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Abstract—Practical energy harvesting (EH) based commu-
nication systems typically use a battery to temporarily store
the harvested energy prior to its use for communication. The
battery capacity can quickly degrade with time if it is subject to
repeated shallow charge-discharge cycles. This motivates the cycle
constraint which mandates that a battery must be charged only
after it is sufficiently discharged and vice versa. We consider
a Bernoulli energy arrival model, and a half-duplex battery
constraint. In this context, we study EH communication systems
with: (a) a single battery with capacity 2B units and (b) dual
batteries, each having capacity of B units. The aim is to obtain
the best possible long-term average throughputs in point-to-point
(P2P) channels and multiple access channels (MAC). For the
P2P channel, we obtain an analytical optimal solution in the
single battery case, and propose optimal and suboptimal power
allocation policies for the dual battery case. We extend these
policies to obtain achievable throughput regions in MACs by
jointly allocating rates and powers. From numerical simulations,
we find that the optimal throughput in the dual battery case can
be more than twice of that in the single battery case, although
the total energy storage capacity in both cases is 2B units.

I. INTRODUCTION

Energy harvesting (EH) from natural and man-made sources
has been envisioned as a viable technique for enabling low-
power and energy starved communication systems, including
Internet of Things (IoT) devices in fifth generation (5G)
networks [2]. Consequently, EH communications has been
widely studied in the last few years [3]–[6]. In most of
the existing studies, the proposed power allocation policies
may require batteries to undergo repeated partial (shallow)
charge and discharge cycles. In practice, such a charging and
discharging pattern can quickly degrade the usable capacity
of batteries. For instance, the usable capacity of many Nickel
based batteries [7] and some Li-ion [8] batteries reduces sig-
nificantly when they are subjected to shallow charge/discharge
cycles. This phenomenon, referred to as the memory effect or
voltage depression, can be avoided by imposing the so-called
cycle constraint, i.e., by discharging (charging) the battery
to a lower (an upper) limit before charging (discharging) it
again [9]. Further, the practical batteries cannot be charged and

Part of this work has been presented at the IEEE ICC 2019, Shanghai,
China [1]. Rajshekhar Vishweshwar Bhat is with the Indian Institute of Tech-
nology, Dharwad 580011, India (email: rajshekhar.bhat@iitdh.ac.in), Mehul
Motani is with the National University of Singapore, Singapore 119077,
Chandra R. Murthy is with the Indian Institute of Science, Bangalore 560012,
India, and Rahul Vaze is with the Tata Institute of Fundamental Research,
Mumbai 400005, India.

The work of C. R. Murthy was financially supported by the Young
Faculty Research Fellowship from the Ministry of Electronics and Information
Technology, Govt. of India.

discharged simultaneously, which we call as the half-duplex
battery constraint. Hence, in this work, we consider the design
of EH communication systems under (i) the cycle constraint,
and (ii) the half-duplex battery constraint.

Although EH communications has received a significant
attention, the impact of the cycle and half-duplex constraints
of practical batteries has not been widely studied in the
existing literature [3]. In a P2P channel, the authors in [10]–
[12] consider the interplay between the battery charging and
discharging policy and the irreversible degradation (aging) of
its storage capacity. This irreversible degradation is different
from the voltage depression; the latter can be avoided by
the cycle constraint. In [13], the authors indirectly control
the battery degradation by constraining the number of charge
and discharge cycles per unit time, but their model does not
explicitly account for the impact of the number of charge and
discharge cycles on the battery capacity. In [14], a Bernoulli
EH model is assumed, where, in a slot, either an energy packet
with energy quantum equal to the capacity of the battery
arrives, or no energy arrives. This implies, whenever a packet
of energy arrives, the battery fills up completely. In this case,
when a fresh energy packet arrives, the residual energy in
the battery can be thought to be discarded instantaneously
before replenishing it with the energy that arrived. Hence, [14]
implicitly accounts for the cycle constraint since the battery
has unit capacity. Based on the optimal online policy for the
above Bernoulli EH model, the authors in [14] obtain a simpler
fixed-fraction policy (FFP) which consumes a fixed fraction of
the available energy in the battery in each slot. They obtain
bounds on the absolute difference between and the ratios of
the maximum achievable throughput of the FFP and that of
the optimal policy with an infinite-capacity battery. This work
has also been extended to multi-user settings in [15]–[17].
Recently, [18] generalized the approach developed in [14], to
work for concave monotonically increasing utility functions of
the transmit power in the single-user case. In this work, we
consider a Bernoulli energy arrival model, similar to [19]–[21].
We study a case where multiple energy arrivals are needed to
fill the battery. In addition to the cycle constraint, which has
been implicitly assumed in [14]–[18], we also account for the
practical half-duplex battery constraint (see [22], [23]). In this
setting, for the single battery case, we obtain a simple optimal
online policy, and for the dual battery case, we obtain a simple
near-optimal online policy, similar to the FFP, with a constant
additive gap from the maximum achievable throughput with
an infinite-capacity battery.



Our goal is to obtain power policies that maximize the long-
term average throughputs and throughput regions in single
battery and dual battery cases in a P2P channel and a MAC
under (i) the cycle constraint, and (ii) the half-duplex battery
constraint. We assume that the throughput is a concave func-
tion of the transmit power. Due to the above constraints, in
the single battery case, when the battery is being discharged
(charged), energy harvesting (transmission) is suspended, and
when the battery gets empty (full), charging (transmission)
starts. Hence, if the energy from the battery is utilized aggres-
sively, the duration of transmission will be short, implying that
the time duration over which energy harvesting is suspended
is short. However, due to the concavity, the time-averaged
throughput in an aggressive policy could be less than that
with a conservative policy with a slower energy utilization.
Similarly, in the dual battery case, when a battery is being
charged, the transmitter draws power from the other battery
and the roles of the batteries are switched when the charging
battery becomes full and the other battery gets empty. In this
case, an aggressive policy leads to a lower throughput, as
the working battery may get drained long before the charging
battery gets full. However, a conservative policy may result in
energy overflow, as the battery being discharged may not be
empty when the charging battery becomes full. Between these
two extremes lies the optimal solution. The main contributions
of the paper are:

• In a P2P channel under the single battery case, we obtain
an analytical solution to the long-term average throughput
maximization problem in the online case with causal
knowledge of energy arrivals.

• For a P2P channel under the dual battery case, we first
obtain optimal power allocations via dynamic programing
and then propose non-adaptive online policies, which
do not exploit knowledge of current battery states, and
adaptive policies, which adapt power allocations based
on battery states when a new energy arrival occurs.

• For a U -user MAC, we derive long-term average achiev-
able throughput regions in the single battery and dual
battery cases, based on the online policies proposed for
the P2P channel.

• Using numerical simulations, we show that the perfor-
mance gap between the optimal policy for an ideal system
equipped with an infinite-capacity battery and a proposed
non-adaptive policy decays faster than the inverse of the
square root of the battery capacity. Further, the largest
throughput region in the single battery case is contained
within that of the dual battery case.

In summary, our study finds that, under the cycle and half-
duplex battery constraints, the optimal performance in the dual
battery case is significantly better than that in the single battery
case, although the total storage capacity in both cases is the
same.

The remainder of the paper is organized as follows. The
system model is presented in Section II. We study the P2P
channel under single battery and dual battery cases in Sections

III and IV, respectively. We then consider a MAC in Section
V. Numerical results are presented in Section VI, followed by
concluding remarks in Section VII.

