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Abstract—The impulse response of wireless channels between
each transmit and receive antenna in a MIMO-OFDM system is
known to be approximately sparse, in the sense that it has a small
number of significant components relative to the channel delay
spread. Moreover, it is known that the channel impulse responses
in a MIMO-OFDM system are approximately group-sparse (a-
group-sparse), i.e., the time-lags of the significant paths of channel
impulse response between every transmit and receive antenna
pair coincide. Accordingly, we cast the problem of estimating the
a-group-sparse channels in the Bayesian framework, and propose
novel algorithms that employ the multiple measurement vectors
at the Nr receive antennas. First, we adapt the known MSBL
algorithm for pilot-based a-group-sparse channel estimation in
MIMO-OFDM systems. Subsequently, we generalize the MSBL
algorithm to obtain a novel J-MSBL algorithm for joint a-group-
sparse channel estimation and data detection. We illustrate the
efficacy of the proposed techniques in terms of the mean square
error and coded bit error rate performance using Monte Carlo
simulations.

Index Terms—Joint channel estimation and data detection,
Group sparsity, MIMO, OFDM, Sparse Bayesian learning, Ex-
pectation maximization.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) combined with

Orthogonal Frequency Division Multiplexing (OFDM) is a key

technology for several current and future broadband wireless

systems and standards. In a MIMO-OFDM system, multiple

antennas are used to exploit the diversity and multiplexing

advantages of MIMO, while OFDM provides resilience to

frequency-selective fading commonly encountered in a multi-

path wireless environment [1]. Typically, pilot-based wireless

channel estimation is employed at the MIMO-OFDM receiver

to accurately decode the transmitted data bits. However, pilot-

based methods in MIMO-OFDM necessitate the transmission

of known pilots symbols on a set of subcarriers from each

transmit antenna, resulting in a significant overhead on the bit

rate. In this paper, we propose novel MIMO-OFDM channel

estimation techniques using far fewer pilots compared to the

conventional methods [2], [3].

In complex baseband representation, the channel impulse

response between the nth
t , 0 ≤ nt ≤ Nt transmit antenna and
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the nth
r , 0 ≤ nr ≤ Nr receive antenna, denoted as h̃ntnr

[t], t ∈
R, can be modeled as a stationary tapped delay line filter in

the lag-domain:

h̃ntnr
[t] =

L̃∑

l=1

h̃ntnr,lδ[t− τl], (1)

where δ[t] is the Dirac delta function, h̃ntnr,l and τl represent
the attenuation and propagation delay on the nth

t transmitter

and the nth
r receiver path l, respectively, and L̃ is the number

of resolvable paths [4]. It is known that the wireless channel

models obtained using channel sounding experiments exhibit

approximate sparsity in the lag-domain as the communication

bandwidth increases, for e.g., due to the non-perfect low-

pass raised cosine filtering [5]. Based on these practical

considerations, we model the lag-domain filtered channel

impulse response as hntnr
[t] = gt[t] ∗ h̃ntnr

[t] ∗ gr[t], where
gt[t] and gr[t] represent the baseband transmit and receive

filters employed at the every transmit and receive antenna of

the MIMO-OFDM system, and ∗ represents the convolution

operation. Then, the corresponding discrete-time channel can

be represented as hntnr
(l) = hntnr

[(l − 1)T ], where T
is the baud interval. The overall channel is represented as

hntnr
= [hntnr

(1), hntnr
(2), . . . , hntnr

(L)]T . In addition, it

is known that the sample-spaced representation of h̃ntnr
[t]

between different transmit and receive antenna pairs are group-

sparse [6], [7], i.e., the locations of non-zero elements of

the sparse vectors coincide. Since we assume that gt[t] and
gr[t] are identical for every transmit and receive antenna, we

deduce that the locations of the significant components in

hntnr
also coincide across the entire MIMO-OFDM system,

and hence, we refer to {hntnr
}, 0 ≤ nt ≤ Nt, 0 ≤ nr ≤ Nr

as approximately group-sparse (a-group-sparse) channels.

