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Abstract—In this paper, we derive Hybrid, Bayesian and
Marginalized Cramér-Rao lower bounds (HCRB, BCRB and
MCRB) for the single and multiple measurement vector Sparse
Bayesian Learning (SBL) problem of estimating compressible
vectors and their prior distribution parameters. We assume the
unknown vector to be drawn from a compressible Student- prior
distribution. We derive CRBs that encompass the deterministic or
random nature of the unknown parameters of the prior distribu-
tion and the regression noise variance. We extend the MCRB to
the case where the compressible vector is distributed according
to a general compressible prior distribution, of which the gener-
alized Pareto distribution is a special case. We use the derived
bounds to uncover the relationship between the compressibility
and Mean Square Error (MSE) in the estimates. Further, we illus-
trate the tightness and utility of the bounds through simulations,
by comparing them with the MSE performance of two popular
SBL-based estimators. We find that the MCRB is generally the
tightest among the bounds derived and that the MSE performance
of the Expectation-Maximization (EM) algorithm coincides with
the MCRB for the compressible vector. We also illustrate the
dependence of the MSE performance of SBL based estimators on
the compressibility of the vector for several values of the number
of observations and at different signal powers.

Index Terms—Cramér-Rao lower bounds, expectation maxi-
mization, mean square error, sparse Bayesian learning.

I. INTRODUCTION

R ECENT results in the theory of compressed sensing have
generated immense interest in sparse vector estimation

problems, resulting in a multitude of successful practical signal
recovery algorithms. In several applications, such as the pro-
cessing of natural images, audio, and speech, signals are not ex-
actly sparse, but compressible, i.e., the magnitudes of the sorted
coefficients of the vector follow a power law decay [1]. In [2]
and [3], the authors show that random vectors drawn from a spe-
cial class of probability distribution functions (pdf) known as
compressible priors result in compressible vectors. Assuming
that the vector to be estimated (henceforth referred to as the un-
known vector) has a compressible prior distribution enables one
to formulate the compressible vector recovery problem in the
Bayesian framework, thus allowing the use of Sparse Bayesian
Learning (SBL) techniques [4]. In his seminal work, Tipping
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proposed an SBL algorithm for estimating the unknown vector,
based on the Expectation Maximization (EM) and McKay up-
dates [4]. Since these update rules are known to be slow, fast up-
date techniques are proposed in [5]. A duality based algorithm
for solving the SBL cost function is proposed in [6], and
based reweighting schemes are explored in [7]. Such algorithms
have been successfully employed for image/visual tracking [8],
neuro-imaging [9], [10], beamforming [11], and joint channel
estimation and data detection for OFDM systems [12].
Many of the aforementioned papers study the complexity,

convergence and support recovery properties of SBL based esti-
mators (e.g., [5], [6]). In [3], the general conditions required for
the so-called instance optimality of such estimators are derived.
However, it is not known whether these recovery algorithms are
optimal in terms of the Mean Square Error (MSE) in the esti-
mate or by howmuch their performance can be improved. In the
context of estimating sparse signals, Cramér-Rao lower bounds
on the MSE performance are derived in [13]–[15]. However, to
the best of our knowledge, none of the existing works provide
a lower bound on the MSE performance of compressible vector
estimation. Such bounds are necessary, as they provide absolute
yardsticks for comparative analysis of estimators, and may also
be used as a criterion for minimization of MSE in certain prob-
lems [16]. In this paper, we close this gap in theory by providing
Cramér-Rao type lower bounds on the MSE performance of es-
timators in the SBL framework.
As our starting point, we consider a linear Single Measure-

ment Vector (SMV) SBL model given by

(1)

where the observations and the measurement ma-
trix are known, and is the unknown
sparse/compressible vector to be estimated [17]. Each compo-
nent of the additive noise is white Gaussian, distributed
as , where the variance may be known or unknown.
The SMV-SBL model in (1) can be generalized to a linear Mul-
tiple Measurement Vector (MMV) SBL model given by

