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Distributed Co-Phasing with
Autonomous Constellation Selection

Ribhu Chopra, Ramesh Annavajjala, and Chandra R. Murthy

Abstract—In this paper, we consider a distributed co-
phasing (DCP) technique where multiple sensor nodes (SNs)
communicating their observations to a fusion center (FC) need
to transmit different classes of data requiring different levels of
error protection. To achieve this, we propose a variant of the
DCP technique with autonomous constellation selection at the
different SNs. In the first stage of this two stage time division
duplexed (TDD) co-phasing scheme, the SNs obtain estimates of
the channels to the FC using pilot symbols transmitted by the
latter. Following this, the SNs simultaneously transmit their data
symbols pre-rotated according to the estimated channel phases
to combine coherently at the FC. The symbols transmitted by
different SNs are drawn from different constellations selected
based on the estimated instantaneous channel gains. We show
that this scheme is equivalent to transmitting symbols from hi-
erarchical constellations. Based on the properties of hierarchical
constellations, we develop recursive expressions for the BER of
the proposed system. Following this, we use the properties of
the effective channel coefficients to show that it is possible to
recover the transmitted data bits from the signal received at the
FC blindly, without requiring explicit pilot symbols to be sent by
the power starved SNs. We develop three blind channel estimation
and data detection schemes for the presented system model.
Using Monte Carlo simulations, we show that the proposed blind
channel estimation algorithm achieves a probability of error
performance close to that with genie aided perfect CSI at the FC,
while using only a moderate number of unknown data symbols
for channel estimation.

Index Terms—Distributed co-phasing, wireless sensor net-
works, data fusion, hierarchical constellations, adaptive Mod-
ulation, blind channel estimation

I. INTRODUCTION

Wireless sensor networks (WSNs) are seen as a major
enabling technology for the internet of things (IoT) [1], [2].
A WSN consists of a set of low power sensor nodes (SNs)
observing a physical phenomenon and communicating their
observations to a fusion center (FC) [3]. The communication
of data from the SNs to the FC, known as data fusion, is
a challenging problem due to constraints on the processing
capabilities of SNs [3], [4] and diverse requirements on the
reliability of the parameters measured by the SNs. Distributed
co-phasing (DCP), based on the idea of distributed transmit
beamforming (DTB), is a class of physical layer techniques
that can be used for data fusion in WSNs [5]. The underly-
ing idea behind DCP is to use the transmitting nodes as a
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distributed antenna array to achieve coherent combining gain
as well as diversity gain at the FC. DCP systems employ
fixed power transmission from the nodes, and can therefore
function with low-cost power amplifiers. The feasibility of
DCP in practical implementations is well established, and so is
its robustness to channel estimation errors [6], [7]. Moreover,
when the signals coherently combine at the intended receiver,
they naturally combine incoherently at any unintended loca-
tion, thereby making DCP inherently secure.

DCP is a two stage communication technique. During the
first stage, known pilot symbols are transmitted by the FC
to the SNs. These pilots are used by the SNs to estimate
their respective channels to the FC. The training of the
SNs by the FC is desirable due to multiple reasons. Firstly,
it shifts the load of the power intensive training operation
from the battery powered SNs to the FC which is generally
connected to the mains. Secondly, this significantly reduces
the training overhead in comparison to forward link training,
that involves each of the SNs training the FC in orthogonal
training durations. In the second stage, the SNs pre-rotate their
data to compensate for the estimated channel phase and then
synchronously transmit. Such a transmission scheme works
when the channel is quasi static and reciprocal [6], [8]. The
pre-rotation of data by the SNs ensures coherent combining of
different transmitted signals at the FC, resulting in coherent
combining gains and diversity gains. However, in its current
form, DCP provides fixed levels of error protection to different
bit streams [9]; whereas it may be desired to provide different
classes of bits flexible levels of error protection. For example,
it may be necessary to provide the bits corresponding to alarms
and interrupts with a higher order of protection in comparison
to the bits corresponding to detailed system information. In
this work, our main focus is to use the channel gain estimates
at different SNs in conjunction with adaptive constellation
selection (ACS) to achieve unequal error protection (UEP) for
different classes of bits in a DCP system. Further, we are inter-
ested in analyzing the amount of service level differentiation
that such an approach can offer, and its implication on the
design of data fusion schemes in WSNs.

A. Related Work

The idea of UEP of two or more classes of data was
first proposed in the pioneering work of Cover on broadcast
channels [10]. In this scheme, the more basic or coarse data is
provided a higher level of protection and is recoverable by a
larger number of receivers than the less important or detailed
data. It has since been shown that UEP can practically be
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achieved in conventional point to point communication sys-
tems by employing hierarchical modulation at the transmitter
[11], [12]. This was studied for systems supporting different
classes of traffic, each with a different quality of service (QoS)
requirement [13], such as multimedia services [14], [15] and
digital television broadcasting [11]. The recursive technique
for BER calculation in QAM systems developed in [16] was
extended in [17] for BER calculations in broadcast based hi-
erarchical modulation systems. The performance improvement
offered by hierarchical constellations over conventional non-
hierarchical constellations with and without layered source
encoding is examined in [18]. In [19], the authors generalize
the conventional two layer UEP using hierarchical modulation
to a J layer UEP.

In this work, our main aim is to provide unequal error
protection to different classes of bits being communicated
by the SNs via DTB. It was shown in [4] and [6] that it is
possible for multiple SNs to transmit coherently to an FC. The
feasibility of perfect carrier synchronization among different
SNs was demonstrated in [6], [20]. The performance loss in
DTB schemes due to imperfections in the channel estimates is
quantified in [21]. The applicability of DTB for systems with
multiple transmit and receive antennas has also been discussed
in [9], [22]–[24].

The performance of various DTB schemes viz. DCP, max-
imal ratio transmission, censored transmission and truncated
channel inversion for constant modulus constellations is com-
pared in [7]. Following this, it is shown in [25] that the
received data symbols can be used for blind channel esti-
mation. This allows DCP based systems to use non constant
modulus constellations, thus increasing the achievable spectral
efficiency per channel use. The single antenna FC DCP
framework has been extended to a multi-antenna FC in [9],
where it is shown that the achievable spectral efficiency of a
DCP system can be increased by transmitting multiple data
streams to the FC. However, earlier works on DCP disregard
the channel gain information available at the SNs and transmit
all the data bits regardless of the channel quality. Additionally,
the present works on DCP consider that the same constellation
is used by all the transmitting SNs.

B. Contributions

In the present work, we consider the case where each SN
selects its transmit constellation autonomously, based on its
estimated channel gain. Following this, each SN transmits
symbols from the selected constellation to the FC after co-
phasing them to compensate for the channel phase. It is shown
that this results in the received signal being drawn from a
hierarchical constellation whose parameters are determined by
the constellation selection scheme at the SNs. However, since
neither the channel gains, nor the constellation preferences of
different nodes are available at the FC, it becomes challenging
to detect the received data symbols.

The main objective of this paper is to devise a DCP system
providing unequal error protection to different classes of data
using ACS at different SNs. Our contributions are as follows:

1) We show that using ACS in a DCP system is equivalent

to using hierarchical constellations in a point to point
system. (See Section II.)

2) We derive the statistics of the effective DCP channels
for different bits as seen by the FC for a straight binary
encoded DCP system with ACS. (See Section III.)

3) We develop recursive expressions for calculating the
error rates for different bit streams under perfect CSI
at the SNs and the FC. (See Section IV.)