In MIMO-OFDM systems, conventional techniques estimate

the channel frequency response corresponding to the pilot

subcarriers using frequency domain Least Squares (LS) or

Minimum Mean Square Error (MMSE) based methods [3],

and then, interpolate this to obtain the channel frequency

response corresponding to the data subcarriers [2]. However,

such schemes do not provide reliable estimates when the

number of pilots Pb is smaller than the length of the cyclic

prefix L (Pb < L). Further, lag-domain LS and MMSE [3]

require prior knowledge of the average multipath power profile978-1-4799-2361-8/14/$31.00 c© 2014 IEEE



measured at a particular location, also called as the Multipath

Intensity Profile (MIP) of the channel [8]. A natural question

arises: Is it possible to estimate the channel in the Bayesian

framework using fewer pilots compared to conventional meth-

ods, especially if the MIP is not known? In the following

subsection, we describe the system model, the a-group-sparse

channel estimation problem, and answer the above question in

the affirmative.

A. Problem Formulation and Contributions

In this subsection, we present the basic set-up of the coded

MIMO-OFDM system considered in this work. We formulate

the problem of a-group-sparse channel estimation, and briefly

describe the contributions of this work.

We assume that the transmissions between the Nt transmit

antennas and the Nr receive antennas take place through

OFDM frames, where every frame consists of K OFDM

symbols. Further, we consider the block-fading case, where

the channel coefficients remain fixed across the OFDM frame

duration and vary in an i.i.d. fashion from frame to frame.

The discrete-time MIMO-OFDM system with N subcarriers is

shown in Fig. 1, where the input bits {b} are first encoded and

interleaved into a new sequence of coded bits, {c}. Further, {c}
is mapped into an M -ary complex symbol sequence, which is

divided into Nt streams. At every transmit antenna, Pb pilots

are inserted in an OFDM frame. The pilot symbols along with

data symbols {c} are OFDM modulated and transmitted over

the multipath fading channel. After OFDM demodulation, the

signal received at the nth
r receive antenna is given by

ynr
=

Nt∑

nt=1

Xnt
Fhntnr

+ vnr
, nr = 1, . . . , Nr, (2)

where diagonal matrices Xnt
∈ CN×N consists of the pilot as

well as data and F ∈ C
N×L represents the matrix consisting

of the first L columns of the N × N DFT matrix. Further,

the multipath fading channel is denoted by hntnr
∈ CL×1,

as described in the previous subsection. Each component

of vnr
∈ CN×1 is an additive white circularly symmetric

Gaussian noise with probability distribution CN (0, σ2).
To recover the a-group-sparse channels, we cast (2) in a

Multiple Measurement Vector (MMV) framework [9], [10].

Here, the observations from the Nr receivers form the ob-

servation matrix, Y, which is related to the a-group-sparse

vectors in the channel matrix,H, through a common dictionary

Φ. Accordingly, the a-group-sparse formulation in the MMV

framework is as follows:

[y1, . . . ,yNr
]

︸ ︷︷ ︸

Y∈CN×Nr

= X(INt
⊗ F)

︸ ︷︷ ︸

Φ∈CN×LNt






h11 . . . h1Nr

...
...

hNt1 . . . hNtNr






︸ ︷︷ ︸

H∈CLNt×Nr

+ [v1,v2, . . . ,vNr
]

︸ ︷︷ ︸

V∈CN×Nr

, (3)

where the overall transmit data matrix X ∈ CN×NNt is given

by X , [X1,X2, . . . ,XNt
]. Considering the pilot subcarriers,

the MIMO-OFDM system model can be written as

Yp = ΦpH+V, (4)

where Yp = [yp,1, . . . ,yp,Nr
], where yp,nr

represents the

received signal of the nth
r receiver, sampled at the pilot sub-

carriers, Φp = Xp(INt
⊗ Fp), with the transmit data matrix

Xp , [Xp,1,Xp,2, . . . ,Xp,Nt
] consisting of diagonal matrices

Xp,nt
containing known pilot symbols along the diagonal, and

Fp is a submatrix of F consisting of the rows corresponding

to the pilot locations.
The goal of a MIMO-OFDM system is accurate data de-

tection at the output of the decoder as depicted in Fig. 1.