(2)

Here, represents the observation vectors, the
columns of are the sparse/compressible vec-
tors with a common underlying distribution, and each column
of is modeled similar to in (1)[18].
In typical compressible vector estimation problems, is

underdetermined , rendering the problem ill-posed.
Bayesian techniques circumvent this problem by using a prior
distribution on the compressible vector as a regularization, and
computing the corresponding posterior estimate. To incorpo-
rate a compressible prior in (1) and (2), SBL uses a two-stage
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Fig. 1. Graphical model for SBL: Two stage hierarchical model with the
compressible vector taking a conditional Gaussian distribution and the hyper-
parameters taking an Inverse Gamma distribution. The noise is modeled as
white Gaussian distributed, with the noise variance modeled as determin-
istic/random and known or unknown.

hierarchical model on the unknown vector, as shown in Fig. 1.
Here, , where the diagonal matrix contains the
hyperparameters as its diagonal elements.
Further, an Inverse Gamma (IG) hyperprior is assumed for
itself, because it leads to a Student- prior on the vector ,

which is known to be compressible [4].1 In scenarios where the
noise variance is unknown and random, an IG prior is used for
the distribution of the noise variance as well. For the system
model in (2), every compressible vector , i.e.,
the compressible vectors are governed by a common .
It is well known that the Cramér-Rao Lower Bound (CRLB)

provides a fundamental limit on the MSE performance of un-
biased estimators [19] for deterministic parameter estimation.
For the estimation problem in SBL, an analogous bound known
as the Bayesian Cramér-Rao Bound (BCRB) is used to obtain
lower bounds [20], by incorporating the prior distribution on the
unknown vector. If the unknown vector consists of both deter-
ministic and random components, Hybrid Cramér-Rao Bounds
(HCRB) are derived [21].
In SBL, the unknown vector estimation problem can also

be viewed as a problem involving nuisance parameters. Since
the assumed hyperpriors are conjugate to the Gaussian likeli-
hood, the marginalized distributions have a closed form and
the Marginalized Cramér-Rao Bounds (MCRB) [22] can be
derived. For example, in the SBL hyperparameter estimation
problem, itself can be considered a nuisance variable and
marginalized from the joint distribution, , to
obtain the log likelihood as

(3)

where [23].
The goal of this paper is to derive Cramér-Rao type lower

bounds on theMSE performance of estimators based on the SBL
framework. Our contributions are as follows:
• Under the assumption of known noise variance, we derive
the HCRB and the BCRB for the unknown vector

, as indicated in the left half of Fig. 2.
• When the noise variance is known, we marginalize nui-
sance variables ( or ) and derive the corresponding
MCRB, as indicated in the right half of Fig. 2. Since the
MCRB is a function of the parameters of the hyperprior
(and hence is an offline bound), it yields insights into
the relationship between the MSE performance of the
estimators and the compressibility of .

1The IG hyperprior is conjugate to the Gaussian pdf [4].

Fig. 2. Summary of the lower bounds derived in this work when noise variance
is assumed to be known.

Fig. 3. Different modeling assumptions and the corresponding bounds derived
in this work when noise variance is assumed to be unknown.

• In the unknown noise variance case, we derive the
BCRB, HCRB and MCRB for the unknown vector

, as indicated in Fig. 3.
• We derive the MCRB for a general parametric form of the
compressible prior [3] and deduce lower bounds for two of
the well-known compressible priors, namely, the Student-
and generalized double Pareto distributions.

• Similar to the SMV-SBL case, we derive the BCRB,
HCRB and MCRB for the MMV-SBL model in (2).