II. SYSTEM MODEL

We consider a P2P channel and a MAC under two cases: (a)
the single battery case, in which the transmitters are equipped
with a single battery having storage capacity of 2B units,
and (b) the dual battery case, in which the transmitters are
equipped with two batteries, each having storage capacity of
B units. In both the cases, the transmitters are powered from
EH sources. Further, the receiver is connected to the mains,
and hence the receiver can always remain on. Now, based on
our discussion in the introduction, we impose the half-duplex
battery constraint, and the cycle constraint due to which the
battery must be discharged (charged) to a lower limit, Cmin (an
upper limit, Cmax) before charging (discharging) it again, with
Cmin < Cmax. Furthermore, the battery cannot be discharged
below Cmin or charged above Cmax. In this case, it is clear that
Cmin plays the same role as 0 units of energy in the battery,
and Cmax plays the role of the battery capacity. Hence, without
loss of generality, we assume Cmin = 0 for both the single
battery and dual battery cases, and Cmax = 2B and Cmax = B
for the single battery and dual battery cases, respectively.

A. EH model

We consider a time-slotted system with unit slot length. The
harvested energy arrives continuously at a constant rate in a
slot such that the total amount of energy accumulated from the
beginning of slot i until the end of the slot is Ei units, where
E1, E2, . . . is a sequence of i.i.d. random variables, distributed
as E, a non-negative random variable with mean µ. As in
[19]–[21], we adopt the following Bernoulli EH model:

E =

{
EH w.p. p,
0 w.p. 1− p, (1)

where w.p. stands for “with probability”. In this case, the
average EH rate, µ = pEH . We also assume B and EH are
related as B/EH = r for some integer r ≥ 1.

B. Energy Management and Evolution of Battery States

The harvested energy is stored in a battery before using it
for transmission.

1) Single Battery Case: In the single battery case in Fig. 1a,
when the battery is being charged, no transmission is car-
ried out. When transmission occurs, the energy harvesting
is suspended, as batteries cannot be charged and discharged
simultaneously. Hence, when S1 (S2) is closed, S2 (S1) will
be open in Fig. 1a. Let Bi be the amount of energy stored in
the battery at the start of slot i, Pi be the transmit power
in slot i and αi ∈ {0, 1} be an indicator variable, where
αi = 1 (αi = 0) indicates that the battery is being charged
(discharged) in slot i. Then, the battery evolves as follows:

Bi+1 = max (min (Bi + αiEi, 2B)− (1− αi)Pi, 0) , (2)
αi+1 = αi1(0,2B)(Bi+1) + 1{0}(Bi+1), (3)
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Fig. 1: We consider EH users equipped with (a) single battery with capacity of 2B units
and (b) two batteries, each with capacity of B units.

for all i ∈ {1, 2, . . . , }, where 1A(x) , 1 if x ∈ A and
1A(x) , 0 if x /∈ A. Since we multiply Ei and Pi by αi and
(1− αi), respectively, (2) captures the half-duplex constraint.
Moreover, as αi changes its value from 1 to 0 (0 to 1) only
when the battery becomes full (empty), (3) accounts for the
cycle constraint. Since we cannot use more energy than what is
available in the battery, we also have the following constraint:

Pi ≤ 2Bi, i = 1, 2, . . . . (4)

2) Dual Battery Case: In the dual battery case in Fig. 1b,
let Bj,i be the amount of energy stored in battery j ∈ {1, 2}
at the start of slot i, Pj,i be the power drawn from battery
j in slot i and αj,i ∈ {0, 1} be an indicator variable, where
αj,i = 1 (αj,i = 0) indicates that the battery j is being charged
(discharged) in slot i. Further, let βj,i ≥ 0 be the fraction of
the harvested energy used for charging battery j in slot i with
β1,i + β2,i = 1. The batteries evolve as follows:

Bj,i+1 = max (min(Bj,i + αj,iβj,iEi, B)− (1− αj,i)Pj,i, 0) ,
(5)

αj,i+1 = αj,i1(0,B)(Bj,i+1) + 1{0}(Bj,i+1), (6)

for all i ∈ {1, 2, . . .} and j ∈ {1, 2}, where Pj,i ≤ Bj,i.
As in the single battery case, (5) and (6) account for the
half-duplex and the cycle constraints, respectively. The total
transmit power in slot i is given by

Pi = P1,i(1− α1,i) + P2,i(1− α2,i). (7)

The min and max in the above equations capture the facts
that the battery energy cannot exceed its capacity or become
negative, respectively. In the rest of the work, we refer to
the battery that is being charged (discharged) as the charging
(working) battery.

C. Throughput Maximization and an Upper Bound

The communication is over an additive white Gaussian noise
(AWGN) channel with unit noise power. We assume that the
throughput with received signal-to-noise ratio of P W in a
slot is given by R = 1

2 log(1 + P ) bits-per-second (bps). All
the logarithms are to the base 2. Now, the long-term average
throughput is defined as follows:

T (P1, P2, . . .) , lim inf
k→∞

1

k
E

[
k∑
i=1

1

2
log(1 + Pi)

]
, (8)

where the expectation is over all the possible sequences of en-
ergy arrivals. Our objective is to find the optimal power policy,
P1, P2, . . ., that maximizes the long-term average throughput,
T in (8), i.e., to solve the following optimization problems:

maximize
P1,P2,...

T (P1, P2, . . .) subject to (2)− (4), (9)

for the single battery case, and

maximize
P1,P2,...

T (P1, P2, . . .) subject to (5)− (7), (10)

for the dual battery case.
In order to benchmark the proposed power allocation poli-

cies, we now present an upper bound on T . When the cycle
and half-duplex battery constraints are not present, and the
users are equipped with infinite-capacity batteries, it is optimal
to utilize ε smaller amount of power per slot on average,
compared to the average harvesting rate, where ε > 0 can be
arbitrarily small. Further, by the concavity of the rate function,
it is optimal to utilize an equal amount of energy µ in every
slot, resulting in the long-term average throughput [24]–[26]

Tub =
1

2
log(1 + µ).

The subscript ub indicates that this performance is an upper
bound on the throughput obtainable under the half-duplex and
the cycle constraints.