The bitwise Log Likelihood Ratios (LLRs) form the inputs

to the decoder, and in turn depend on the quality of channel

estimates [11]. Several papers in the MIMO channel estimation

literature have proposed group-sparse based formulation [6],

[7]. Compressed Sensing (CS) based sparse recovery tech-

niques for group-sparse vectors are capable of estimating the

a-group-sparse channels using Pb < L pilots, when the MIP

is not available [12]. These algorithms recover the magnitude

and the locations of the significant channel taps by leveraging

the a-group-sparse nature of the channel. However, none of

the papers in the existing literature address the a-group-sparse

channel estimation problem in the Bayesian framework.
In this work, we address the problem of a-group-sparse

MIMO-OFDM channel estimation in the Bayesian framework.

Specifically, we model the channel as hntnr
∼ CN (0,Γ) for

0 ≤ nt ≤ Nt and 0 ≤ nr ≤ Nr, where the hyperparameter

Γ = diag(γ(1), . . . , γ(L)) is common for all the channels,

i.e., if γ(l) → 0, then the corresponding hntnr
(l) → 0 for

0 ≤ nt ≤ Nt, 0 ≤ nr ≤ Nr [13], [14]. Among the known

Bayesian sparse recovery techniques [15], Sparse Bayesian

Learning (SBL) exhibits the monotonicity property by virtue

of the Expectation Maximization (EM) framework, and offers

guarantees such as convergence to the sparsest solution when

the noise variance is zero, and converging to a local minimum

which is a sparse vector, irrespective of the noise variance

[14]. This motivates us to employ SBL [14], [16] based algo-

rithms for recovery of the spatially uncorrelated a-group-sparse

channel in MIMO-OFDM systems. First, we propose a pilot-

based technique for a-group-sparse MIMO-OFDM channel

estimation using Pb < L, by utilizing the observations at

the pilot subcarriers. However, in our previous work, we have

demonstrated that incorporating the observations available at

the data subcarriers into the approximately sparse (a-sparse)

channel estimation using joint techniques enhance the quality

of channel estimates in a SISO-OFDM system [17]. In this

work, we explore such joint channel estimation and data

detection techniques in the context of MIMO-OFDM systems.

The contributions of this work are summarized as follows:

• We adapt the multiple response MSBL1 algorithm [9]

to the problem of pilot-based a-group-sparse channel

estimation modeled in (4).

1The abbreviation MSBL has not been expanded by the authors in [9].
However, in MSBL or M sparse Bayesian learning, M refers to the MMV
framework.
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• We propose a novel J-MSBL algorithm for the joint a-

group-sparse channel estimation and data detection prob-

lem modeled in (3).

SBL based algorithms employ the EM algorithm, in which

the E-step provides the posterior density of H, and hence,

the maximum aposteriori estimate of H, for a given update

of Γ. The novelty of the J-MSBL algorithm lies in the fact

that, in contrast to the M-step in MSBL, a joint maximization

over both Γ and the data X is performed, and their Maximum

Likelihood (ML) estimates are obtained. Incorporating the ML

estimate of the transmitted data X into the channel estimation

process enhances the quality of the channel estimates, in turn

leads to better coded Bit Error Rate (BER) performance,

compared to MSBL and conventional methods. Further, we

demonstrate a significant improvement in the Mean Square

Error (MSE) in the estimated a-group-sparse channels.