Through numerical simulations, we show that the MCRB on
the compressible vector is the tightest lower bound, and that
the MSE performance of the EM algorithm achieves this bound
at high SNR and as . The techniques used to derive
the bounds can be extended to handle different compressible
prior pdfs used in literature [2]. These results provide a conve-
nient and easy-to-compute benchmark for comparing the per-
formance of the existing estimators, and in some cases, for es-
tablishing their optimality in terms of the MSE performance.
The rest of this paper is organized as follows. In Section II,

we provide the basic definitions and describe the problem set up.
In Sections III and IV, we derive the lower bounds for the cases
shown in Figs. 2 and 3, respectively. The bounds are extended
to the MMV-SBL signal model in Section V. The efficacy of
the lower bounds is graphically illustrated through simulation
results in Section VI. We provide some concluding remarks in
Section VII. In the Appendix, we provide proofs for the Propo-
sitions and Theorems stated in the paper.
Notation: In the sequel, boldface small letters denote vectors

and boldface capital letters denote matrices. The symbols
and denote the transpose and determinant of a matrix, respec-
tively. The empty set is represented by , and denotes the
Gamma function. The function represents the pdf of the
random variable evaluated at its realization . Also,
stands for a diagonal matrix with entries on the diagonal given
by the vector . The symbol is the gradient with respect to
(w.r.t.) the vector . The expectation w.r.t. a random variable
is denoted as . Also, denotes that is

positive semidefinite, and is the Kronecker product of
the two matrices and .
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II. PRELIMINARIES

As a precursor to the sections that follow, we define the MSE
matrix and the Fisher Information Matrix (FIM) [19], and state
the assumptions under which we derive the lower bounds in
this paper. Consider a general estimation problem where the
unknown vector can be split into sub-vectors

, where consists of random parameters dis-
tributed according to a known pdf, and consists of
deterministic parameters. Let denote the estimator of as
a function of the observations . The MSE matrix is defined
as

(4)

where denotes the random parameters to be estimated,
whose realization is given by . The first step in obtaining
Cramér-Rao type lower bounds is to derive the FIM [19].
Typically, is expressed in terms of the individual blocks of
submatrices, where the block is given by

(5)

In this paper, we use the notation to represent the FIM under
the different modeling assumptions. For example, when
and , represents a Hybrid Information Matrix (HIM).
When and , represents a Bayesian Information
matrix (BIM). Assuming that the MSE matrix exists and the
FIM is non-singular, a lower bound on the MSE matrix is
given by the inverse of the FIM:

(6)

It is easy to verify that the underlying pdfs considered in the SBL
model satisfy the regularity conditions required for computing
the FIM (see Sec. 5.2.3 in [22]).
We conclude this section by making one useful observation

about the FIM in the SBL problem. An assumption in the
SMV-SBL framework is that and are independent of each
other (for the MMV-SBL model, and are independent).
This assumption is reflected in the graphical model in Fig. 1,
where the compressible vector (and its attribute ) and the
noise component (and its attribute ) are on unconnected
branches. Due to this, a submatrix of the FIM is of the form

(7)

where there are no terms in which both and are jointly
present. Hence, the corresponding terms in the abovementioned
submatrix are always zero. This is formally stated in the fol-
lowing Lemma.
Lemma 1: When and , the blockmatrix

of the FIM given by (5) simplifies to , i.e., to an
all zero vector.

III. SMV-SBL: LOWER BOUNDS WHEN IS KNOWN

In this section, we derive lower bounds for the system model
in (1) for the scenarios in Fig. 2, where the unknown vector is

. We examine different modeling assumptions on
and derive the corresponding lower bounds.

A. Bounds From the Joint Pdf

1) HCRB for : In this subsection, we consider
the unknown variables as a hybrid of a deterministic vector
and a random vector distributed according to a Gaussian dis-
tribution parameterized by . Using the assumptions and nota-
tion in the previous section, we obtain the following proposition.
Proposition 1: For the signal model in (1), the HCRB on the

MSE matrix of the unknown vector with the
parameterized distribution of the compressible signal given by

, and with modeled as unknown and deterministic, is
given by , where

(8)

Proof: See Appendix A.
Note that the lower bound on the estimate of depends on

the prior information through the diagonal matrix . In the
SBL problem, the realization of the random parameter has
to be used to compute the bound above, and hence, it is re-
ferred to as an online bound. Also, the lower bound on the