III. P2P CHANNEL: SINGLE BATTERY CASE

In this section, we consider a P2P channel under the single
battery case and obtain the optimal solution to the long-
term average throughput maximization problem in (9). Let the
number of slots required to accumulate at least 2B units of
energy in the battery be L2B, i.e.,

L2B , min

(
l :

l∑
i=1

Ei ≥ 2B

)
. (11)

Clearly, L2B is a random variable. Let L̄2B be the expected
value of L2B, i.e., L̄2B , E[L2B]. With the EH model in
(1), since the energy inter-arrival times are i.i.d. geometrically
distributed random variables with mean 1/p, we have L̄2B =
2r/p. To obtain the optimal long-term average throughput, we
assume that the initial energy stored in the battery is 2B units.
We then discharge and charge the battery subject to the half-
duplex and the cycle constraints in (2) and (3), respectively.
Consider the following randomized power allocation policy
in which, when the battery gets full, we consume 2B units
of energy in N slots, where N = n w.p. pn such that∑∞
n=1 pn = 1 and pn ≥ 0 for all n ∈ {1, 2, . . .}. In these

slots, the transmit power is kept constant at 2B/N units.
Note that, conditioned on N = n, it is optimal from a
throughput perspective to divide the energy equally among
the n slots, due to the concavity of the log(·) function.
Starting from the (n + 1)th slot, the battery is charged for
L2B slots to fill it, during which time no transmission occurs.
Clearly, the (n+ L2B + 1)th slot is a renewal instant. Hence,
the total reward and the length of the renewal period are



(N/2) log(1 + 2B/N) bps and (N +L2B) slots, respectively.
Therefore, by the renewal-reward theorem [27] and (8), the
long-term average throughput in the single battery case is equal
to TSB(p1, p2, . . .) = E

[
N
2 log(1 + 2B

N )
]
/E[N + L2B] =(∑∞

n=1 pn
n
2 log

(
1 + 2B

n

))
/
(∑∞

n=1 npn + L̄2B

)
. Now, the

long-term average throughput maximization problem in (9) can
be re-written as

maximize
pn≥0, n∈Z+

TSB(p1, p2, . . .) subject to
∞∑
n=1

pn = 1. (12)

We present an equivalent optimization problem to (12) in the
following lemma.

Lemma 1. The optimal long-term average throughput in the
single battery case, obtained by solving (12), is equal to

T ∗SB = max
n∈Z+

n
2 log

(
1 + 2B

n

)
n+ L̄2B

, (13)

and the optimal distribution of N is given by pn∗ = 1 and
pn = 0, ∀ n 6= n∗, where n∗ is the value of n that solves (13).

Proof. See Appendix A.

Due to Lemma 1, it suffices to solve (13) to obtain the
optimal solution to (12). Note that (13) is an integer program.
To solve it, we first allow n to take any positive real value
and solve the relaxed problem. We then optimally round the
solution to satisfy the integer constraint in (13).

1) Relaxation: In the relaxed problem, we denote the
transmit power and number of transmission slots by P̃ and
ñ, respectively. Hence, we have, ñ = 2B/P̃ and the objective
function in (13) becomes µ log(1+ P̃ )/(2(µ+ P̃ )), where the
average EH rate, µ = pEH under the assumption that r ≥ 1,
i.e., B ≥ EH . Therefore, the optimal transmit power can be
obtained by solving

max
P̃∈R+

µ log(1 + P̃ )

2(µ+ P̃ )
. (14)

We now have the following theorem.

Theorem 2. The optimal solution to (14) is given by

P̃ ∗ = exp(1) exp (W0 (exp(−1)(µ− 1)))− 1, (15)

and the optimal long-term average throughput is given by

T̃SB =
µ

2 ln 2 exp(1) exp (W0 (exp(−1)(µ− 1)))
, (16)

where W0(·) is the principal branch of the Lambert W
function [28].

Proof. See Appendix B.

2) Rounding: From Theorem 2, clearly, ñ∗ = 2B/P̃ ∗.
Noting that ñ∗ may not be an integer, we now obtain the
optimal solution to (13), with the integer constraint on n. From
the proof of Theorem 2, recall that the first order derivative of
the objective function has only a single positive real root, P̃ ∗

at which it attains the maximum value. Hence, the objective
function in (14) is increasing over n ∈ [0, ñ∗) and decreasing

over n ∈ [ñ∗,∞), where ñ∗ = 2B/P̃ ∗. Hence, with an
integer constraint on n, the objective function in (13) attains
the maximum value at either or both of the following values of
n: n = bñ∗c and n = dñ∗e, where bxc is the greatest integer
smaller than x and dxe is the smallest integer greater than x.
Therefore, the optimal n that solves (13) is given by

n∗ = arg max
n∈{bñ∗c,dñ∗e}

n
2 log(1 + 2B

n )

n+ 2B
µ

, (17)

and the maximum long-term average throughput is given by

TSB =
n∗

2 log(1 + 2B
n∗ )

n∗ + 2B
µ

. (18)

We now make the following remarks.
• From Theorem 2, which gives the optimal solution to

the relaxed long-term average throughput maximization
problem when B ≥ EH , we note that the optimal power
and throughput depend only on µ, i.e., for any B such that
B ≥ EH , the optimal power and throughput remain the
same. In other words, the performance with an infinite-
capacity battery can be obtained by using a single battery
with capacity of 2B = 2EH units, in the relaxed case.

• In the presence of integer constraints, from (17) and (18),
the optimal performance depends only on the mean value
of the harvested energy and the battery capacity. This
implies that burstiness of the energy arrivals does not
impact the optimal performance.

• In order to obtain Lemma 1, we have not used the fact that
energy arrivals admit the Bernoulli EH model in (1). The
term L̄2B is simply the expected value of the number of
slots required to accumulate at least 2B units of energy in
an arbitrary i.i.d. EH model (see (11)). Moreover, we can
extend the optimization problem in (14) to an arbitrary
i.i.d. EH model by replacing µ by 2B/L̄2B . This implies
that, Lemma 1, Theorem 2, (17) and (18) are readily
applicable to an arbitrary i.i.d. EH model when µ is
replaced by 2B/L̄2B .

IV. P2P CHANNEL: DUAL BATTERY CASE

We now consider the P2P channel under the dual battery
case. In the sequel, we solve (10) in the online case via
dynamic programming, in which the optimal transmit power
in a slot is obtained based on the state of the batteries in the
slot. We then propose non-adaptive online policies, which do
not need knowledge of the current state. Based on this, we
also propose simple, easy to implement policies which adapt
the power allocation whenever a new energy arrival occurs.
We begin with the following lemma.

Lemma 3. It is optimal to switch the roles of the batteries
when the working battery becomes empty and the charging
battery becomes full.

Proof. See Appendix C.

The above lemma has the following two implications.



• First, due to Lemma 3, the switching instants are renewal
instants of the battery state processes. Let Ck denote
the length (in slots) of the kth renewal period. Since the
system is reset after a renewal instant and because the
energy arrivals and allocations are independent across
renewal intervals, C1, C2, . . . form a sequence of i.i.d.
random variables. Hence, by the renewal-reward theorem
[27] and (8), the long-term average throughput is

T =
E
[∑C

i=1
1
2 log(1 + Pi)

]
E[C]

, (19)

where C is the length of the renewal period, whose
distribution is identical to C1, C2, . . .. The expectation
is with respect to the random variable C.

• Second, due to Lemma 3, at any point in time, only one
of the batteries will be the charging battery and the other
will be the working battery and hence, we have, α1,i =
1 − α2,i and βj,i = αj,i for j ∈ {1, 2} in (5) and (6).
Therefore, we can describe the roles and evolution of the
batteries in (5) and (6) with a single indicator variable,
denoted by α, as follows. For i ∈ {1, 2, . . .},

B1,i+1 = max (min(B1,i + (1− αi)Ei, B)− αiPi, 0) ,
(20)

B2,i+1 = max (min(Bj,i + αiEi, B)− (1− αi)Pi, 0) ,
(21)

αi+1 =


0 1{0}(B1,i+1)1{B}(B2,i+1),
1 1{B}(B1,i+1)1{0}(B2,i+1),
αi otherwise,

(22)

where αi = 1 (αi = 0) indicates that, in slot i, the
second battery is the charging (working) battery and the
first battery is the working (charging) battery.