4) We use the properties of the effective channel coef-
ficients to devise three blind channel estimation algo-
rithms for the proposed system. (See Section V.)

5) We use the BER analysis under perfect CSI to derive
the performance of the system under estimated CSI at
SNs and the FC. (See Section VI.)

6) Via detailed simulations, we validate the derived theory
and compare the performance of the three proposed
blind channel estimation algorithms. (See Section VII.)

Therefore, the proposed DCP-ACS scheme can be used to
provide unequal error protection to different bits in a wireless
sensor network. The blind channel estimation algorithms dis-
cussed in this work can be independently useful for decoding
hierarchical constellations in point to point systems.

Notation: Boldface lowercase and uppercase letters repre-
sent vectors and matrices, respectively. The kth column of the
matrix A is denoted by ak, and a(k) represents its kth row.
(.)H represents the hermitian operation on a vector or a matrix.
‖·‖2 and ‖·‖F respectively represent the `2 norm of a vector
and the Frobenius norm of a matrix. E[·] and var(·) represent
the mean and variance of a random variable.

Next, we describe the system model considered in this work.

II. SYSTEM MODEL

We consider a wireless sensor network consisting of K SNs
communicating M classes of data to a single antenna FC. Each
class of data requires a different level of protection against
errors induced by fading and receiver noise. Since there are
multiple classes of data, and each SN independently chooses
the classes that it wants to transmit. As a consequence, the
data being transmitted by the different SNs could be different.
The system model is illustrated in Fig. 1.

In DCP, the SNs and the FC communicate over two time
division duplexed stages. In the first stage, the FC broadcasts
Np pilots. These pilots are used by the K SNs to estimate the
coefficients of the K channels between themselves and the
FC. In the second stage, consisting of Nd channel uses, the
SNs synchronously transmit their selected classes of data to
the FC. It has been practically demonstrated in [5] that once
synchronized, the SNs remain in synchronism for durations
much longer than the channel coherence time, and therefore
they can transmit synchronously. Here, we assume the channel
to be block-fading, such that it remains constant throughout
a frame consisting of training and data durations [5], [6]
and varies independently from frame to frame. Also, the
channels between the FC and the SNs are assumed exhibit
reciprocity [7], which is a necessary condition for signals to
combine coherently at the FC in DCP.
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Figure 1. The DCP system model.

The training signal received by the kth SN during the nth
channel use, n ∈ {1, . . . , Np} can be written as

yk[n] = αke
jθk
√
Ep + wk[n], (1)

where EP is the pilot power, αk is the Rayleigh distributed
channel gain with E[|αk|2] , Ωk, θk is the uniformly
distributed channel phase, and wl[n] is the zero mean circularly
symmetric complex additive white Gaussian noise (AWGN)
with per dimension variance N0

2 .
The maximum likelihood (ML) estimate of the channel

phase at the kth SN is given as [7]

θ̂k = tan−1

(∑Np

n=1={yk[n]}∑Np

n=1<{yk[n]}

)
, (2)

where <{.} and ={.} represent the real and imaginary parts
of a complex number, respectively. In conventional DCP,
the nodes transmit common data using symbols from the
same constellation, and ignore the channel gain information
available from the training symbols. The use of channel gain
estimates in addition to the phase estimates can potentially
improve the performance of DCP. However, since WSN appli-
cations typically require the nodes to transmit at fixed power
levels to simplify the RF power amplifier design, it is not
possible to use power control.1 Consequently, we propose to
use the channel gain information for autonomous constellation
selection at each node. The ML channel estimate at the kth
node can be shown to take the form [7],

α̂k =

√√√√√ 1

Ep

 1

Np

Np∑
n=1

|yk[n]|2 −N0

. (3)

Each node then uses the estimated channel gain to decide
on the symbol constellation to use for data transmission. If the
estimated channel from a given node to the FC is poor, then

1An analysis on the use of power control in DCP based systems can be
found in [7].

the node transmits using a lower order constellation, thereby
sending only the bits requiring the highest error protection.
On the other hand, if the channel is good, symbols from a
higher order constellation are transmitted, enabling the SN
to communicate higher priority data bits in addition to the
lower priority data bits. The key idea in ACS is that the SNs
independently decide on the number of bits to transmit to
the FC, based on their estimated channel gains. This makes
the scheme considered in this paper different from previous
work on DCP [7], [9], [25], where the SNs are assumed to
transmit symbols from the same constellation regardless of
the estimated channel gain.

Now, since the nodes need to communicate a total of M
bits belonging to different classes, each node can perform
constellation selection by binning the channel gain estimate to
one of the M non-overlapping intervals, and mapping each of
these intervals to a constellation choice. These M intervals can
be expressed in terms of their boundaries τ1, τ2, . . . , τM , with
the kth node transmitting symbols from a binary constellation
denoted by S1 if α̂k ≤ τ1, from a quaternary constellation, S2,
if τ1 < α̂k ≤ τ2, and similarly from a 2m-ary constellation,
denoted by Sm, if τm−1 < α̂k ≤ τm. Here, we define τ0 = 0
and τM = ∞. Thus, based on the estimated channel to the
FC, the kth node selects the symbol sk[n] ∈ Sm, and pre-
rotates it to compensate for the estimated channel phase θ̂k
such that the symbol transmitted by the kth node becomes
xk[n] =

√
Essk[n]e−jθ̂k .

In this work, we consider lattice based constellations for
ACS at the nodes, and focus on 1 and 2 dimensional constel-
lations. Specifically, we consider PAM based constellations for
the 1-d ACS and QAM based constellations for the 2-d ACS.
We describe the received signal models these for two cases in
the following two subsections.

A. Received Signal Model for PAM Constellations

We first consider the case where each node transmits
from one of M possible PAM constellations. For a straight
binary encoded 2m-PAM constellation, each symbol is a linear
combination of a bipolar representation of the individual bits.
That is, if the ith bit of the lth constellation symbol, sl, for
an m (1 ≤ m ≤ M ) bit PAM-constellation is represented by
bl,i[n], with bl,i[n] ∈ {−1, 1}, then sl can be expressed as

sl[n] =

M∑
m=1

gm(α̂k)bl,i[n]. (4)

In the above equation,

gm(α̂k) ,
M∑
i=1

gmi1{τi−1≤α̂k<τi}, (5)

with gmi being the weight assigned to the mth bit when α̂k
lies in the ith interval, and 1{.} being the indicator function.

For example, consider a 2/4 PAM DCP-ACS where the kth
SN transmits a BPSK signal when α̂k ≤ τ1 and a 4-PAM
signal if α̂k > τ1, using a symbol energy (Es) for transmission.
Then, the symbol transmitted by it at the nth instant, sk[n],
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can be written as

sk[n] =

{ √
Esb1[n]e−jθ̂k α̂k ≤ τ1

b1[n]
√

4Es
5 e−jθ̂k + b2[n]

√
Es
5 e
−jθ̂k α̂k > τ1.

(6)
which can be represented compactly using (4) and (5) with
g11 = 1, g21 = 0, g12 = 2√

5
, and g22 = 1√

5
. Using these, we

can now write the signal received at the fusion center at the
nth time instant (n ∈ [Np + 1, Np +Nd]) as

y[n] =

K∑
k=1

(g1(α̂k)b1[n] + g2(α̂k)b2[n])
√
Esαkej(θk−θ̂k)

+w[n]. (7)

Defining the effective channel for the mth bit as

hm ,
K∑
k=1

gm(α̂k)αke
j(θk−θ̂k), (8)

we can rewrite y[n] as

y[n] = h1

√
Esb1[n] + h2

√
Esb2[n] + w[n]. (9)

This is the same as a 2/4 hierarchical constellation with h1

and h2 being the effective channel coefficients for the two
bits, which are referred to as the mean distance to the two
bits in the hierarchical modulation literature [26].