MSE matrix of is , which is the
same as the lower bound on the error covariance of the Baye’s
vector estimator for a linear model (see Theorems 10.2 and
10.3 in [19]), and is achievable by the MMSE estimator when

is known.
2) BCRB for : For deriving the BCRB, a hy-

perprior distribution is considered on , and the resulting is
viewed as being drawn from a compressible prior distribution.
The most commonly used hyperprior distribution in the litera-
ture is the IG distribution [4], where are
distributed as , given by

(9)

where . Using the definitions and notation
in the previous section, we state the following proposition.
Proposition 2: For the signal model in (1), the BCRB on the

MSE matrix of the unknown random vector ,
where the conditional distribution of the compressible signal

is , and the hyperprior distribution on is
, is given by , where

(10)

Proof: See Appendix B.
It can be seen from that the lower bound on the MSE

of is a function of the parameters of the IG prior on ,
i.e., a function of and , and it can be computed without the
knowledge of realization of . Thus, it is an offline bound.
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B. Bounds From Marginalized Distributions

1) MCRB for : Here, we derive the MCRB for
, where is an unknown deterministic parameter. This

requires the marginalized distribution , which is ob-
tained by considering as a nuisance variable and marginal-
izing it out of the joint distribution , to obtain
(3). Since is a deterministic parameter, the pdf
must satisfy the regularity condition in [19]. We have the fol-
lowing theorem.
Theorem 1: For the signal model in (1), the log likelihood

function satisfies the regularity conditions in
[19]. Further, the MCRB on theMSEmatrix of the unknown
deterministic vector is given by , where
the element of is given by

(11)

for , where is the column of , and
, as defined earlier.

Proof: See Appendix C.
To intuitively understand (11), we consider a special case of

, and use the Woodbury formula to simplify
, to obtain the entry of the matrix as

(12)

Hence, the error in is bounded as . As

, the bound reduces to , which is the same as the
lower bound on the estimate of obtained as the lower-right
submatrix in (8). For finite , the MCRB is tighter than the
HCRB.
2) MCRB for : In this subsection, we assume a hyper-

prior on , which leads to a joint distribution of and , from
which can be marginalized. Further, assuming specific forms
for the hyperprior distribution can lead to a compressible prior
on . For example, assuming an IG hyperprior on leads to an
with a Student- distribution. Sampling from a Student- dis-

tribution with parameters and results in a -compressible
[2]. The Student- prior is given by

(13)
where , represents the number of
degrees of freedom and represents the inverse variance of the
distribution. Using the notation developed so far, we state the
following theorem.
Theorem 2: For the signal model in (1), the MCRB on the

MSE matrix of the unknown compressible random vector
distributed as (13), is given by , where

(14)

Proof: See Appendix D.
We see that the bound derived depends on the parameters of

the Student- pdf. From [3], the prior is “somewhat” compress-

ible for , and (14) is nonnegative and bounded for
, i.e., the bound ismeaningful in the range of used in

practice. Note that, by choosing to be large (or the variance of
to be small), the bound is dominated by the prior information,

rather than the information from the observations, as expected
in Bayesian bounds [19].
It is conjectured in [22] that, in general, the MCRB is tighter

than the BCRB. Analytically comparing the MCRB (14) with
the BCRB (8), we see that for the SBL problem of estimating
a compressible vector, the MCRB is indeed tighter than the
BCRB, since

The techniques used to derive the bounds in this subsection
can be applied to any family of compressible distributions. In
[3], the authors propose a parametric form of the Generalized
Compressible Prior (GCP) and prove that such a prior is com-
pressible for certain values of . In the following subsection, we
derive the MCRB for the GCP.