Before we proceed, we define certain quantities. The num-
ber of slots required to accumulate B units of energy, L,
follows the negative binomial distribution given by

Prob(L = m) , qm =

(
m− 1

m− r

)
pr(1− p)m−r,

for m ∈ {r, r+1, . . .} and E[L] = r/p. Further, the cumulative
density function (CDF) is given by, Fi(r, p) =

∑i
m=1 qm

and the complementary CDF, F̄i(r, p) = 1 − Fi(r, p) =∑∞
m=i+1 qm. In the following subsection, we present several

online policies. For completeness of benchmarking, we also
present the optimal offline policy in Appendix D.

A. Optimal Online Policy

We now consider the online case with only causal knowl-
edge of energy arrivals. Since the precise time when the
charging battery will get full is unknown, power is allocated
based only on the distribution of energy arrivals. To obtain
the optimal online policy, we adopt a dynamic programming
framework. We now define the relevant quantities.

1) State space: The state of the system is defined by 3-
tuples s , (b1, b2, α), where b1 and b2 are the amounts of
energy stored in the first and the second battery, respectively,
at the start of a slot and α is an indicator variable, where
α = 1 (α = 0) indicates that the second battery is the charging
(working) battery and the first battery is the working (charging)
battery. The state space

S = {(b1, b2, α) : 0 ≤ b1, b2 ≤ B,α ∈ {0, 1}}.

2) Action space and reward: The action space the system
can take in state s = (b1, b2, α) ∈ S,

A(s) = {P : 0 ≤ P ≤ b1α+ b2(1− α)}. (23)

The constraint on P in (23) is due to the fact that P units are
drawn from the working battery.

3) State transition probability matrix: The state transition
is fully specified by (20)-(22), based on which, we can easily
construct the probability transition matrix, q(s′|P, s) for all
s ∈ S and P ∈ A(s).

4) Optimal value function: We consider K slots for the
optimization. We obtain the optimal value function Vk(s) in
slot k ∈ {1, . . . ,K} and state s ∈ S by solving the following
Bellman equation:

Vk(s) = max
P∈A(s)

(
1

2
log(1 + P ) +

∑
s′∈S

q(s′|P, s)Vk+1(s′)

)
,

(24)

for k = K,K − 1, . . . , 1, where VK+1(s) , 0. The optimal
online throughput is then given by

Ton = lim inf
K→∞

VK(s)

K
.

The optimal online throughput, Ton, can also be obtained by
solving the Bellman equation in the infinite horizon case with
the discount factor arbitrarily close to one. Since the reward is
bounded and the state space is finite, there exists an optimal
stationary deterministic policy for (24), i.e., there exists a
unique optimal action P ∗(s) in state s independent of slot
indices [29]. Hence, it suffices to search only in the set of all
stationary deterministic policies.

The dynamic programming framework can be applied for an
arbitrary i.i.d. energy arrival model to obtain an optimal online
policy. However, this requires one to adopt a more general
state and action spaces, based on (5)-(7). Note that the state
and action spaces used in the above dynamic programming
based policy is based on Lemma 3, which is specific to the
Bernoulli EH model.

B. Non-Adaptive (NA) Online Policies

The above optimal online policy, obtained via dynamic
programming, adapts the transmit power in every slot based
on the state of the batteries. In the non-adaptive policies,
we assume the states of batteries are not estimated in every
slot. However, we assume that a flag is raised when the
charging battery becomes full or working battery becomes



empty. Further, the energy remaining in the working battery
is discarded once the charging battery accumulates B units
of energy. On the other hand, if the working battery gets
completely discharged before the charging battery is full, the
transmitter waits without transmission till the charging battery
gets full. This implies that the renewal instant is the same as
the instant when the charging battery accumulates B units of
energy. With this setting, we obtain optimal and suboptimal
power allocations in the following. For our analysis, we adopt
the approach developed in [14].

1) Optimal Non-Adaptive (ONA) Online Policy: Let P̃i be
the transmit power in slot i ∈ {1, . . . , L} after a renewal.
Then, the throughput in (19) can be re-written as

TONA =

∞∑
i=1

p

2r
F̄i−1(r, p) log(1 + P̃i), (25)

where we recall F̄i−1(r, p) =
∑∞
m=i qm. From (10) and (25),

to maximize the long-term average throughput in the online
case, we need to solve the following optimization problem:

maximize
P̃i,i=1,2,...

∞∑
i=1

p

2r
F̄i−1(r, p) log(1 + P̃i), (26a)

subject to
∞∑
i=1

P̃i ≤ B, P̃i ≥ 0, i ∈ {1, 2, . . .}. (26b)

Clearly, (26) is a convex optimization problem. Hence, the
Karush-Kuhn-Tucker (KKT) conditions are necessary and suf-
ficient for optimality. Based on the KKT conditions, we obtain
the optimal power allocations in the following theorem.

Theorem 4. The optimal transmit power in the ith slot after
a renewal instant

P̃ONA
i (B, r, p) =


(B+M)∑M

j=1 F̄j−1(r,p)
− 1, ∀i = 1, . . . , r,

(B+M)F̄i−1(r,p)∑M
j=1 F̄j−1(r,p)

− 1, ∀i = r + 1, . . . ,M,

0, ∀i > M ,
(27)

where M , max
{
m :

∑m
i=1 F̄i−1(r,p)

B+m ≤ F̄m−1(r, p)
}

. The
corresponding throughput in the ONA policy can be obtained
from (25) and (27) as

TONA =

M∑
i=1

p

2r
F̄i−1(r, p) log

(
(B +M)F̄i−1(r, p)∑M

j=1 F̄j−1(r, p)

)
.

Proof. See Appendix E.

We note that the probability that the charging battery fills
up in less than r slots after a renewal is zero. Hence, given
a fixed amount of energy that can be consumed in the first r
slots, it is intuitive that we must consume it at a constant rate
in the first r slots after a renewal, as suggested by (27). We
also note that under the policy P̃ONA, the working battery
becomes fully discharged after exactly M slots. It strikes
the optimal balance between discharging too early (in which
case the transmitter will remain idle till the charging battery
gets full) and discharging too late (in which case there is
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wastage of energy as the remaining energy in the working
battery is discarded). Since we discard the remaining energy
in the working battery in case the charging battery becomes
full before M slots and we remain idle in case the charging
battery takes more than M slots to become full, the solution
in Theorem 4 is a suboptimal online policy and TONA ≤ Tub.

2) Suboptimal Non-Adaptive (SNA) Online Policy: Based
on the above ONA policy, we now propose a suboptimal
policy, referred to as the Suboptimal Non-Adaptive (SNA)
policy. Our motivations for proposing the SNA policy are it is
simpler than the previous policies, and analytically tractable
in the sense that we can use it to lower bound the optimal
long-term average throughput in the dual battery case.

In the SNA policy, the power allocation in the ith slot after
a renewal instant is given by

P̃ SNA
i (B, r, p) =

Bp

r

∞∑
m=i

qm = µF̄i−1(r, p). (28)

We discard the energy remaining in the working battery when
the charging battery becomes full. Since

∑∞
i=1 F̄i−1(r, p) =∑∞

i=1

∑∞
m=i qm = E[L] = r/p, we note,

∑∞
i=1 P̃

SNA
i = B.

Hence, the power allocation policy in (28) does not violate
the energy causality constraint. It is also interesting to note
that when r = 1, we recover the FFP proposed in [14]. Let
TSNA denote the long-term average throughput obtained in this
strategy. We now have the following result.