Now, since each symbol for a 2M -ary straight binary
encoded PAM can also be expressed as a linear combination of
the bipolar representations of its individual bits, the 2/4 PAM
model can be extended to a 2/4/ . . . /2M PAM. In this case,
y[n] becomes y[n] =

∑M
m=1 hm

√
Esbm[n] + w[n].

The effective channel vector for 2M PAM can therefore be
expressed as

h = [h1, . . . , hM ]T . (10)

The BER for each individual bit is determined by the values
of hms, which in turn depend on the thresholds τ0, . . . , τM .
Therefore, the error protection offered to different bits can be
controlled by suitably selecting these thresholds. For example,
if τ0 = 0, τ1 = τ2 = · · · = τM = ∞, all nodes only transmit
the MSB, b1[n], using BPSK, leading to the best possible error
protection for b1[n]; and the lower order bits are not transmit-
ted at all. On the other hand, if τ0 = τ1 = · · · = τM−1 = 0,
all nodes transmit all bits regardless of channel state, and
therefore, all bits are offered nearly equal error protection.

B. Received Signal Model for QAM Constellations

Let us first consider a system where each node transmits
using either BPSK or QPSK based on the channel state, that
is, the transmit signal sk[n] takes the form

sk[n]=

{√
Esb1[n]e−jθ̂k α̂k ≤ τ1√
Es
2 b1[n]e−jθ̂k + j

√
Es
2 b2[n]e−jθ̂k α̂k > τ1.

(11)
Writing hm as the effective channel gain for the mth bit, the
received signal at the FC takes the form

y[n] = h1

√
Esb1[n] + jh2

√
Esb2[n] + w[n] (12)

where hm is defined in (8), with g11 = 1, g21 = 0, and g12 =
g22 = 1√

2
. Hence, sending BPSK and QPSK signals from

different nodes based on their channel estimates corresponds
to sending a hierarchical QPSK signal with the powers of the
in-phase and quadrature components being controlled by the
threshold τ1.

Now, since any QAM constellation can be represented as
a combination of two orthogonal PAMs, we can generalize
the above received signal model to a 2M bit constellation,
with the odd bits being sent over the in-phase component and
the even bits being sent over the quadrature component, as
follows:

y[n] =

M∑
m=1

h2m−1

√
Esb2m−1[n] + jh2m

√
Esb2m[n] + w[n].

(13)
We can define the 2M dimensional effective channel similar
to (10).

Now, in order to analyze the performance of the above
hierarchical DCP system resulting from ACS at the individual
SNs, we need to analyze the statistics of the effective channels.
The past work on DCP considers a single constellation being
employed at all nodes irrespective of the channel state. In
contrast, in this work, since the number of bits being transmit
by each node depends on the channel gains, the effective
channel coefficients become different for different bits. Due to
this, previous analysis of DCP based systems does not apply
to our system. In the next section, we derive the statistics of
the effective channel under both perfect and estimated CSI at
the SNs. In Sec. IV, we use the derived channel statistics to
analyze the BER performance.

III. CHANNEL STATISTICS

A. Channel Statistics with Perfect CSI at the SNs

Consider the case where perfect CSI is available at each
SN, so that α̂k = αk and θ̂k = θk. Substituting (5) into (8)
we get

hm =

K∑
k=1

M∑
i=1

gmi1{τi−1≤αk<τi}αk. (14)

Now,(
K∑
k=1

M∑
i=1

gmiαk1{τi−1≤αk<τi}

)p
=

∑
q∈Q

Cp;q

K∏
l=1

(
M∑
i=1

gmiαl1{τi−1≤αl<τi}

)ql
(15)

with Q being the set of all vectors q ∈ {0, 1, . . . , p}K such
that

∑K
l=1 ql = p, and Cp;q = p!∏K

l=1 ql!
[27, Chapter 23]. Since

the αls are independent,

E [hpm] =

K∏
l=1

E

[(
M∑
i=1

gmiαl1{τi−1≤αl<τi}

)ql]
. (16)
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Now,(
M∑
i=1

gmiαl1{τi−1≤αk<τi}

)ql
=

M∑
i=1

gqlmiα
ql
l 1{τi−1≤αk<τi}.

(17)
Since each αk is a Rayleigh distributed random variable

(r.v.) with variance Ωk, we can write E[αpk1{τi−1≤αk<τi}] as

E[αpk1{τi−1≤αk<τi}] = Ω
p
2

k f(p; Ωk; τi−1, τi), (18)

with

f(p; Ωk; τi−1, τi) ,
1

2
p
2

Γ
(

1 +
p

2

)
(
γinc

(
τ2
i

Ωk
, 1 +

p

2

)
− γinc

(
τ2
i−1

Ωk
, 1 +

p

2

))
,

and γinc(x, a) = 1
Γ(a)

∫ x
0
e−uua−1du denoting the standard

incomplete Gamma function [28].
Thus, pth moment of the effective channel coefficient for

the mth bit is given by

E[hpm] =
∑
q∈Q

Cp;q

K∏
l=1

M∑
i=1

gqlmiΩ
ql
2

k f(ql; Ωk; τi−1, τi). (19)

For p = 1, the above simplifies to

E[hm] =

K∑
k=1

Ω
1
2

k

M∑
i=1

gmif(1; Ωk; τi−1, τi). (20)

For Ωk = Ω ∀k, this further reduces to

E[hm] = K
√

Ω

M∑
i=1

gmif(1; Ω; τi−1, τi). (21)

This gives us an analytical expression for E[hm]. For later use,
we derive an alternative expression for E[hm] in Appendix A
given by:

E[hm] =

K∑
k=1

k
√

Ω Pr{κm = k}
M∑
i=1

gmif̄(p; Ω; τi−1, τi, τm−1),

(22)
where Pr{κm = k} is the probability that k nodes transmit
the mth bit, and

f̄(p; Ω; τi−1, τi, τm−1) =
f(p; Ω; τi−1, τi)

f(0; Ω; τm−1,∞)
. (23)

Similarly, for p = 2, when Ωk = Ω for all k,

E[h2
m] = KΩ

M∑
i=1

g2
mif(2; Ω; τi−1, τi)

+K(K − 1)Ω

(
M∑
i=1

gmif(1; Ω; τi−1, τi)

)2

, (24)

and consequently,

var(hm) = KΩ

[
M∑
i=1

g2
mif(2; Ω; τi−1, τi)

−

(
M∑
m=1

gmif(1; Ω; τi−1, τi)

)2
 . (25)

The mean of the effective channel scales linearly with the
number of SNs, and this is a consequence of the coherent
combining gain at the FC. Additionally, the variance of the
effective channel for the mth bit also scales linearly with
the number of SNs. Consequently, its coefficient of variation
decays as 1√

K
. Hence, the effective channel coefficient hardens

to its mean value as K gets large.