C. General Marginalized Bounds

In this subsection, we derive MCRBs for the parametric form
of the GCP. The GCP encompasses the double Pareto shrinkage
type prior [24] and the Student- prior (13) as its special cases.
We consider the GCP on as follows

(15)

where , and the normalizing con-

stant . When , (15) reduces to

the Student- prior in (13), and when , it reduces to a
generalized double Pareto shrinkage prior [24], [25]. Also, the
expression for the GCP in [3] can be obtained from (15) by set-
ting , and defining . The following theorem
provides the MCRB for the GCP.
Theorem 3: For the signal model in (1), the MCRB on the

MSE matrix of the unknown random vector , where
is distributed as the GCP in (15), is given by ,

where

(16)

where .

Proof: See Appendix E.
It is straightforward to verify that for , (16) reduces

to the MCRB derived in (14) for the Student- distribution. For
, the inverse of the MCRB can be reduced to

(17)

In Fig. 4, we plot the expression in (16). We observe that,
in general, the bounds predict an increase in MSE for higher
values of . Also, for given value of , the lower bounds at
different signal to noise ratios (SNRs) converge as the value
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Fig. 4. Behavior of the MCRB (16) for the parametric form of the GCP, as a
function of , , and noise variance .

of increases, indicating that increasing renders the bound
insensitive to the SNR. The lower bounds also predict a smaller
value of MSE for a lower value of .
Thus far, we have presented the lower bounds on the MSE in

estimating the unknown parameters of the SBL problem when
the noise variance is known. In the next section, we extend the
results to the case of unknown noise variance.

IV. SMV-SBL: LOWER BOUNDS WHEN IS UNKNOWN

Let us denote the unknown noise variance as . In the
Bayesian formulation, the noise variance is associated with a
prior, and since the IG prior is conjugate to the Gaussian likeli-
hood , it is assumed that [4], i.e.,

is distributed as

(18)
Under this assumption, one can marginalize the unknown noise
variance and obtain the likelihood as

(19)

which is a multivariate Student- distribution. It turns out that
the straightforward approach of using the above multivariate
likelihood to directly compute lower bounds for the various
cases given in the previous section is analytically intractable,
and that the lower bounds cannot be computed in closed form.
Hence, we compute lower bounds from the joint pdf, i.e., we
derive the HCRB and BCRBs for the unknown vector

with the MSEmatrix defined by (4).2 Using the
assumptions and notation from the previous sections, we obtain
the following proposition.

2We use the subscript to indicate that the error matrices and bounds are
obtained for the case of unknown noise variance.

Proposition 3: For the signal model in (1), the HCRB on the
MSE matrix of the unknown vector , where

, with the distribution of the compressible vector
given by , where is modeled as a deterministic or

as a random parameter distributed as , and
is modeled as a deterministic parameter, is given by ,
where

(20)

In the above expression, with a slight abuse of notation,
is the FIM given by (8) when is unknown deterministic and
by (10) when is random.

Proof: See Appendix F.
The lower bound on the estimation of matches with known

lower bounds on noise variance estimation (see Sec. 3.5 in [19]).
One disadvantage of such a bound on is that the knowl-
edge of the noise variance is essential to compute the bound,
and hence, it cannot be computed offline. Instead, assigning a
hyperprior to would result in a lower bound that only depends
on the parameters of the hyperprior, which are assumed to be
known, allowing the bound to be computed offline. We state the
following proposition in this context.
Proposition 4: For the signal model in (1), the HCRB on the

MSE matrix of the unknown vector , where
, with the distribution of the vector given

by , where is modeled as a deterministic parameter
or as a random parameter distributed as , and
with the random parameter distributed as , is given
by , where

(21)

In (21), is the FIM given in (8) when is unknown de-
terministic and by (10) when is random.

Proof: See Appendix G.
In SBL problems, a non-informative prior on is typically

preferred, i.e., the distribution of the noise variance is modeled
to be as flat as possible. In [4], it was observed that a non-infor-
mative prior is obtained when . However, as ,
the bound in (21) is indeterminate. In Section VI, we illustrate
the performance of the lower bound in (21) for practical values
of and .