Theorem 5. The long-term average throughput in the SNA
policy is bounded as follows:

Tub ≥ TSNA ≥ Tub −G(r),

where G(r) , maxp− p
2r

∑∞
i=1 (

∑∞
m=i qm) log (

∑∞
m=i qm)

and qm =
(
m−1
m−r

)
pr(1− p)m−r.

Proof. See Appendix F.

We make the following remarks on the above theorem.
• First, G(1) ≈ 0.72 and we recover Proposition 3 of [14].
• Further, numerically, we can show that maxr G(r) =
G(1) ≈ 0.72. Hence, the long-term average throughputs
in the ONA and the SNA policies are at most 0.72 bits
away from the upper bound Tub for any value of p, B
and r, under the Bernoulli energy harvesting model.



Algorithm 1 Power allocation in a renewal period in the proposed adaptive
online policies.

i0 = 0
for j = 0 to r − 1 do

for k = ij + 1 to ij+1 do
P̃ SA-I
k ← P̃ONA

k−ij (Bwij , r − j, p)
P̃ SA-II
k ← P̃ SNA

k−ij (Bwij , r − j, p)
end for

end for

• Finally, when the parameters EH and p are fixed, r
increases proportionately with B, as r = B/EH . From
numerical analysis, we find the bound G(r) decreases
monotonically at a rate faster than the inverse of the
square root of r and B, as shown in Fig. 2.

C. Adaptive Online Policies

Here, we assume the state of the charging and working
batteries, denoted by Bc and Bw, respectively, are known
at the start of every slot. In this policy, we adapt the power
allocations based on Bc and Bw. Recall that, by assumption,
it takes r energy arrivals to fill the charging battery, starting
from the empty state. Now, until the current slot, suppose that
j energy arrivals have occurred since the last renewal instant,
i.e., Bc = jEH . Then, we need r − j more energy arrivals
to fill the battery. Let Lr−j be the random number of slots
required for r − j energy arrivals. Then, the complementary
CDF of Lr−j is given by F̄i(r − j, p), i ∈ {1, 2, . . .}, where
we recall F̄i(r, p) =

∑∞
m=i+1 qm. Now, in the adaptive policy,

we target to allocate Bw units of energy in the working
battery based on the distribution of Lr−j , along the lines
in the non-adaptive policies proposed earlier. Concretely, the
power allocation to ith slot after jth energy arrival in a renewal
window is given by P̃ONA

i (Bw, r − j, p), where P̃ONA
i (·) is

defined in (27). We refer to this policy as the Suboptimal-
Adaptive I (SA-I) policy. Similarly, we obtain the policy,
which we refer to as the Suboptimal-Adaptive II (SA-II)
policy, by allocating P̃ SNA

i (Bw, r − j, p) units of energy to
ith slot after jth energy arrival in a renewal window, where
P̃ SNA
i (·) is defined in (28). The policies SA-I and SA-II may

be suboptimal, hence we refer to them as Suboptimal-Adaptive
policies (notice that the dynamic programming based policy is
the optimal adaptive online policy). We summarize the power
allocations in these adaptive policies in Algorithm 1. In the
algorithm, ij represents the index of jth energy arrival in a
renewal window. Further, we represent the long-term average
throughputs obtained by SA-I and SA-II policies by TSA-I and
TSA-II, respectively.

D. Constant Power (CP) Policy

In the CP policy, the transmit power remains constant
whenever transmission occurs. Our motivations for proposing
this policy are the following. First, practical implementation
of such a policy is simple as it does not require the knowledge
of battery states. Further, prior knowledge of the optimal
transmit power can enable system designers to choose ap-
propriate system components such as power amplifiers such

that optimal transmit power is in their linear operating region.
Finally, several variants of this policy, considered in [14] and
references therein, are shown to perform competitively with
optimal policies. Specifically, the version proposed in [25] has
been shown to approach Tub asymptotically with B. Hence,
this policy is also useful in benchmarking the policies studied
above. In the CP policy, we consume the energy available in
the battery at a constant rate of B/(brp−1c) as long as the
battery is not empty, i.e., the power allocation in the ith slot
after a renewal instant is given by

P̃i =
B

brp−1c
, ∀i = 1, . . . , brp−1c. (29)

We discard the remaining energy in the working battery when
the charging battery becomes full. We denote the long-term
average throughput of the policy by TCP.

V. MAC: SINGLE BATTERY AND DUAL BATTERY CASES

We now consider a U -user MAC where the users commu-
nicate to a common receiver over an AWGN channel with
unit noise power. Let U , {1, . . . , U} represent the set of
user indices. In the single battery case, we assume that user
u ∈ U is equipped with a single battery of capacity 2Bu
units. Similarly, in the dual battery case, we assume that user
u ∈ U is equipped with two identical batteries, each having
the capacity of Bu units. We apply the half-duplex battery
constraint and the cycle constraint described in Section II. The
energy arrivals are i.i.d. over time and the amount of energy
harvested in slot i by user u is

Eui =

{
EHu w.p. pu,
0 w.p. 1− pu. (30)

We assume that Bu/EHu = ru for some ru ∈ {1, 2, . . .} and
we note the average EH rate, µu = puEHu at user u ∈ U .
The battery evolution at each user is similar to that in the
P2P channel case, described in Section II-B. Let the transmit
power of user u in slot i be denoted by Pui. Then, from [15],
the maximum average throughput region, averaged over all the
sample paths of energy arrivals is given by

TK (Puk) =

{
Ru :

∑
u∈S

Ru

≤ 1

K
E

[
K∑
k=1

1

2
log

(
1 +

∑
u∈S

Puk

)]
, ∀S ⊆ U

}
.

Our goal is to maximize the long-term average throughput
region defined as T = lim infK→∞ TK . We now present an
outer bound to T in the following. When the cycle and half-
duplex battery constraints are not present, and the capacities
of the batteries are infinite, the largest throughput region for
the Gaussian MAC is given by

Touter =

{
Ru :

∑
u∈S

Ru ≤
1

2
log

(
1 +

∑
u∈S

µu

)
, ∀S ⊆ U

}
,

where µu is the mean energy arrival rate in user u ∈ U [15].



Algorithm 2 An iterative algorithm to solve (32).

Initialize {(Ru, Pu), u ∈ U} to a feasible value.
Step 1: Update y∗u ←

√
µuRu/(µu + Pu).

Step 2: Update {(Ru, Pu), u ∈ U} from (32) with yu = y∗u.
Repeat Step 1 and Step 2 until convergence.

In the sequel, we propose achievable strategies in the single
battery and the dual battery cases, based on the P2P channel
studied in the previous sections.