B. Channel Statistics with Estimated CSI at the SNs

The channel fade seen by the kth SN, αkejθk , is a zero mean
complex Gaussian r.v. with variance Ωk. Due to linear channel
estimation at the SNs, the complex valued channel estimate,
α̂ke

jθ̂k , is also Gaussian. With a linear least-squares estimator,
we have E[α̂2

k] = Ω̂k , Ωk

(
1 + 1

ξk

)
, where ξk =

EpΩk

N0
is the

pilot SNR at the kth node. Also, due to the joint Gaussianity
of αkejθk and α̂kejθ̂k , we can write

αke
jθk = β̂kα̂ke

jθ̂k + β̃kα̃ke
jθ̃k , (26)

where β̂k = ξk
1+ξk

and β̃k =
√

1
1+ξk

, also α̃ke
jθ̃k is a zero

mean complex Gaussian r.v. with variance Ωk, independent of
α̂ke

jθ̂k . Substituting (26) into (14), we obtain hm = ĥm+h̃m,
where

ĥm =

M∑
i=1

gmi

K∑
k=1

β̂kα̂k1{τi−1≤α̂k<τi} (27)

is the effective DCP channel from the SNs to the FC, and

h̃m =

K∑
k=1

gm(α̂k)β̃kvk. (28)

is a random component introduced due to the channel estima-
tion errors at the SNs, which introduces self noise, and will be
present even in the absence of additive noise at the receiver.

Now, ĥ is a weighted sum of Rayleigh distributed random
variables. Its pth moment is given by

E[ĥpm] =
∑
q∈Q

Cp;q

K∏
l=1

M∑
i=1

(β̂lΩl)
ql
2 gqlmif(ql; β̂

−1
l Ωl; τi−1, τi).

(29)
Consequently,

E[ĥm] =

K∑
k=1

(β̂kΩk)
1
2

M∑
i=1

gmif(1; β̂−1
k Ωk; τi−1, τi), (30)

and

E[ĥ2
m] =

(
K∑
k=1

β̂kΩk

M∑
i=1

g2
mif(2; β̂−1

k Ωk; τi−1, τi)

+

K∑
k=1

K∑
l=1;l 6=k

(
β̂k
√

Ωk

M∑
i=1

gmif(1; β̂−1
k Ωk; τi−1, τi)

)

×

(
β̂l
√

Ωl

M∑
i=1

gmif(1; β̂−1
l Ωl; τi−1, τi)

))
. (31)

On the other hand, h̃m is a weighted sum of zero mean
complex Gaussians r.v.s, and will therefore be zero mean
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Figure 2. Effective constellation for the proposed system with 2/4 PAM.

complex Gaussian distributed, such that

var(h̃m) =

K∑
k=1

Ωkβ̃
2
k

M∑
i=1

g2
mif(0; β̂−1

k Ωk; τi−1, τi). (32)

In the next section, we derive recursive expressions for the
BER in a DCP-ACS system assuming known channel co-
efficients. We will use the channel statistics derived in this
section for developing blind channel estimation algorithms
in Section V and for computing the average BERs under
estimated CSI at the FC in Section VI.

IV. BER COMPUTATION FOR KNOWN CHANNEL
COEFFICIENTS

In this section, we derive recursive expressions for the
BER of DCP-ACS systems using both PAM and QAM when
the channel instantiation is known at the both the FC and
the SNs. The assumption of knowing the channel coefficients
allows us to derive recursive expressions for the BER. We
then use the channel statistics to derive the average BER
performances in Section VI. We first derive the BERs for
the 2/4-PAM and 2/4/8 PAM constellations with ACS. This
allows us to generalize the results to the 2/4/ . . . /2M case and
obtain recursive expressions for the BER. For the purpose of
this discussion, we let P PAM

e (M,h,m) and PQAM
e (2M,h,m)

denote the probability of bit error in the mth bit of an M
bit PAM (2M bit for QAM) constellation when the effective
channel at the FC is h as defined in (10). Note that the effective
channel h depends on the actual channel coefficients, αkejθk ,
and the thresholds τ1, . . . , τM−1 through (8).

A. BER for 2/4 PAM Constellation

The real part, yc[n], of the received signal y[n] defined in
(9) can be written as

yc[n] =
√
Esh1b1[n] +

√
Esh2b2[n] + wc[n], (33)

where wc[n] is the real component of the zero mean complex
Gaussian noise, such that wc[n] ∼ N (0, N0

2 ).
The effective constellation for the signal yc[n] is illustrated

in Fig. 2. It can be seen that the distances of different symbols
from the origin can be written in terms of the effective channel
coefficients h1 and h2, such that s1 = −h1−h2, s2 = −h1 +
h2, s3 = h1 − h2, and s4 = h1 + h2. The corresponding
decision boundaries can be defined as λ0 = −∞, λ1 = s1+s2

2 ,
λ2 = s2+s3

2 , λ3 = s3+s4
2 , and λ4 = ∞. Using these, we

can write the decision rule for the symbol ŝ[n] as ŝ[n] =
sp ifλp−1 ≤ y[n] < λp.

Since we consider different classes of bits with different
levels of error protection, we are interested in deriving the error
rates for the individual bits. We therefore derive the BERs for
the two bits of a 2/4 PAM system.

Considering the MSB first, it can be observed that an error
occurs when the a symbol from the pair (s1, s2) is detected as
a symbol from the pair (s3, s4), or vice versa, while no errors
occur in all other cases. Hence, the probability of error in the
MSB can be written as

P PAM
e (2,h, 1) =

1

4

(
Q
(√

2|s1 − λ2|2γin

)
+Q

(√
2|s2 − λ2|2γin

)
+Q

(√
2|s3 − λ2|2γin

)
+ Q

(√
2|s4 − λ2|2γin

))
(34)

where γin , Es
N0

. This can be simplified to

P PAM
e (2,h, 1) =

1

2

(
Q
(√

2|h1 + h2|2γin

)
+ Q

(√
2|h1 − h2|2γin

))
. (35)

Next, considering the LSB, it can be seen that there will be an
error when the a symbol from the pair (s1, s3) is detected as
a symbol from the pair (s2, s4) or vice versa, whereas there
will be no bit error when one symbol from a within pair is
detected as the other. Using these facts, the BER for the LSB
takes the form

P PAM
e (2,h, 2) = Q

(√
2|h2|2γin

)
+

1

4

(
Q
(√

2|h1 − h2|2γin

)
−Q

(√
2|h1 + h2|2γin

)
+ Q

(√
2|2h1 + h2|2γin

)
−Q

(√
2|2h1 − h2|2γin

))
.

(36)

Since h2 ≤ h1

2 , and both h1 and h2 are positive, it can be
seen that the BER for the MSB is smaller than that for the
LSB. For example, when τ =∞, (35) reduces to the BER for
a simple BPSK with channel h1, and (36) reduces to 0.5.

B. BER for Generalized-PAM Constellations

The real part of the received signal for a generalized 2/4/8
PAM [17] system can be written as

yc =
√
Esh1b1[n] +

√
Esh2b2[n] +

√
Esh3b3 + wc[n]. (37)

The BER for the MSB therefore takes the form

P PAM
e (3,h, 1) =

1

4

(
Q
(√

2|h1 + h2 + h3|2γin

)
+Q

(√
2|h1 − h2 + h3|2γin

)
+Q

(√
2|h1 + h2 − h3|2γin

)
+ Q

(√
2|h1 − h2 − h3|2γin

))
. (38)
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Defining, h(m) , [h1, . . . , hm]T , h
(m)
+ , [h1, . . . , hm +

hm+1]T , and h
(m)
− , [h1, . . . , hm−hm+1]T , it can be shown

via simple algebraic manipulation that

P PAM
e (3,h(3), 1) =

1

2
(P PAM
e (2,h

(2)
+ , 1) + P PAM

e (2,h
(2)
− , 1)),

(39)
and similarly,

P PAM
e (3,h(3), 2) =

1

2
(P PAM
e (2,h

(2)
+ , 2) + P PAM

e (2,h
(2)
− , 2)).