A. Marginalized Bounds

In this subsection, we obtain lower bounds on the MSE of the
estimator , in the presence of nuisance variables in the joint
distribution. To start with, we consider the marginalized distri-
butions of and , i.e., where both, and are
deterministic variables. Since the unknowns are deterministic,
the regularity condition has to be satisfied for . We
state the following theorem.
Theorem 4: For the signal model in (1), the log likelihood

function satisfies the regularity condition
[19]. Further, the MCRB on theMSEmatrix of the unknown
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TABLE I
CRAMÉR-RAO TYPE BOUNDS FOR THE MMV-SBL CASE

deterministic vector is given by ,
where

(22)

where the entry of the matrix is given by

, and .

Further,
.

Proof: See Appendix H.
Remark: From the graphical model in Fig. 1, it can be seen

that the branches consisting of and are independent condi-
tioned on . However, when is marginalized, the nodes and
are connected, and hence, Lemma 1 is no longer valid. Due

to this, the lower bound on depends on and vice versa, i.e.,
and depend on both and through

.
Thus far, we have presented several bounds for the MSE

performance of the estimators , and in
the SMV-SBL framework. In the next section, we derive
Cramér-Rao type lower bounds for the MMV-SBL signal
model.

V. LOWER BOUNDS FOR THE MMV-SBL

In this section, we provide Cramér-Rao type lower
bounds for the estimation of unknown parameters in the
MMV-SBL model given in (2). We consider the estimation
of the compressible vector from the vector of observa-
tions , which contain the stacked columns of and ,
respectively. In the MMV-SBL model, each column of
is distributed as , for , and
the likelihood is given by , where

and . The modeling
assumptions on and are the same as in the SMV-SBL case,
given by (9) and (18), respectively [18].
Using the notation developed in Section II, we derive the

bounds for the MMV SBL case similar to the SMV-SBL cases
considered in Sections III and IV. Since the derivation of these
bounds follow along the same lines as in the previous sections,
we simply state results in Table I.
We see that the lower bounds on and are reduced

by a factor of compared to the SMV case, which is intuitively

Fig. 5. Decay profile of the sorted magnitudes of i.i.d. samples drawn from a
Student- distribution.

satisfying. It turns out that it is not possible to obtain the MCRB
on in the MMV-SBL setting, since closed form expressions
for the FIM are not available.
In the next section, we consider two popular algorithms for

SBL and graphically illustrate the utility of the lower bounds.

VI. SIMULATIONS AND DISCUSSION

The vector estimation problem in the SBL framework typ-
ically involves the joint estimation of the hyperparameter and
the unknown compressible vector . Since the hyperparameter
estimation problem cannot be solved in closed form, iterative
estimators are employed [4]. In this section, we consider the it-
erative updates based on the EM algorithm first proposed in [4].
We also consider the algorithm proposed in [6] based on the Au-
tomatic Relevance Determination (ARD) framework. We plot
the MSE performance in estimating , and with the linear
model in (1) and (2), for the EM algorithm, labeled , and the
ARD based Reweighted algorithm, labeled . We
compare the performance of the estimators against the derived
lower bounds.
We simulate the lower bounds for a random underdetermined

measurement matrix , whose entries are i.i.d. and
standard Bernoulli distributed. A compressible
signal of dimension is generated by sampling from a Stu-
dent- distribution with the value of ranging from 2.01 to
2.05, which is the range in which the signal is “somewhat”
compressible, for high dimensional signals [3]. Fig. 5 shows
the decay profile of the sorted magnitudes of i.i.d.
samples drawn from a Student- distribution for different and
with the value of fixed at .

A. Lower Bounds on the MSE Performance of

In this subsection, we compare the MSE performance of the
ARD-SBL estimator and the EM based estimator . Fig. 6
depicts the MSE performance of for different SNRs and

and 1000, with . We compare it with the
HCRB/BCRB derived in (8), which is obtained by assuming the
knowledge of the realization of the hyperparameters . We see
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Fig. 6. The MSE performance of and the corresponding MCRB and
BCRB, as a function of SNR, with .