A. Single Battery Case

Here, as in the P2P channel case studied in Section III, we
assume that each user transmits with a constant power. We
only consider the relaxed problem for simplicity. Let (Ru, Pu)
be transmit rate and power pairs for user u ∈ U . From (14),
the long-term average throughput of user u is given by Tu =
µuRu/(µu + Pu). We now note that each boundary point on
the largest achievable throughput region is the optimal solu-
tion to max{T1,...,TU}∈T

∑U
u=1 λuTu for some (λ1, . . . , λU ),

where λu ≥ 0, u ∈ U and
∑U
u=1 λu = 1. Hence, we obtain

all the boundary points on the achievable throughput region
in this policy by solving the following optimization problem
for many different instances of (λ1, . . . , λU ):

maximize
Ru,Pu≥0

U∑
u=1

λuµuRu
µu + Pu

, (31a)

subject to
∑
u∈S

Ru ≤
1

2
log

(
1 +

∑
u∈S

Pu

)
, (31b)

for all u ∈ U and S ⊆ U . The above optimization problem is
non-convex as (31a) is a sum of ratios. Hence, we transform
(31) into the following equivalent optimization problem:

maximize
Ru,Pu≥0,
yu∈R

U∑
u=1

λu

(
2yu
√
µuRu − y2

u(µu + Pu)
)
, (32a)

subject to
∑
u∈S

Ru ≤
1

2
log

(
1 +

∑
u∈S

Pu

)
, (32b)

for all u ∈ U and S ⊆ U . The equivalence of (31) and
(32) follows from Corollary 1 of [30]. The above problem
can be solved by alternate maximization over {yu, u ∈ U}
and {(Ru, Pu), u ∈ U}, as shown in Algorithm 2. Step 1
in Algorithm 2 is because, for a fixed {(Ru, Pu), u ∈ U},
the optimal y∗u in (32) is given by

√
λuµuRu/(µu + Pu).

The convergence of the above maximization problem to a
stationary point follows from Theorem 3 in [30].

B. Dual Battery Case

We now consider the dual battery case and present the
following result on the inner region. To obtain the inner
region, we assume each user adopts the SNA policy in (28)
individually.

Proposition 6. The long-term average throughput region,
Tinner DB ⊆ T , where, Tinner DB =

{
Ru :

∑
u∈S Ru ≤

1
2 log

(
1 +

∑
u∈S µu

)
−max{G(r1), . . . , G(rU )},∀S ⊆ U

}
.
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Proof. The result can be obtained by extending Theorem 5
along the lines of the proof of Theorem 1 in [15].

We now propose an achievable scheme based on the ONA
policy described in the P2P channel case. Let Rui and Pui be
the transmit rate and power in slot i of user u. Then, from
(25), we recall that the long-term average throughput in user
u is given by

∑∞
i=1(pu/ru)F̄u(i−1)Rui, where F̄ui = 1 −

Fui =
∑∞
m=i+1 qum and qum ,

(
m−1
m−ru

)
pruu (1 − pu)m−ru .

Hence, along the lines in the previous subsection, we obtain
all the boundary points on the largest achievable throughput
region by solving the following convex optimization problem
for different instances of (λ1, . . . , λU ) with

∑U
u=1 λu = 1:

maximize
Rui,Pui

∞∑
i=1

U∑
u=1

λupu
ru

F̄u(i−1)Rui, (33a)

subject to
∞∑
i=1

Pui ≤ Bu, Rui, Pui ≥ 0, (33b)

∑
u∈S

Rui ≤
1

2
log

(
1 +

∑
u∈S

Pui

)
, (33c)

for all u ∈ U , S ⊆ U and i ∈ {1, 2, . . .}. The above
problem is convex, and hence, it can be solved efficiently
using standard numerical techniques. In this policy, we note
that user u transmits with power Pui and rate Rui in slot i
after a renewal, independent of the rates and transmit powers
of the other users.

VI. NUMERICAL RESULTS

In this section, we first compare the long-term average
throughputs obtained in the P2P channel under the single
battery and dual battery cases. We then obtain long-term
average throughput regions in a MAC using the schemes
presented in the previous section. The parameters used for
our simulations are in the similar range as in [14], [16], [17].

A. Long-Term Average Throughput in a P2P Channel

In Fig. 3, we plot variation of the long-term average
throughput with the battery capacity in various policies. We
note that as the battery capacity increases, the performance
gap between offline (see Appendix D) and online policies
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Fig. 4: Variation of the optimal long-term average throughput withEH whenB = EHr
for r = 1, 3 and p = 0.1.

decreases. Further, the average throughput achieved by the
ONA policy approaches the upper bound, Tub, much faster
than the SNA policy, as the battery capacity B increases.
The long-term average throughput in the single battery case,
TSB, does not depend on the battery capacity. This is because,
as seen in (16), the maximum long-term average throughput
for the relaxed problem in (14) depends only on the average
harvested power; rounding the solution introduces a negligible
change in the throughput of the relaxed problem.

In Fig. 4, we plot variation of the long-term average
throughput with the amount of energy harvested per arrival,
EH , for B = EH (see Fig. 4a) and B = 3EH (see Fig. 4b).
When B = EH , a single energy arrival completely fills up
the battery. In this scenario, the system model of the current
paper in the dual battery case is identical to that in [14], and
Fig. 4a is similar to Fig. 4 of [14], where ONA and SNA
policies of the current paper correspond to the optimal policy
and the constant-fraction policy of [14], respectively. In this
case, the long-term average throughputs in ONA and SNA
policies are at most 0.72 bits away from the upper bound,
as pointed out in the remarks on Theorem 4. In Fig. 4b, we
set B = 3EH . For a given EH , note that the mean value
of the harvested energy, µ = pEH , is the same in both the
figures. Hence, the upper bound remains the same in both
the figures. However, the performance of the optimal offline,
optimal online, ONA and SNA policies when B = 3EH are
better than that when B = EH . Based on Theorem 4, the
long-term average throughputs in ONA and SNA policies are
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Fig. 5: Variation of the optimal long-term average throughput with p for a fixed mean
harvesting rate, µ = 1, with B = rEH for r = 2, 4.

at most 0.41 bits away from the upper bound when B = 3EH ,
as illustrated by the Tlb curve. From Fig. 4a, we also note
that the CP policy performs better than the SNA policy when
EH is small. However, as EH increases, the performance
gap of the CP policy from the upper bound increases, unlike
the SNA and ONA policies, which maintain a bounded gap
from the upper bound. This observation has been made for
B = EH case in [14]. A similar observation holds when
B = 3EH . In the single battery case, the performance curves
are almost identical in both the figures. This shows that,
as highlighted in Section III, increasing B has a negligible
impact on the performance, provided B ≥ EH . We also
note that the performance gap of the single battery case from
the upper bound diverges as EH increases. Finally, since the
performance of the optimal online, ONA and SNA policies
of the dual battery case are within a constant gap from the
upper bound, and as the performance of the single battery
case diverges with EH , we conclude that the performance of
the dual battery case can be more than twice of that in the
single battery case for high EH .

In Fig. 5, we plot variation of the long-term average
throughput with p, for a fixed mean harvesting rate of µ = 1,
for B = 2EH (see Fig. 5a) and B = 4EH (see Fig. 5b). For
the same parameters, we also present the average idle time,
the fraction of the slot length over which the transmit power
is zero, in Table I, and we plot the variation of the average
amount of energy discarded per slot, Ediscarded, with p in Fig.
6. Note that the lower the value of p, the higher is the amount
of energy harvested per arrival, i.e., the energy arrival becomes



TABLE I: Average idle time, the fraction of the slot length over which the transmit
power is zero (expressed as the percentage of the slot length), for µ = 1.