(40)
This arises from the fact that the addition of the mth bit to
the constellation results in splitting of the constellation points
corresponding to the (m− 1)th bit into two new constellation
points, equidistant from the constellation point corresponding
to the (m− 1)th bit and with the same average signal power.
The BERs for the lth most significant bit in an m-bit (l < m )
PAM constellation can therefore be recursively computed as:

P PAM
e (m,h(m), l) =

1

2
(P PAM
e (m− 1,h

(m−1)
+ , l)

+ P PAM
e (m− 1,h

(m−1)
− , l)). (41)

To obtain the BER of the LSB, we note that the pth symbol,
sp, will be sp =

∑M
m=1 hmbp,m. The LSB is in error whenever

sp is detected as sp+l where l is odd and sp+l lies in the
constellation, and there is no error when sp is detected as
sp+l, with l being even and sp+l lying in the constellation.
Defining λq = 1

2 (sq + sq+1), 1 ≤ q ≤ 2M as the qth decision
boundary with λ0 = −∞ and λM = ∞, we can write the
probability of sp being detected as sp′ as

P (sp → sp′) = Q

(√
2|sp − λp′−1|2γin

)
. (42)

Letting bp ∈ {−1,+1}M as the bit pattern corresponding to
the pth constellation symbol we can write sp = hTbp, conse-
quently λq = hT

(bq+bq+1)
2 . Defining ψp,q , bp− (bq+bq+1)

2 ,
we can write the above as

P (sp → sq) = Q
(√

2|hTψp,q−1|2γin

)
. (43)

Using the fact that a bit error occurs if and only if (p− q) is
an odd number, we can write,

P PAM
e (m,h(m),m) =

1

2M

2M−1∑
p=1

2M∑
q=1;q 6=p

P (sp → sq). (44)

This can be shown to take the form

P PAM
e (m,h(m),m) =

1

2M

2M∑
p=1

2M−1∑
q=1;q 6=p

(−1)p−qsign(p−q)Q
(√

2|hTψp,q−1|2γin

)
(45)

where sign(x) = 1, if x > 0, sign(x) = −1 if x < 0, and
sign(x) = 0 if x = 0. Thus, we have obtained recursive
expressions for computing the probabilities of bit error in
different bits for an M -bit PAM.

Figure 3. Effective constellation for the proposed system when different
nodes choose from BPSK/QPSK based on the channel state.

C. BER for 2M-bit QAM Constellations

We first derive the BER for a BPSK/QPSK constellation as
shown in Fig 3. Here, the SNs transmit only the MSB using a
BPSK constellation if the channel gain is below the threshold
τ1, and transmit both the MSB and LSB using a QPSK
constellation otherwise. We can write ys[n] and yc[n], the real
and imaginary parts of the received signal, respectively, as

yc[n] =
√
Esh1b1[n] + wc[n] (46)

ys[n] =
√
Esh2b2[n] + ws[n].

where wc[n] and ws[n] are both AWGNs with variance N0/2.
Therefore, the in-phase and quadrature components of a

BPSK/QPSK constellation can be analyzed separately, result-
ing in the BER expressions

PQAM
e (2,h, 1) = Q

(√
2|h1|2γin

)
PQAM
e (2,h, 2) = Q

(√
2|h2|2γin

)
. (47)

Similarly, the real and imaginary components of a 2M bit
QAM constellation can be written as

yc[n] =

M∑
m=1

h2m−1

√
Esb2m−1[n] + wc[n],

ys[n] =

M∑
m=1

h2m

√
Esb2m[n] + ws[n]. (48)

We can therefore write recursive expressions for the BER as:

PQAM
e (2m,h(2m)

c , 2l) =
1

2
(PQAM
e (2m− 2,h

(2m−2)
c,+ , 2l)

+ PQAM
e (2m− 2,h

(2m−2)
c,− , 2l)), (49)

and

PQAM
e (2m,h(2m)

s , 2l−1) =
1

2
(PQAM
e (2m−2,h

(2m−2)
s,+ , 2l−1)

+ PQAM
e (2m− 2,h

(2m−2)
s,− , 2l − 1)). (50)

where l < m, h
(2m)
c = [h1, h3, . . . , h2m−1]T ,

h
(2m)
s = [h2, h4, . . . , h2m]T , h

(2m)
c,+ = [h1, h3, . . . , h2m−1 +

h2m+1]T , h
(2m)
s,+ = [h2, h4, . . . , h2m + h2m+2]T ,

h
(2m)
c,− = [h1, h3, . . . , h2m−1 − h2m+1]T and
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h
(2m)
s,− = [h2, h4, . . . , h2m − h2m+2]T . Similarly, defining

b2p−1 and b2p as the M -bit patterns corresponding to s2p−1

and s2p, the BER expression for the LSB in the in-phase and
quadrature components become

PQAM
e (2m,h(m), 2m− 1) =

1

2M

2M∑
p=1

2M−1∑
q=1;q 6=p

(−1)p−q

× sign(p− q)Q
(√

2|h(2m)T
c ψ2p−1,2q−3|2γin

)
,

PQAM
e (2m,h(m), 2m) =

1

2M

2M∑
p=1

2M−1∑
q=1;q 6=p

(−1)p−q

× sign(p− q)Q
(√

2|h(2m)T
s ψ2p,2q−2|2γin

)
, (51)

where ψ2p−i,2q−2−i = b2p−i − (b2q−i+b2q−i+2)
2 , i ∈ {0, 1}.

In this section, we derived recursive expressions to calculate
the BERs for different bits in an DCP-ACS system using PAM
and rectangular QAM constellations. All the BER expressions
derived here are conditioned on the channel gains between
the SNs and the FC. These expressions need to be averaged
over the channel statistics to obtain the BER for the proposed
system. Also, recall that, in our setup, the SNs do not transmit
pilots. Therefore, the FC has to estimate CSI blindly from the
data symbols in order to perform data detection. The error in
estimation of the CSI at the FC can result in a degradation of
the BER. In the next section, we address the estimation of the
CSI at the FC, and in Section VI, we derive the expressions
for the average BER over the channel realizations.

V. BLIND CHANNEL ESTIMATION TECHNIQUES

It was shown above that it is possible to achieve unequal
error protection in DCP systems by allowing different nodes
to transmit from different symbol constellations based on
the estimated channel gains. However, the BER expressions
derived previously assumed perfect knowledge of the channel
at the FC. Since the SNs do not use forward link training, the
channel is unknown at the FC. It was shown in our previous
work [9], [25] that the structure induced by the DCP channel
allows for blind channel estimation at the FC in case all the
SNs transmit symbols from the same constellation. In this
section, we develop three blind channel estimation techniques
for DCP systems employing ACS at the SNs.