The rest of this paper is organized as follows. In Section II,

we state the MSBL algorithm in the context of pilot-based

a-sparse channel recovery for MIMO-OFDM systems. The

novel J-MSBL algorithm is derived Section III. The efficacy

of the proposed techniques are illustrated through simulation

results in Section IV. We provide some concluding remarks

in Section V.

Notation: Boldface small letters denote vectors and bold-

face capital letters denote matrices. The symbols (·)T and | · |
denote the transpose and determinant of a matrix, respectively.

Also, diag(a) denotes a diagonal matrix with entries on the

diagonal given by a. The pdf of the random variable X is

represented as p(x) and the random variables and deterministic

parameters in the pdf are separated using a semicolon. The

expectation with respect to a random variable X is denoted

as EX(·). The L×L identity matrix is represented as IL and

A ⊗ B denotes the Kronecker product of A and B. The ith

entry of a vector a and the (i, j)th entry of a matrix A are

represented as a(i) and A(i, j), respectively. Throughout the
paper, p as a subscript refers to pilots and (r) in the superscript

refers to the iteration number.

II. MSBL FOR PILOT-BASED CHANNEL ESTIMATION IN

MIMO-OFDM SYSTEMS

In this section, we adapt the MSBL algorithm for a-group-

sparse channel estimation in MIMO-OFDM systems.

Sparse Bayesian learning relies on a parameterized prior to

obtain sparse solutions in regression. The parametric form of

the MSBL prior can be written as

p(H; Γb) =

Nr∏

nr=1

p(hnr
; Γ), (5)

where hnr
represents the nth

r column of H, given by hnr
=

[hT
1nr

, . . . ,hT
Ntnr

]T , with a prior pdf of hnr
∼ CN (0,Γb),

Γb = INt
⊗ Γ which control the variances of elements in H.

Typically, the hyperparameters in γ = [γ(1), γ(2), . . . , γ(L)]
can be estimated using the type-II ML procedure [16], i.e., by

maximizing the marginalized pdf p(yp,nr
;γ) at the receiver as

γML(i) = argmax
γ(i)∈R+

p(yp,nr
;γ), 1 ≤ nr ≤ Nr, (6)

for 1 ≤ i ≤ L. Since the above problem cannot be solved

in closed form, iterative estimators such as the EM based2

MSBL algorithm [9] is employed. In order to use the MSBL

algorithm,H is treated as the hidden variable and the posterior

distribution of H is obtained in the E-step, and the ML

estimate of γ is obtained in the M-step. The steps of the

algorithm are given as

E-step : Q(γ|γ(r)) = EH|Yp;γ(r) [log p(Yp,H;γ)] (7)

M-step : γ(r+1)(i) = argmax
γ(i)∈R+

Q(γ|γ(r)), 1 ≤ i ≤ L, (8)

and these steps are iterated until convergence. The E-step

requires the posterior distribution p(H|Yp;γ
(r)). This can be

2Note that all the algorithms proposed in the paper use EM-based updates,
and hence, they have a convergence guarantee to a local optima, with the
likelihood increasing in each iteration [18].



obtained from the likelihood at the nth
r receiver given by

p(yp,nr
|hnr

) = (πσ2)−
Nr

2 exp

(

−
‖yp,nr

−Φphnr
‖22

σ2

)

.

(9)

Combining the likelihood and the prior distribution, the pos-

terior distribution of hnr
is given by p

(
hnr

|yp,nr
;γ(r)

)
∼

CN (µnr
,Σ), with mean and covariance given by

µnr
= σ−2ΣΦH

p yp,nr
Σ =

(
Φ

H
p Φp

σ2 + Γ
(r)
b

−1
)−1

(10)

where Γ
(r)
b is the estimate of the hyperparameters Γb in the

rth iteration. We represent the overall posterior mean of H as

M = [µ1 . . .µNr
]. The M-step given by (8) can be simplified

as

Q
(
γ|γ(r)

)
= EH|Yp;γ(r) [log p(Yp,H;γ)]

= EH|Yp;γ(r)