Policies Average idle time (% of the slot length)
B = 2EH B = 4EH

p = 0.01 p = 0.5 p = 0.01 p = 0.5
SA-I Policy 31.0% 22.0% 26.0% 15.0%
ONA Policy 26.0% 19.0% 20.0% 12.0%
SA-II Policy 0.62% 0.59% 0.3% 0.2%
SNA Policy 0.2% 0.15% 0.17% 0.05%
CP Policy 29.0% 19.0% 22.0% 12.0%
SB Optimal Policy 63.0% 62.0% 63.0% 63.0%

more bursty as p is decreased keeping µ fixed.
We make the following key observations from Fig. 5, Table

I and Fig. 6. Firstly, the long-term average throughputs in
all the policies are significantly lower than the upper bound
when p is small and they approach the upper bound as p
is increased. This is because, as seen from Table I, when
p is small, the average idle time is large. This indicates
that, when p is small, all the policies are aggressive, i.e.,
B units of energy in the working battery is consumed in
a smaller duration of time compared to the case when p is
higher. Due to the concavity of the throughput, this leads to a
degradation in the throughput. Further, as seen from Fig. 6, the
average amount of energy discarded when p is small is more
than that when p is larger. This also reduces the achievable
throughput. For the higher values of p, the harvested energy
arrives more uniformly and the power allocation can be nearly
constant, and the average idle time and the average amount of
energy discarded decrease. Hence, the performance improves
as the p is increased. Secondly, when the battery capacity, B,
is increased from 2EH to 4EH , the performance improves.
This is because, average idle time and the average amount
of energy discarded when B = 4EH are significantly lower
than that when B = 2EH , as seen from Table I and Fig.
6, respectively. Finally, we note that some policies are more
robust to burstiness than others. Specifically, performance of
the SA-I and SA-II policies are better than that of ONA and
SNA policies for all values of p. Moreover, the variation of
SA-I and SA-II policies with p is less than that of the ONA
and SNA policies. Further, the CP policy is more robust than
the SNA policy for the chosen values. As expected, the long-
term average throughput in the single battery case does not
vary with p, as µ is kept fixed.

B. Long-Term Average Throughput Regions in a MAC

In Fig. 7, we present long-term average throughput regions
in a two-user MAC under single battery and dual battery cases
for symmetric (Fig. 7a) and asymmetric (Fig. 7b) settings. In
both the settings, the battery capacity and the mean value of
the harvested energy remain the same with B1 = B2 = 20
units and µ1 = µ2 = 2.5. Further, in the symmetric case, the
distribution of the energy arrivals is the same in both the users.
However, in the asymmetric case, the energy arrivals are more
bursty in user 2. We assume r1 = r2 = 2 and r1 = 2, r2 = 1
in the symmetric and asymmetric cases, respectively. Hence,
we have, minru G(ru) = 0.51 and minru G(ru) = 0.72 in
the symmetric and asymmetric cases, respectively. In both
the figures, the largest average throughput region in the dual
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Fig. 6: Variation of the average amount of energy discarded per slot, Ediscarded

(expressed as the percentage of the mean energy arrival rate, µ), with p for a fixed
mean harvesting rate µ = 1, with B = rEH for r = 2, 4.

battery case is significantly larger than that in the single
battery case. Moreover, the maximum sum-throughput occurs
in the single battery case at (0.33, 0.33) in both symmetric
and asymmetric cases. However, in the dual battery case,
the maximum sum throughput occurs at (0.52, 0.52) and
(0.69, 0.29) in the symmetric and asymmetric cases, respec-
tively. Since both users have the same individual throughputs
at the maximum sum-throughput point in the single battery
case, it is more fair than the dual battery case in which the
individual data throughputs are significantly different at its
maximum sum-throughput point. This is because, the optimal
power allocation in the single battery case depends only on the
mean harvested energy values in both users, unlike in the dual
battery case, in which the optimal power allocations depend
on the distributions of the harvested energy in both users.

In Fig. 8, we study variation of long-term average sum-
throughput, the sum of long-term average throughputs at each
user, with the number of users, U , when the parameters at
all the users are identical with p = 0.2 and EH = 10 (see
Fig. 8a) and p = 0.8 and EH = 2.5 (see Fig. 8b). From
the figures, we note that the sum-throughputs are concave
function of the number of users, as in the case of an ideal
MAC. Moreover, the performance trends are similar to those
in the P2P channel. Specifically, as B and p are increased
while keeping µ fixed, the performance increases in the dual
battery case, but it remains unchanged in the single battery
case.
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Fig. 7: Long-term average throughput regions in a two-user MAC with single and dual
batteries with B1, B2 = 20 units and µ1, µ2 = 2.5 in symmetric and asymmetric
cases. Markers show the maximum sum throughput points.

VII. CONCLUSIONS

In this work, we optimized the long-term average through-
puts and throughput regions in P2P and multiple-access com-
munication systems under the single battery and dual battery
cases. In order to avoid capacity degradation of the batteries,
we applied the cycle constraint, which mandates that a battery
must be charged only after it is sufficiently discharged and
vice versa. We also applied the half-duplex battery constraint
for the charging and discharging processes. We found that the
optimal throughput in the dual battery case is significantly
higher than that in the single battery case and that the largest
throughput region of the proposed multiple access policy in the
single battery case is contained within that of the dual battery
case. Along the way, we obtained a closed form expression for
the optimal power allocation policy in the P2P channel for the
single battery case. For the dual battery case, we first obtained
optimal online policy via dynamic programming, followed by
non-adaptive and adaptive policies, which do not adapt and
adapt power allocations based on battery states, respectively.
We then obtained throughput regions in a MAC based on the
policies proposed for the P2P channel. We numerically found
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Fig. 8: Variation of the optimal long-term average sum-throughput with U .

that the gap between the performance of our suboptimal non-
adaptive policy and the unconstrained optimal performance
decreases with the battery capacity faster than the inverse of
the square root of the battery capacity, in the dual battery case.

APPENDIX

A. Proof of Lemma 1

The problem in (12) is a linear fractional program, which
can be transformed into the following equivalent linear pro-
gram by letting yn = pn/(

∑∞
n=1 npn + L̄2B) and t =∑∞

n=1 npn + L̄2B [31]:

maximize
y1,y2,...

∞∑
n=1

yn
n

2
log

(
1 +

2B

n

)
, (34a)

subject to
∞∑
n=1

yn ≤ t, yn ≥ 0, ∀n ∈ Z+, (34b)

∞∑
n=1

nyn + tL̄2B = 1, t ≥ 0. (34c)

Now, eliminating t from the equality in (34c), we get the
following equivalent problem:

maximize
yn≥0,n∈Z+

∞∑
n=1

yn
n

2
log

(
1 +

2B

n

)
, (35a)

subject to
∞∑
n=1

yn
(
n+ L̄2B

)
≤ 1. (35b)



Let λ be the dual variable for (35b). Then the equivalent dual
linear program of (35) is given by

minimize
λ≥0

λ, subject to λ ≥
n
2 log

(
1 + 2B

n

)
n+ L̄2B

, ∀n ∈ Z+.

(36)

In the above problem, λ is constrained only by the maximum
value of (n2 log

(
1 + 2B

n

)
)/(n+ L̄2B). Hence, we have,

λ∗ = max
n∈Z+

n
2 log

(
1 + 2B

n

)
n+ L̄2B

, (37)

and due to the strong-duality, we have, T ∗SB = λ∗.