A. Clustering Based Decoding

The real and imaginary parts of the signal received at the
FC for a 2M -bit QAM constellation can be written as

yc[n] =

M∑
m=1

ĥ2m−1

√
Esb2m−1 + zc[n] + wc[n], (52)

ys[n] =

M∑
m=1

ĥ2m

√
Esb2m + zs[n] + ws[n]. (53)

If we define z[n] ,
∑M
m=1 h̃2m−1

√
Esb2m−1[n] +

jh̃2m

√
Esb2m[n] as the self noise caused due to CSI imper-

fections at the SNs, then zc[n] and zs[n] in (52) and (53) are

the real and imaginary parts of z[n]. Note that the channel
coefficients, ĥm, are real positive numbers, due to the co-
phased transmissions by the SNs and bm[n]s take values from
the binary set ±1. Defining BM , {−1, 1}M , we can define
the symbol constellations on the real and imaginary axes as
Sc , {ĥTc b : b ∈ BM}, and Ss , {ĥTs b : b ∈ BM},
respectively. The symbols received over the in-phase and the
quadrature components can therefore be seen as versions of
symbols drawn from these constellations corrupted by self
noise and AWGN. Consequently, both the received yc[n] and
ys[n] can each be classified into 2M distinct clusters. Clus-
tering of both the in-phase and the quadrature streams can be
achieved using standard unsupervised clustering schemes, such
as one of the variants of the K-means algorithm [29], [30]. In
our work, we use the fuzzy K-means algorithm [31]. We write
the sorted cluster centers of yc[n] and ys[n] respectively as the
vectors cc and cs with ci = [ci,1, ci,2, . . . , ci,2M ]T ; i = {c, s}
such that ci,1 < ci,2 < · · · < ci,2M .

Since the channel coefficients ĥm are real and positive
numbers, the symbols of the resulting constellations si,l,
i ∈ {c, s}, and l ∈ 1, . . . , 2M can also be sorted as
sc,1 = −

∑M
m=1 ĥ2m−1 < · · · < sc,2M =

∑M
m=1 ĥ2m−1, and

ss,1 = −
∑M
m=1 ĥ2m < · · · < ss,2M =

∑M
m=1 ĥ2m. Since the

cluster centers of the real and imaginary parts of the received
signals correspond to these constellation points,

ci = si + νi; i ∈ {c, s}, (54)

where νi is the residual noise arising from the AWGN and
the self noise of the DCP-ACS system.

Note that the individual bits can be recovered by simply
mapping each received symbol to a cluster center, and using
the bit sequence corresponding to that cluster center.

Defining A as the M × 2M matrix containing all the
elements of BM , we can write the least squares estimate h̄i
of ĥi as

h̄i = A†ci; i ∈ {c, s}, (55)

where A† represents the Moore-Penrose pseudoinverse of the
matrix A. With cluster based decoding, the data bits are
detected using (54), and the channel estimate is obtained as a
byproduct of (55). This estimate is used for performance com-
parison with the successive decoding and iterative estimation
and decoding schemes, which we describe next.

B. Successive Decoding

Consider the first terms in the summations in (52) and (53).
Let y1[n] , yc[n] and y2[n] , ys[n]. We can write

y1[n] =
√
Esh1b1[n] + v1[n] (56)

y2[n] =
√
Esh2b2[n] + v2[n], (57)

where v1[n] and v2[n] are the cumulative effects of the lower
priority bits and the additive noise. Also, by design,

|h1b1[n]| >

∣∣∣∣∣
{

M∑
i=2

h2m−1b2m−1[n]

}∣∣∣∣∣ (58)
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and

|h2b2[n]| >

∣∣∣∣∣
{

M∑
i=2

h2mb2m[n]

}∣∣∣∣∣ . (59)

Therefore, in the absence of additive noise, yi[n] > 0 for
bi[n] = 1 and yi[n] < 0 for b[n] = −1, i ∈ {1, 2}. Hence,
the ML estimates, b̄i[n], of the bits bi[n], i ∈ {1, 2}, can be
obtained by taking the signs of the signal yi[n] , i ∈ {1, 2}.
Following this, the modified K-means based blind channel
estimation algorithm presented in [25] can be used to iter-
atively compute the estimates h̄i of ĥi. These can then be
used to define the residuals y3[n] = y1[n] − h̄1b̄1[n], and
y4[n] = y2[n]− h̄2b̄2[n], which and in turn be used to detect
b3[n] and b4[n] and obtain the estimates for ĥ3 and ĥ4. This
process of successive decoding and cancellation can be used
to detect all the bits received at the FC, as well as obtain the
estimates of all the associated channel coefficients.

C. Iterative Channel Estimation and Decoding

Our starting point is the signal y[n] in (13):

y[n] =

M∑
m=1

h2m−1

√
Esb2m−1[n] + jh2m

√
Esb2m[n] + w[n]

(60)
where hm = ĥm+ h̃m is the complex valued channel gain for
the mth bit that includes the effect of both DCP and self noise.
Ideally, knowledge of the true effective DCP channels, hm,
would result in superior data detection performance compared
to estimating ĥm and decoding the data by assuming ĥm as
the channel coefficient. However, estimating hm at the FC
requires training symbols, which are not available at the FC.
On the other hand, by design, the phase of hm is close to zero
(and equals zero in the absence of channel estimation errors
at the SNs) [7]. We can exploit this to iteratively detect the
data and estimate the channel using the detected data as pilot
symbols, until convergence, as explained next.

Stacking Nd consecutive received symbols as a row vector
y, we can write y = hTB + w, where h ∈ C2M×1 is
the effective channel vector, B ∈ C2M×N is the trans-
mitted data matrix with the nth column, b[n], representing
the nth transmitted symbol, and is expressed as b[n] =
[b1[n], jb2[n], . . . , b2M−1[n], jb2M [n]]T . The joint channel es-
timation and data detection problem to determine the ML
estimates B̄ and h̄ of B and h can now be written as

(h̄, B̄) = arg min
B,h
‖y − hTB‖. (61)

Since the data matrix and the channel vectors are independent,
we can minimize the above expression independently w.r.t. B
and h, resulting in the sub-problems

h̄ = arg min
h
‖y − hT B̄‖, (62)

b̄[n] = arg min
b[n]
‖y[n]− hTb[n]‖. (63)

The optimization problem in (62) is a standard least squares
problem, whose solution is

h̄ = (yB̄†)T . (64)

Table I
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF DIFFERENT

APPROACHES FOR DCP-ACS.

Technique Computational Complexity
Clustering Based Decoding O(Nd2

2M )
Successive Decoding O(MNd)
Iterative Channel Estimation
and Decoding O(MN2

d ) +O(Nd2
2M )

Equation (63) is a symbol detection problem with a known
vector channel and can be solved via a search over the
symbol space BK . It can be seen that both these problems
can be solved iteratively, and since the objective function
is convex in both h and B, the iterative solution of (62)
and (63) is guaranteed to converge to a local minimum. The
initial solution to these equations can be obtained using either
clustering based decoding or successive decoding.

D. Comparison of Blind Channel Estimation Algorithms

We first compare the computational complexities of the
three algorithms. For this purpose, we consider a total of
Nd symbols each containing a maximum of 2M bits, M
transmitted over the in-phase constellation and M over quadra-
ture, resulting in 2M points in both I and Q PAM constel-
lations. First, the clustering based algorithm uses the fuzzy
K-means algorithm to determine the cluster centers. Hence,
its computational complexity is of the order of the fuzzy K-
means algorithm [31]. Therefore, this has a complexity of
order O(Nd2

2M ) for both the in-phase and the quadrature
components. Second, the successive decoding based detection
requires thresholding of each bit followed by 2Nd complex
multiplications for each step, resulting in a total complexity of
order O(MNd) for both the in-phase and quadrature compo-
nents. Third, for the iterative channel estimation and decoding
technique, since h is a length 2M vector and B is a 2M×Nd
matrix, the computational cost for equation (64) is O(MN2

d )
and that for (63) is O(Nd2

2M ). Therefore, the successive
decoding based detection technique has the least computa-
tional complexity, followed by the clustering based decoding
technique, and iterative minimization based approach, has
the maximum computational complexity. A summary of the
computational complexities of the three different approaches
considered in this paper is provided in Table I.