[

log
Nr∏

nr=1
p(yp,nr

|hnr
)

Nt∏

nt=1
p(hntnr

;γ)

]

= c′ − EH|Yp;γ(r)

[
∑Nr

nr=1

∑Nt

nt=1 h
H
ntnr

Γ−1hntnr

]

,(11)

where c′ is a constant independent of γ. By maximizing

Q
(
γ|γ(r)

)
w.r.t. γ(i), we obtain the update of γ(i) as follows:

γ(r+1)(i) =
1

NtNr

∑Nr

nr=1

∑Nt−1
nt=0

(
‖M(i+ ntL, nr)‖22

+ Σ(i+ ntL, i+ ntL)) . (12)

Note that, in the above equation, the a-group-sparse nature

of the channel results in the update of γ which is averaged

over the NtNr channels of the MIMO-OFDM system. For a

SISO-OFDM system, Nt = Nr = 1, the above expression is

simplifies to the one obtained in [19].

The MSBL requires initial estimates of the unknown pa-

rameters γ. In practice, it is found that an initial estimate for

Γ given by

Γ(0) = IL×L, (13)

is sufficient for the MSBL algorithm.

In the following section, we generalize the MSBL algorithm

to a J-MSBL algorithm where the unknown transmitted data

bits are incorporated into the iterations, resulting in a signifi-

cant performance improvement.

III. J-MSBL FOR JOINT A-GROUP-SPARSE CHANNEL

ESTIMATION AND DATA DETECTION

In this section, we derive the J-MSBL algorithm for joint

estimation of the a-group-sparse channels and the transmitted

data in a MIMO-OFDM system, by generalizing the MSBL

framework to the case where the measurement matrix is par-

tially unknown due to the presence of unknown data symbols.

To derive this algorithm, we consider H in (3) as the

hidden variable, and, in contrast to MSBL, we consider

[γ,X1, . . . ,XNt
] as parameters to be estimated. The E and

E-step: Q(γ,X|γ(r),X(r)) = EH|Y;γ(r),X(r)[log p(H,Y;γ,X)]

M-step: argmaxγ,XQ(γ,X|γ(r),X(r))

X(r+1) = argmaxXQ(X|X(r))γ
(r+1) = argmaxγ Q(γ|γ(r))

Fig. 2. The J-MSBL algorithm: E-step computes the expectation over the
posterior density of H. The joint maximization in the M-step simplifies into
two independent maximizations over γ and X. The dashed box indicates the
novelty in the J-MSBL approach.

the M-steps of the J-MSBL algorithm can be given as

E-step : Q(γ,X|γ(r),X(r)) = EH|Y;γ(r) [log p(Y,H;γ,X)]

M-step :
(

γ
(r+1),X(r+1)

)

= argmax
γ∈R

L×1
+ ,X:xi∈S

Q(γ,X|γ(r),X(r)), (14)

where xi is an element in X, and S is the constellation

from which the symbol is transmitted. The E-step of J-

MSBL consists of computing the posterior distribution as

p(H|Y;γ(r),X(r)) ∼ CN (M,Σ), where an element of the

matrix mean matrix M = [µ1, . . . ,µNr
], given by µnr

, and

the covariance matrix Σb are as follows:

µnr
= σ−2ΣbΦ

H
b ynrk Σb =

(

σ−2ΦH
b Φb + Γ(r)−1

)−1

(15)

where, for K OFDM symbols in a frame, Φb =
[ΦT

1 , . . . ,Φ
T
K ]T , and for 1 ≤ k ≤ K , Fb = 1Nt

⊗ F, Φk =

Fbblkdiag(X
(r)
1k , . . . ,X

(r)
Ntk

) and ynrk = [yT
1k, . . . ,y

T
Nrk

]T .
At the outset, solving the joint optimization problem

in the M-step in (14) appears to be an uphill task.