B. Proof of Theorem 2

Taking the derivative of the objective function in (14) and
equating it to zero, the optimal P̃ must satisfy

µ+ P̃ − (1 + P̃ ) log(1 + P̃ ) = 0. (38)

For µ ≥ 1, (38) has only one real solution given
by (µ− 1)/(W0(exp(−1)(µ− 1))) − 1, where W0(·)
is the principal branch of the Lambert W function
[28]. For 0 < µ < 1, (38) has two real solutions,
namely, (µ− 1)/(W0(exp(−1)(µ− 1))) − 1 and
(µ− 1)/(W−1(exp(−1)(µ− 1))) − 1, where W−1 is
the lower branch of the Lambert W function. Since the
former solution is always larger than the latter solution [28],
we can always choose the larger value and obtain a higher rate
without violating any constraints. Moreover, the latter solution
is always negative [28]. Hence, the optimal transmit power
is given by (15). Now, noting that exp(W0(x)) = x/W0(x),
we get (µ− 1)/(W0(exp(−1)(µ− 1))) − 1 =
exp(1) exp (W0 (exp(−1)(µ− 1))) − 1 and we can obtain
T̃SB by substitution of the optimal P̃ in the objective function.

C. Proof of Lemma 3

It is sufficient to consider the following two events, which
when occur, the roles of the batteries can be potentially
switched: (A) when the charging battery becomes full, (B)
when the working battery becomes empty. In all other cases,
the roles of the batteries cannot be switched due to the cycle
constraint. When both of the above events occur simultane-
ously in a slot, trivially, it is optimal to switch the roles of
the batteries in the same slot. We now consider the scenario
when only one of the above events occurs. Without loss of
generality, we assume that Battery 1 and Battery 2 are charging
and working batteries, respectively, in the slot immediately
before the slots where the above events occur.

When only the event A occurs, let b2 > 0 be the amount of
energy available in Battery 2. In this case, we can take one of
the following two feasible actions: (A-I) wait for Battery 2 to
get empty and then switch the roles of the batteries, and (A-II)
switch Battery 1 to be the second working battery by drawing
a non-zero amount of energy from Battery 1, anytime before
Battery 2 gets empty. With A-I, we must suspend EH exactly
until Battery 2 becomes empty, whereas, with A-II, we must
suspend EH until any one of the batteries becomes empty. Note

that with A-II, we are allowed to discharge both the batteries
simultaneously at a higher power than the power at which
Battery 2 is discharged in A-I. However, such an operation is
suboptimal due to the concavity of the log(·) function. In A-II,
when only one of the batteries discharges at a time, the number
of slots required for any one of the working batteries to get
empty is greater than or equal to the number of slots required
for Battery 2 to get empty with action A-I, when transmission
power policies in A-I and A-II are identical.1 This is because,
in A-II, when Battery 1 is switched to be the second working
battery, at least one slot is used for drawing a non-zero amount
of energy from it. Hence, in the slot when either Battery 1
or Battery 2 become empty with A-II, the amount of energy
available in Battery 2 with A-I is greater than or equal to zero
and the amount of energy available in Battery 1 with A-I is
equal to that in the non-empty battery with A-II. Hence, in
the subsequent slots, the achievable throughput with A-I is at
least as much as that with A-II.

Similarly, when only the event B occurs, let b1 < B be
the amount of energy available in Battery 1. In this case,
we can take one of the following two feasible actions: B-I
wait for Battery 1 to get full and then switch the roles of the
batteries, and B-II switch Battery 2 to be the second charging
battery. With B-I, transmission will be suspended until Battery
1 gets full. On the other hand, with B-II, transmission will be
suspended until any one of the battery gets full, which will
happen strictly after Battery 1 gets full in B-I. In this case,
the throughput achieved with B-I will be at least as much as
that with B-II. This is because, with action B-I, we can always
wait until one of the batteries with action B-II gets full and
then start transmission.

Since the throughputs achieved by A-I and B-I are greater
than or equal to those in A-II and B-II, respectively, and
because there are no other feasible actions, the lemma follows.
Note that we have made use of the fact that with the Bernoulli
EH model in (1), the amount of energy harvested in an arrival
is such that it does not overflow from the charging battery if
it was not full in the slot before the energy arrival.

D. Optimal Offline Policy for the Dual Battery Case

In the offline policy, the number of slots required to com-
pletely charge the battery is known at the start of the current
renewal instant, i.e., the realization of L is known. Due to the
concavity of 1

2 log(1 +P ) in P , it is optimal to transmit with
a constant power of B/L over the next L slots after a renewal
instant. Hence, the distributions of the length of the renewal
period, C and L are identical. Thus, from (19), the optimal
long-term average throughput is given by

Toff =
p

r

∞∑
m=r

mqm
2

log

(
1 +

B

m

)
. (39)

1From the throughput perspective, transmitting with power x in slot 1
and y is slot 2 is identical to transmitting with power y in slot 1 and x in
slot 2 as the sum-throughput achieved in both the cases is equal to 1

2
log(1+

x)+ 1
2
log(1+y). Hence, any power allocation policy achievable with A-II is

also achievable with A-I, possibly with a different order of transmit powers.



It is easy to numerically compute the value of Toff .

E. Proof of Theorem 4

The Lagrangian of (26) is given by

H =−
∞∑
i=1

F̄i−1(r, p)
p

2r
log(1 + P̃i) + λ

( ∞∑
i=1

P̃i −B

)

−
∞∑
i=1

ωiP̃i,

where λ, ωi ≥ 0 are Lagrange multipliers. We now have the
following stationarity condition: For all i ∈ {1, 2, . . .},

∂H

∂P̃i
= − pF̄i−1(r, p)

2r ln 2(1 + P̃i)
+ λ− ωi = 0. (40)

Further, the complementary slackness condition, ωiP̃i = 0,
must be satisfied at the optimal solution. Hence, when P̃i > 0,
we must have, ωi = 0 and from (40), we get

P̃i =
pF̄i−1(r, p)

2rλ ln 2
− 1, i = 1, 2, . . . . (41)

The optimal λ can be found to be λ∗ =
(p
∑M
i=1 F̄i−1(r, p))/(2r ln 2(B +M)) from the total

energy constraint, where M is the last slot in which P̃i > 0.
From (41) and the expression for λ∗, we find that M is the
largest m that satisfies

∑m
i=1 F̄i−1(r, p) ≤ (B +m)Fm(r, p).

Now, noting that F̄i−1(r, p) = 1 for i ≤ r, we obtain (27).

F. Proof of Theorem 5

We prove the theorem along the lines in Proposition 3 of
[14] in the following.

TSNA =
E
[∑L

i=1
1
2 log(1 + P̃i)

]
E[L]

=
E
[∑L

i=1
1
2 log(1 + Bp

r

∑∞
m=i qm)

]
E[L]

,

(a)
≥

E
[∑L

i=1
1
2 log(1 + Bp

r ) +
∑L
i=1

1
2 log(

∑∞
m=i qm)

]
E[L]

,

=
1

2
log

(
1 +

Bp

r

)
+
p

r

∞∑
i=1

( ∞∑
m=i

qm

)
1

2
log

( ∞∑
m=i

qm

)
≥ 1

2
log(1 + µ)−G(r), (42)

where (a) is because log(1 + αx) ≥ log(1 + x) +
log(α) for 0 < α ≤ 1 and we define G(r) ,
maxp(−p/r)

∑∞
i=1 (

∑∞
m=i qm) 1

2 log (
∑∞
m=i qm).
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