Recall that the clustering based decoding, unlike successive
decoding and iterative channel estimation and decoding, does
not use the detected bits for channel estimation. This results
in poorer channel estimates at the FC. On the other hand, it
does not suffer from the effects of error propagation.

Figure 4 plots the normalized MSE ‖h−h̄‖2
‖h‖2 of the different

channel estimation algorithms at different data SNRs and
for different numbers of data symbols. It can be observed
that the NMSEs for the clustering based decoding and the
successive decoding approaches saturate, whereas that for the
iterative minimization approach decreases with increase in
the data SNR. Also, due to the fact that the effect of error
propagation is high at lower SNRs, the NMSE improves only
marginally with an increase in the number of transmitted
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Figure 4. NMSE comparison of channel estimation algorithms for different
numbers of data symbols as a function of the data SNR, with 20 SNs.

symbols. However, at moderate to high SNRs, with low error
rates, the effects of error propagation become negligible.

VI. PERFORMANCE IMPACT OF CHANNEL ESTIMATION

In Section IV, we assumed that perfect CSI is available at
both the SNs as well as at the FC to simplify the BER com-
putations. Additionally, the expressions derived in Section IV
are conditioned on the channel instantiations. However, in a
practical system, the CSI available at both the SNs and the
fusion center could be imperfect due to the channel estimation
errors. In this section, we first characterize the effect of
imperfect CSI. Following this, we account for the randomness
of the channel coefficients and develop approximate BER
expressions for the proposed DCP-ACS system.

A. Effect of Estimated CSI

Let us consider a 2M bit QAM system with channel
estimates α̂kejθ̂k available at the SNs. Substituting the true
channel in terms of the channel estimate and the estimation
error into (13), the received signal becomes

y[n] =

M∑
m=1

(ĥ2m−1 + h̃2m−1)b2m−1[n]

+ j(ĥ2m + h̃2m)b2m[n] + w[n], (65)

It was shown in the previous section that for moderate
to high SNRs, the normalized MSE of the blindly estimated
channel at the FC is less than 10−2 even for a small number of
data symbols. Therefore, FC can be assumed to know hm ac-
curately. However, since hm now consists of two independent
components, we can write, E[hm] = E[ĥm]+E[h̃m] = E[ĥm]
and E[|hm|2] = E[ĥ2

m] +E[|h̃m|2], where the modulus is not
required for the first term as it is real and positive due to the
phase compensation by the nodes. For i.i.d. channels, these
can be written as

E[hm] = K(β̂Ω)1/2
M∑
i=1

gmif(1; β̂−1Ω, τi−1, τi), (66)

and

E[|hm|2] = KΩ

(
M∑
i=1

g2
mif(2; Ω; τi−1, τi) + (K − 1)

×

(
M∑
i=1

gmif(1; Ω; τi−1, τi)

)2

+ β̃2f(0; β̂−1Ω; τi−1, τi)

)
.

We use the above to derive a closed-form approximate expres-
sion for the BER in the next subsection.

B. Effect of Channel Fading

In Section IV, we derived the BERs of the DCP-ACS system
as a function of the effective channel coefficients hm, that in
turn are functions of the thresholds τ0, . . . , τM . The average
BERs for different bits can therefore be determined in terms of
the thresholds by averaging the BERs over all the realizations
of the channel coefficients. Defining τ = [τ0, . . . , τ2M ]T , we
can write the average BER as

P̄QAM
e (2M,m; τ ) = Eh[PQAM

e (2M,h,m)]. (67)

Letting

R(τ ,ψp,q−1, γin) , Eh

[
Q
(√

2|hTψp,q−1|2γin

)]
, (68)

we get

P̄QAM
e (2M,m; τ ) =

1

2M

2M∑
p=1

2M−1∑
q=1

(−1)p−q

× sign(p− q)R(τ ,ψp,q−1, γin). (69)

In order to compute R(τ ,ψp,q−1, γin), if the channels between
the nodes and the FC are i.i.d. distributed, then the coefficient
of variation of the effective channel scales inversely with

√
K,

resulting in channel hardening [32]. Therefore, if km out of
K nodes transmit the mth bit, then hm can be approximated
as the function ḣ(km) such that

ḣm(km) = km

√
β̂Ω

M∑
i=1

gmif̄(p; β̂−1Ω, τi−1, τi, τm−1).

(70)
where f̄(.; ., ., .) is defined in (23). However, the number of
nodes transmitting the mth bit, km, is a random variable
determined by the instantaneous channel, and therefore the
average BER can be obtained by averaging over the number
of nodes transmitting the mth bit.

The vector h can be written as a function ḣ(k) of the vector
k = [k1, k2, . . . , k2M ], with ki+1 ≤ ki. Letting Pκ(k) denote
the probability of the number of nodes transmitting the mth
bit being equal to the corresponding entry of k, we can write

R(τ ,ψp,q−1; γin) =
∑
k

Pκ(k)Q

(√
|ḣT (k)ψp,q−1|2γin

)
.

(71)
For a two bit system, it can be seen that k1 = N with proba-
bility 1. Hence, the probabilities Pκ(k2) can be calculated as
Pκ(k2) =

(
K
k2

)
fk2(0; β̂−1Ω; τ1,∞)fK−k2(0; β̂−1Ω; 0, τ1).
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C. Channel Corruption
The above discussion as well as the blind channel estimation

algorithms discussed previously are based on fact that the
phases of the channel coefficients are close to zero with high
probability. However, the perturbations introduced by h̃m can
occasionally cause the phase of the effective channel to exceed
half the rotational symmetry of the constellation being used.
This phenomenon, termed as channel corruption [25], results
in catastrophic errors in the detection of the data bits. In the
event of a corruption of the effective channel for a specific
bit position, all the corresponding data bits are likely to be
detected incorrectly, making the probability of bit error close to
unity. However, it was shown in Section V that in the absence
of channel corruption, the blind channel estimation algorithms
can estimate the true channel with high fidelity. In view of this,
the overall error event for the mth bit, P̄QAMb (m, 2M ; τ ), can
be approximated as the sum of two terms corresponding to the
probability of channel corruption and the bit error rate due to
additive noise in the absence of channel corruption as follows:

P̄QAMb (m, 2M ; τ ) ≈ Pc,m + (1− Pc,m)P̄QAM
e (m, 2M ; τ ),

(72)
where Pc,m is the probability of channel corruption for the mth
bit, and P̄QAM

e (m, 2M ; τ ) is the probability of error in the lth
bit with perfect CSI at the FC. The probability of channel
corruption in a DCP system has been derived in in [25], and
using that analysis, it can be shown that

Pc,m ≈ Q
(
µR,m
σR,m

)
+ 2Q

 µR,m√
σ2
I,m + σ2

R,m


×
(

1−Q
(
µR,m
σR,m

))
, (73)

where, µR,m = E[ĥm], σ2
R,m = var(ĥm) + var(<{h̃m}), and

σ2
I,m = var(={h̃m}). The moments of ĥm and h̃m derived in

Section III can be used to obtain the probability of channel
corruption for the mth bit. Plugging these into (72), the BER
for the proposed DCP system can be obtained in terms of
channel statistics and the threshold vector τ .

