user i can achieve a better rate by exchanging the
roles of users i and j . The proof involves analyzing the
error probability at the encoder and the decoder along with
equivocation computation. The conditions for the encoding
error to go to zero and the choice of u1 and u2 remain the
same as in the proof of Theorem 9, and the probability of
decoding error can also be analyzed in a similar manner as
performed for the weak and moderate interference regime in
Appendix F. The details of the probability of error analysis
can be found in [29].

1) Equivocation Computation: The equivocation at
receiver 2 is bounded as follows. As the non-intended
cooperative private message is canceled completely at
receiver 2, it suffices to show the following, as mentioned in
Appendix F1.

H (Wp1|yN
2 ) ≥ N

[
Rp1 − ϵs

]
. (97)
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Consider the following:

H (Wp1|yN
2 )

≥ H (Wp1|yN
2 , uN

2 ),

= H (Wp1, yN
2 |uN

2 ) − H (yN
2 |uN

2 ),
(a)= H (Wp1, yN

2 , xN
p1, xN

d2|uN
2 ) − H (xN

p1, xN
d2|Wp1, yN

2 , uN
2 )

−H (yN
2 |uN

2 ),

= H (xN
p1, xN

d2|uN
2 ) + H (Wp1, yN

2 |xN
p1, xN

d2, uN
2 )

−H (yN
2 |uN

2 ) − H (xN
p1, xN

d2|Wp1, yN
2 , uN

2 ),

≥ H (xN
p1, xN

d2|uN
2 ) + H (yN

2 |xN
p1, xN

d2, uN
2 ) − H (yN

2 |uN
2 )

−H (xN
p1, xN

d2|Wp1, yN
2 , uN

2 ),

= Rp1 + R′
p1 + Rd2 − I (xN

p1, xN
d2; yN

2 |uN
2 )

−H (xN
p1, xN

d2|Wp1, yN
2 , uN

2 ), (98)

where (a) is obtained using the relation:
H (Wp1, yN

2 , xN
p1, xN

d2|uN
2 ) = H (Wp1, yN

2 |uN
2 ) + H (xN

p1, xN
d2|

Wp1, yN
2 , uN

2 ). The second term in (98) is upper bounded as
follows:

I (xN
p1, xN

d2; yN
2 |uN

2 ) ≤ N I (x p1, xd2; y2|u2) + Nϵ′. (99)

The above bound can be obtained by using similar steps as
used in the proof of Lemma 1 in Appendix E.

To bound the last term in (98), consider the joint decoding
of W ′

p1 and Wd2, assuming that receiver 2 is given Wp1

and uN
2 as side information. By following similar steps as

in Appendix F1, it is possible to show that the probability of
error is arbitrarily small for large N , provided the following
conditions are satisfied:

R′
P1 ≤ I (x p1; y2|xd2, u2),

Rd2 ≤ I (xd2; y2|x p1, u2),

R′
p1 + Rd2 ≤ I (x p1, xd2; y2|u2). (100)

When the conditions in (100) are satisfied and for suffi-
ciently large N , the following bound is obtained using Fano’s
inequality:

H (xN
p1, xN

d2|Wp1 = wp1, yN
1 , uN

2 ) ≤ Nδ2. (101)

Finally, the last term in (98) is bounded as follows:

H (xN
p1, xN

d2|Wp1, yN
2 , uN

2 )

=
∑

wp1

P(wp1)H (xN
p1, xN

d2|Wp1 = wp1, yN
1 , uN

2 ),

≤ Nδ2. (102)

Using (99) and (102), (98) becomes

H (Wp1|yN
2 )

≥ N
[
Rp1 + R′

p1 + Rd2 − I (x p1, xd2; y2|u2) − (δ2 + ϵ′)
]
,

(103)

By choosing R′
p1 = I (x p1; y2|u2) − ϵ′

2 and Rd2 =
I (xd2; y2|x p1, u2) − ϵ′′

2 secrecy of the non-cooperative private
part is ensured. Thus,

H (Wp1|yN
2 ) ≥ N

[
Rp1 − ϵ2

]
. (104)

This completes the proof.
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