However, in (14), the joint optimization problem corre-

sponding to γ and the unknown data symbols X de-

couple as a sum of two independent functions of γ

and X, Q(X|X(r)) , EH|Y;γ(r),X(r) [log p(Y|H;X)] and

Q(γ|γ(r)) , EH|Y;γ(r),X(r) [log p(H;γ)], as shown in Fig.

2.3 Further, we see that Q(γ|γ(r)) of the MSBL algorithm

and the J-MSBL algorithm are identical, and hence, upon

optimizing Q(γ|γ(r)) with respect to γ(i), we obtain the

expression for γ(r+1)(i) as in the MSBL algorithm, given by

(8). The objective function to obtain X, i.e., Q(X|X(r)), can
be simplified as follows:

Q(X|X(r)) = EH|Y;γ(r),X(r)

[

log
Nr∏

nr=1
p(ynr

|hnr
;x)

]

= −EH|Y;γ(r),X(r)

[
∑Nr

nr=1 ‖ynrk −Φbhnr
‖22

]

. (16)

3Notice that (8) and (14) are different, since the former uses the measure-
ment matrix containing only the known pilot symbols, Φp, whereas the latter
uses measurement matrices which consist of pilot symbols along with the
estimated data, together given by Φ

(r).



and hence, the optimization problem for X is given by

X
(r+1)
1 (i, i), . . . , X

(r+1)
Nt

(i, i) = argmin
x1,...,xNt

∈S
C(i, i)

+

Nr∑

nr=1

∣
∣
∣
∣
∣
ynr

(i)−
Nt∑

nt=1

xnt
Fb(i, :)µnr

∣
∣
∣
∣
∣

2

, (17)

where i ∈ D, D is an index set consisting of the data subcarrier

locations,C = ΦΣΦH , Fb(i, :) is the i
th row of the Fb matrix,

µnr
and Σ are given in (15).

This algorithm requires initial estimates of the unknown

parameters γ andX. The initial estimate of Γ is taken to be the

identity matrix, as in the previous section. The initialization

of the (KNNt − PbNt) non-pilot data in turn requires an

initial channel estimate. Channel estimates using methods like

LS and MMSE cannot be used, as they require knowledge of

MIP. Hence, the initialization of X can be obtained from the

channel estimate obtained from a few iterations of the MSBL

algorithm from the Pb = P pilots (denoted as ĥMSBL). The ML

data detection problem for obtaining the initial data estimates

is given by

X
(0)
1 (i, i), . . . , X

(0)
Nt

(i, i) =

argmin
x1,...,xNt

∈S
|ynr

(i)−
Nt∑

nt=1

xnt
Fb(i, :)ĥMSBL|

2, (18)

for i ∈ D. In order to obtain the solution of (17) and (18), we

need to find the vector [x1, . . . , xNt
] that jointly minimizes

their right hand side. Although we can solve this problem

with moderate complexity for MIMO-OFDM systems with

Nt = 2, 4 [20], the complexity of this problem is high

for large values of Nt. In such scenarios, it is desirable

to use computationally efficient techniques such as sphere

decoding [10].

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed

pilot-based, and joint data and channel estimation algorithms

through Monte Carlo simulations. We consider the parameters

in the 3GPP/LTE broadband standard [20], [21]. We use a

3MHz spatially-multiplexed MIMO-OFDM system with 256
subcarriers, with a sampling frequency of fs = 3.84MHz,

resulting in an OFDM symbol duration of ∼ 83.3µs with a

Cyclic Prefix (CP) of 16.67µs (64 subcarriers). The length

of the a-sparse channel hntnr
is taken to be equal to the

length of the CP. Each OFDM frame consists of K = 7
OFDM symbols, which is also referred to as an OFDM slot

[21]. The data is transmitted using a rate 1/2 Turbo code

with QPSK modulation. For the Turbo decoding, we use the

publicly available software [22], which uses a maximum of

10 Turbo iterations.

A sample instantiation of the a-sparse channel, hntnr
, used

in the simulations and the filtered MIP are depicted in Fig. 3.