D. Choice of the Threshold Vector
In the preceding discussion, the probabilities of error were

derived in terms the data/pilot SNRs and the threshold vector,
τ . In a practical system, one may wish to choose τ , ξ
and γin based on the required BERs for the different bits
given the values of data and pilot SNRs. However, as seen
from (20) and (71), the probability of error is a highly
nonlinear function of the channel vector h, that is further
a nonlinear function of τ . Therefore, the optimization of τ
will have to be performed using numerical methods. The
multivariate bisection method [33] is a good approach to this
end, since the probability of error of different priority bits is
a monotonic function of τ .

VII. SIMULATION RESULTS

In this section, we use numerical results obtained using
Monte Carlo simulation experiments to substantiate the an-
alytical expressions derived previously and to compare the
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Figure 5. Probability of error in the MSB versus the data SNR for different
values of the threshold τ in a 2/4 PAM DCP-ACS system.

performance of the different channel estimation and data
detection schemes.

We assume that the FC transmits 10 training symbols
followed by Nd data symbols from the SNs to the FC using
DCP with ACS. Simulations are then carried out for different
values of data SNRs, different constellation hierarchies, etc.
The pilot SNR is assumed to be fixed at 10 dB unless otherwise
specified. The probabilities of symbol error are obtained by av-
eraging over 10, 000 independent channel realizations. Recall
that our goal in this paper is to provide different levels of error
protection to different data streams. That is, by design, the bit
error rate across different streams is different. Therefore, the
overall bit error rate plot is not important for our setup, and
is not considered here.

In Fig. 5, the error rate of the MSB in a DCP-ACS system
selecting between 2 PAM and 4 PAM constellations is plotted
as a function of the data SNR. Here, the iterative minimization
based scheme derived in Section V is used for joint channel
estimation and data detection. The simulated performance of
the joint channel estimation and data detection schemes is in
close agreement with the theoretical approximations. It is also
observed that increasing the transmission threshold for the
second bit, τ , from 0 to 1 improves the BER for the MSB
by approximately 3 dB at a BER of 10−3. Increasing τ to ∞,
that is, always transmitting BPSK, results in a further 2 dB
improvement in the BER of the MSB.

In Fig. 6, the BER of the LSB for the system considered
in Fig. 5 is plotted. The simulated performance of the joint
channel estimation and data detection scheme is again in close
agreement with the theoretical approximations. In this case, the
BER degrades by approximately 6 dB as τ is varied from 0
to 1. Thus, the use of ACS can lead to a differentiation of
about 3 to 6 dB in the BER of the MSB and the LSB. Further
increasing the threshold, τ to ∞ results in a BER of 0.5 for
the regardless of the transmit SNR, which is expected.

In Figs. 7 and 8, the BER of the MSB and LSB for
a DCP-ACS system with the SNs transmitting from either
BPSK or QPSK is plotted. As τ changes from 0 to 1,
the BER for the MSB and the LSB improves and degrades
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Figure 6. Probability of error in the LSB versus the data SNR for different
values of the threshold τ in a 2/4 PAM DCP-ACS system.
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Figure 7. Probability of error in the MSB versus the data SNR for different
values of the threshold τ in a BPSK/QPSK DCP-ACS system.

by 2 dB and 10 dB respectively. Yet again, the results of
the simulation experiments are in close agreement with the
theoretical approximations derived in (70).

In Fig. 9, we plot the BER of the MSB and LSB for a DCP-
ACS system with the SNs transmitting from either BPSK or
QPSK against the threshold τ . It is observed that by suitably
selecting the threshold, τ , the BERs of the higher and lower
priority bits of a BPSK/QPSK system can be varied by as
much as two orders of magnitude.

In Fig. 10, the BER of the LSB for the system considered
in Fig. 5 is plotted for τ = 0.707 and different number of
SNs. The channel hardening based approximations are found
to be accurate even for 10 SNs. In Fig. 11, the BER of both
the bits of a 2/4 PAM system is plotted for different levels of
pilot SNR, ξ, taken as a function of the total data SNR, Kγin.
A pilot SNR boosting of 6 to 9 dB above the total data SNR
results in a BER close to that with perfect CSI at the SNs.
Also, a constant pilot SNR of 10 dB results in a BER almost
identical to that with perfect CSI at the SNs across the data
SNR range considered.

We plot the BER of the second (middle) bit in a 2/4/8 QAM
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Figure 8. Probability of error in the LSB versus the data SNR for different
values of the threshold τ in a BPSK/QPSK DCP-ACS system.
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Figure 9. Probability of error versus the threshold τ in for different values
of the data SNR for both bits of a BPSK/QPSK DCP-ACS system.

system in Fig. 12. This being a rectangular constellation, the
MSB is the only bit transmitted on the in-phase component,
whereas the two lower order bits are sent over the quadrature
carrier using a 2/4 PAM constellation. It is observed that
different BER patterns for the second bit can be obtained by
appropriately selecting the thresholds τ1 and τ2.

VIII. CONCLUSIONS

In this work, we showed that using distributed, autonomous
constellation selection at different SNs leads to unequal error
protection for different bit streams in a DCP based system.
We derived the statistics of the effective channel to show that
the effective DCP channel concentrates around its mean as
the number of SNs gets large. We then used the properties
of the effective DCP channels to propose three algorithms
for joint data detection and channel estimation at the FC. We
developed recursive expressions to evaluate the BER, and used
the channel hardening property to obtain approximate closed-
form expressions for the BER of a DCP-ACS system. These
expressions were then verified to be in close agreement with
the empirical performance using Monte Carlo simulations. It
was also shown through simulations that the proposed blind
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channel estimation algorithm can perform almost as good as
the detector with perfect CSI at the FC. Hence, uplink pilots
are not necessary. Future work could consider the extension
of this work to a system where the SNs transmit different data
streams to multiple FCs using ACS [9].

APPENDIX A
AN ALTERNATIVE EXPRESSION FOR E[hm]

letting Km denote the subset of nodes that transmit the mth
bit, we can write the channel coefficient hm as

hm =

M∑
i=1

gmi

K∑
k=1

αk1{τi−1≤α̂k<τi}1{k∈Km}. (74)

Taking the expectation, we get

E[hm] =

M∑
i=1

gmi

K∑
k=1

ΩkE[αk; τi−1 ≤ αk < τi|k ∈ Km]

× Pr{k ∈ Km}. (75)

Since k ∈ Km only if αk > τm−1,
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Figure 12. Probability of error in the middle bit versus the data SNR for
different values of the thresholds τ1 and τ2 in a 2/4/8 QAM DCP-ACS system.

Pr{k ∈ Km} = f(0; Ωk; τm−1,∞). Also, defining

f̄(p; Ω; τi−1, τi, τm−1) ,
f(p; Ω; τi−1, τi)

f(0; Ω; τm−1,∞)
, (76)

E[hm] can be written as

E[hm] =

K∑
k=1

√
Ωkf(0; Ωk; τm−1,∞)

×
M∑
i=1

gmif̄(1; Ωk; τi−1, τi, τm−1). (77)

Denoting the cardinality of Km by κm, and considering i.i.d
channels, we get

E[hm] =

K∑
k=1

√
Ω Pr{κm = k}

M∑
i=1

kgmif̄(p; Ω; τi−1, τi, τm−1),

(78)
where Pr{κm = k} =

(
K
k

)
fk(0; τm−1,∞)fK−k(0; 0, τm−1).
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