Fig. 7. The MSE performance of and the corresponding MCRB and
BCRB, as a function of , with .

that the MCRB derived in (14) is a tight lower bound on the
MSE performance at high SNR and .
Fig. 7 shows the comparative MSE performance of the

ARD-SBL estimator and EM based estimator as a function
of varying degrees of freedom , at an SNR of 40 dB and

and 750. As expected, the MSE performance of
the algorithms is better at low values of since the signal is
more compressible, and the MCRB and BCRB also reflect this
behavior. The MCRB is a tight lower bound, especially for
high values of . Fig. 8 shows the MSE performance of the
ARD-SBL estimator and EM based estimator as a function of
, at an SNR of 40 dB and for two different values of . The

MSE performance of the EM algorithm converges to that of the
MCRB at higher .

B. Lower Bounds on the MSE Performance of

In this subsection, we compare the different lower bounds for
the MSE of the estimator for the SMV and MMV-SBL
system model. Fig. 9 shows the MSE performance of as a
function of SNR and , when is a random parameter,

and . In this case, it turns out that there is a large

Fig. 8. The MSE performance of and the corresponding MCRB and
BCRB, as a function of , with .

Fig. 9. TheMSE performance of and the correspondingHCRB, as a func-
tion of SNR, with .

gap between the performance of the EM based estimate and the
lower bound.
When is deterministic, we first note that the EM based ML

estimator for is asymptotically optimal and the lower bounds
are practical for large data samples [19]. The results are listed
in Table II. We see that for and , the
MCRB and BCRB are tight lower bounds, with MCRB being
marginally tighter than the BCRB. However, as increases,
the gap between the MSE and the lower bounds increases.

C. Lower Bounds on the MSE Performance of

In Fig. 10, we compare the lower bounds on the MSE of the
estimator in the SMV and MMV-SBL settings, for dif-
ferent values of and . Here, is sampled from the IG pdf
(18), with parameters and .
When is deterministic, the EM based ML estimator for

is asymptotically optimal and the lower bounds are practical
for large data samples [19]. Table III lists the MSE values of

, the corresponding HCRB andMCRB for deterministic but
unknown noise variance, while the true noise variance is fixed
at . We see that for and , the MCRB
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TABLE II
VALUES OF THE MSE OF THE ESTIMATOR , THE MCRB AND THE BCRB,

FOR AS A FUNCTION OF SNR, FOR .

Fig. 10. The MSE performance of and its HCRB, as a function of .

TABLE III
VALUES OF THE MSE OF THE ESTIMATOR , THE MCRB AND

THE HCRB FOR , AS A FUNCTION OF .

is marginally tighter than the HCRB. However, when the noise
variance is random, we see from Fig. 10 that there is a large gap
between the MSE performance and the HCRB.

VII. CONCLUSION

In this work, we derived Cramér-Rao type lower bounds
on the MSE, namely, the HCRB, BCRB and MCRB, for
the SMV-SBL and the MMV-SBL problem of estimating
compressible signals. We used a hierarchical model for the
compressible priors to obtain the bounds under various as-
sumptions on the unknown parameters. The bounds derived
by assuming a hyperprior distribution on the hyperparameters
themselves provided key insights into the MSE performance of
SBL and the values of the parameters that govern these hyper-
priors. We derived the MCRB for the generalized compressible
prior distribution, of which the Student- and Generalized
Pareto prior distribution are special cases. We showed that
the MCRB is tighter than the BCRB. We compared the lower
bounds with the MSE performance of the ARD-SBL and the

EM algorithm using Monte Carlo simulations. The numerical
results illustrated the near-optimality of EM based updates for
SBL, which makes it attractive for practical implementations.