The figure captures the leakage effect due to finite bandwidth

sampling and practical filtering, which, in turn, leads to a-

group-sparse nature of the overall channel matrix H. To

generate the plot, we have used the Pedestrian B channel
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realization of the hntnr , along with the filtered MIP, i.e., the MIP when raised
cosine filters are employed at the transmitter and receiver. The plot also shows
the strong (> −30 dB) channel taps and filtered-MIP components, to illustrate
that the hntnr has very few strong components.

model [23] with Rayleigh fading, and raised cosine filtering

at the Nr receive and Nt transmit antennas, with a roll-off

factor of 0.5 [21]. At the sampling frequencies considered,

the number of significant channel taps are far fewer than the

weak channel taps in the filtered impulse response, as seen in

Fig. 3.
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We consider a block-fading channel. We use Pb = 44
pilot subcarriers per transmit antenna, uniformly placed in

each OFDM symbol [17]. We implement the MSBL and

the J-MSBL algorithms, and plot their MSE performance in

Fig. 4, using a convergence criteria for γ as ǫ = 10−8, i.e.,

‖γ(r)−γ
(r−1)‖2 ≤ ǫ for both the algorithms. We also restrict

the maximum number of iterations of both the algorithms to

200. We compare the MSE performance of the proposed algo-

rithms with the MIP-unaware Frequency Domain Interpolation



(FDI) technique, Simultaneous OMP (S-OMP) [24] using 50
pilots, the MIP-aware pilot-only technique [3], and the MIP-

aware joint data and channel estimation algorithm [10], which

we refer to as the MIP-aware EM-OFDM algorithm. Further,

we demonstrate the benefits of employing the a-group-sparse

formulation by plotting the MSE performance of SBL and J-

SBL for SISO-OFDM systems, as shown in [17].
From Fig. 4, we observe that the proposed algorithms

perform better than the MIP-unaware, non-iterative schemes

such as the Frequency Domain Interpolation (FDI) technique.

Among the iterative methods, MSBL and J-MSBL algorithms

are 3dB better than their SISO-OFDM counterparts and MSBL

performs 2dB better than the compressed sensing based S-

OMP algorithm. Further, the J-MSBL algorithm performs

more than an order of magnitude better than the MSBL

algorithm, while being within 3 dB from the MIP-aware EM-

OFDM algorithm. The J-MSBL jointly detects the (KNNt −
PbNt) data symbols along with the channel, resulting in a

significantly lower overall MSE.

0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

 

 

FDI

S−OMP

MSBL

J−MSBL

MIP−aware pilot−only

MIP−aware EM−OFDM

Genie

Fig. 5. BER performance of the proposed algorithms in a block-fading
channel, with Pb = 44 pilot subcarriers, as a function of Eb/N0.

The coded BER performance of the MIP-aware EM-OFDM,

J-MSBL and a genie receiver, i.e., a receiver with perfect

knowledge of the channel (labeled as Genie), is shown in

Fig. 5. We also compare the performance with MSBL, S-

OMP (Pb = 50) and MIP-aware pilot-only channel estimation

followed by data detection. The BER performance of MSBL

is superior to that of S-OMP by 2 dB. The BER performance

of the J-MSBL is superior that of the MSBL by 2dB, while
being less than 1dB away from the MIP-aware EM-OFDM

and the Genie receiver.
V. CONCLUSION

In this paper, we considered SBL based pilot-based and

joint channel estimation and data detection for block-fading a-

group-sparse channels in MIMO-OFDM systems. To estimate

such channels, we proposed the pilot-based MSBL algorithm

and generalized it to obtain the J-MSBL algorithm for joint

a-group-sparse channel estimation and data detection. Simula-

tion results showed that the proposed techniques successfully

exploit the a-group-sparse nature of the channel, leading to

an enhanced channel estimation and data detection capability

compared to the conventional and SISO-OFDM counterparts.
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