APPENDIX

Proof of Proposition 1: Using the graphical model of Fig. 1
in (5),

(23)

Similarly, it is straightforward to show that

.
Since are zero mean random variables,

Now, since , we get,

if

if
(24)

Taking on both sides of the above equation and noting
that , we obtain

(25)

This completes the proof.
Proof of Proposition 2: Using the graphical model of Fig. 1

in (5),

(26)

(27)

The expression for w.r.t. is given by,

(28)

(29)
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since . Hence, the overall bound is
given by

(30)

Using the graphical model of Fig. 1 in (5), for ,
is defined as

(31)

Since the expressions for and are
separable and symmetric w.r.t. , the off-diagonal terms of

are zero, and it is sufficient to evaluate the diagonal

terms . Differentiating
the expression w.r.t. twice,

(32)

The expression for is given by

(33)

where . After some manipulation, it
can be shown that the above integral reduces to

(34)

Thus, the component of is given by

(35)

and . Since ,
. This completes the proof.

Proof of Theorem 1: To establish the regularity condition,
the first order derivative of the log likelihood is
required. This, in turn, requires the evaluation of and

. Using the chain rule for differentiation [26], we have

(36)

Here, we have used the identity [26] and
results from vector calculus [26] to obtain , where

is the column of . Similarly, the derivative of
can be obtained as

(37)

and hence,

(38)
Taking on both the sides of the above equation,

(39)

since . Hence, the pdf satisfies the required
regularity constraint.
Now, the MCRB for is obtained by computing the

second derivative of the log likelihood, as follows:

(40)

Taking on both the sides of the above expression,

(41)
as stated in (11). This completes the proof.

Proof of Theorem 2: The proof follows from the proof for
Theorem 3 in Appendix E by substituting .

Proof of Theorem 3: TheMCRB for estimation of the com-
pressible random vector with is given by

(42)

The first term above is given by

(43)

Note that is not differentiable if any of its components
. However, the measure of is zero since the dis-

tribution is continuous, and hence, this condition can be safely
ignored. Now,

if

if
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First, we consider the case of . Differentiating the above
w.r.t. again, we obtain

(44)

Taking on both sides of the above equation, we get

(45)

The above can be simplified using the transformation

and using , we get

(46)

For the case of also, the expression reduces to the inte-
gral given in (45). Hence, we have

(47)

Substituting the expression for in the above, we get

(48)

Combining the expression above and (43), we obtain theMCRB
in (17).

Proof of Proposition 3: In this case, we define
and hence, . In order to compute the

HCRB, we need to find , and . We have
,

where . Using (5), the submatrix ,
i.e., the same as computed earlier in (8) when is unknown
deterministic and by (10) when is random. Hence, we focus
on the block matrices that occur due to the additional parameter
. First, is computed as in Sec. 3.6 in [19], from which,

.

From Lemma 1, it directly follows that .
Using (5), we compute as follows:

(49)

Since , . This
completes the proof.

Proof of Proposition 4: In this case, we define
and . In order to compute the HCRB, we need
to find , and . Using (5), the expression
for is the same as computed earlier in (8) when is
unknown deterministic and by (10) when is random. Since
is random, the expectation has to be taken over the distribution
of also, and hence,

(50)

The above expectation is evaluated as

(51)

To find the other components of the matrix, we compute
, which consists of and

. From Lemma 1, . Using the defini-
tion of , from (49) and since is not a function
of , we see that . Thus, we
obtain the FIM given by (21).

Proof of Theorem 4: First, we show that the log likeli-
hood in (3) satisfies the regularity condi-
tion w.r.t. . Differentiating the log likelihood w.r.t. and taking

on both the sides of the equation,

(52)

(53)

Hence, the regularity condition is satisfied. From (41), we have

. To obtain , we differentiate
(52) w.r.t. to obtain

(54)
Taking on both sides of the above equation,

(55)
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The vector is found by differentiating (38) w.r.t. and
taking the negative expectation:

(56)

Since , the term of
. The MCRB can now be obtained by com-

bining the expressions in (41), (55) and (56); this completes the
proof.
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