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a b s t r a c t

This paper considers decentralized spectrum sensing, i.e., detection of occupancy of the
primary users’ spectrum by a set of Cognitive Radio (CR) nodes, under a Bayesian set-up.
The nodes use energy detection to make their individual decisions, which are combined
at a Fusion Center (FC) using the K -out-of-N fusion rule. The channel from the primary
transmitter to the CR nodes is assumed to undergo fading, while that from the nodes to the
FC is assumed to be error-free. In this scenario, a novel concept termed as the Error Expo-
nent with a Confidence Level (EECL) is introduced to evaluate and compare the performance
of different detection schemes. Expressions for the EECL under general fading conditions
are derived. As a special case, it is shown that the conventional error exponent both at
individual sensors, and at the FC is zero. Further, closed-form lower bounds on the EECL
are derived under Rayleigh fading and lognormal shadowing. As an example application,
it answers the question of whether to use pilot-signal based narrowband sensing, where
the signal undergoes Rayleigh fading, or to sense over the entire bandwidth of a wideband
signal, where the signal undergoes lognormal shadowing. Theoretical results are validated
using Monte Carlo simulations.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Spectrum sensing, or the detection of the presence or
absence of a primary signal in a given frequency band of
interest, is a well-studied topic in literature on Cognitive
Radios (CR) [1]. Multi-sensor detection, or decentralized
detection, is the preferred approach for spectrum sensing,
because of its resilience to signal fading, the hidden node
problem, etc. [2–7]. In fixed sample-size decentralized de-
tection, individual CR nodes make one-bit decisions about
the availability of the spectrum using a given number of
samples, and the individual decisions are combined at a
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Fusion Center (FC) to detect the presence or absence of
the primary signal, possibly over a lossy channel [8]. Alter-
natively, the individual nodes can send multi-bit informa-
tion about the decision statistic, which could be combined
using soft-combining schemes such as the equal gain and
maximal ratio combining [9–11], over a dedicated control
channel or through physical layer fusion. Energy-based de-
tection, popularly referred to as Energy Detection (ED), is a
well known technique for spectrum sensing, wherein the
signal energy in the band of interest is measured and com-
pared with a threshold [12–16]. The primary signal is de-
clared to be present if the measured energy exceeds the
threshold.

The detection probability performance of ED when the
channel between the primary transmitter and the sec-
ondary node undergoes narrowband Rayleigh fading has
been analyzed under the Neyman–Pearson (NP) frame-
work [13,14,17]. Although closed-form expressions for the
probability of detection have been derived, due to the form
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of the integrals involved, it is cumbersome to obtain the
detection threshold that meets a given minimum detec-
tion probability requirement. One way around this is to
use an alternative performance metric such as the error
exponent [18,19], which essentially captures the asymp-
totic behavior of the probability of error performance of
a detector as the number of samples used for making de-
cisions gets large.1 Mathematically, the error exponent is
defined as limM→∞ − log(Pe)/M , where M is the number
of samples used for detection, and Pe is the correspond-
ing probability of error. One of the early studies on the er-
ror exponent performance of decentralized detection was
the seminal work of Tsitsiklis [20]. In the Bayesian frame-
work, the exponent on the probability of error of decen-
tralized detection has been analyzed in [21]. The Bayesian
error exponent of mismatched likelihood ratio detectors
was derived in [22]. The analysis uses the fact that the best
achievable exponent in the Bayesian probability of error is
the Chernoff information between the probability distri-
bution functions under the two hypotheses. In turn, this
implies that the optimal exponents associated with the
probability of false alarm and the probability of missed de-
tectionmust equal each other [19, Chap. 11], [23,24].When
the primary signal power or the noise variance at the sec-
ondary receiver are unknown, a robust and blind detection
scheme based on the maximum eigenvalue of the sample
covariance matrix has been proposed and studied through
simulations [25]. In [26,27], multi-antenna assisted spec-
trum sensing is considered under the NP framework.

Decentralized detection for spectrum sensing under the
Bayesian framework is considered in [28–30]. Here, the
channel between the primary transmitter and the sec-
ondary sensors is assumed to undergo fading, while the
channel between the sensors and the FC is assumed to be
lossless but finite-rate. However, to the best of our knowl-
edge, prior to this study, error exponents for energy-based
decentralized spectrum sensing have not been derived in
the literature. There are several advantages in using the
error exponent as a performance metric under a Bayesian
set-up. First, the optimal error exponent is independent
of the specific values of the prior probabilities, provided
they are nonzero [19]. Due to this, the optimal error ex-
ponent, and detection schemes based on maximizing the
error exponent, are naturally robust to uncertainties in
the knowledge of the prior probabilities, unlike detectors
designed with the goal of minimizing the probability of
error. Further, error exponents allow one to contrast the
performance of competing detectors over a range of target
performance requirements, rather than at a single missed
detection probability target.2 This is useful when choosing
between detectors at the design phase of a hardware im-
plementation.

1 The number of samples can be considered to be large, for example,
in Digital Television (DTV) signal detection, where the primary network
changes its occupancy infrequently.
2 For example, future primary networks may use receivers with better

noise figures. In this case, to keep the interference caused to the primary
networkwithin acceptable limits, the CR receiversmight need to sense for
a longer duration in order to satisfy a (tighter) constraint on the detection
error rate.
110
100
90
80
70
60
50
40
30
20

PS
D

 (
dB

)

2 4 6 8 100 12
frequency (MHz)

Fig. 1. One sided PSD of IEEE 802.22 DTV wideband signal.

Yet another reason for considering an error exponent
analysis of spectrum sensing is related to the statistical
properties of the fading experienced by the primary signal.
For Narrow-Band (NB) signals, the multipath (Rayleigh)
fading effect is dominant, in a non line-of-sight envi-
ronment. On the other hand, Wide-Band (WB) signals
span multiple coherence bandwidths, due to which, the
Rayleigh fading component averages out when the signal
energy is accumulated across the wideband, resulting in
the lognormal shadowing as the dominant fading compo-
nent [31–33]. As a concrete example, in the IEEE 802.22
(WRAN) standard, the primary (Digital Television (DTV))
signal is a wideband signal, with a strong pilot tone at
2.69 MHz (see Fig. 1).3 There are therefore two options for
detection. First, one could use an NB filter to capture just
the pilot tone, and detect based on the pilot energy. This
has the advantage of filtering out the WB noise; but the
detector has to contend with a Rayleigh-faded NB signal.
Alternatively, one could use the energy in the entire WB
signal for detection, which averages out the Rayleigh fad-
ing [31,32], but the detector has to work against the log-
normal shadowing and the added impairment due to the
AWGN over theWB. Again, due to the complex form of the
integrals involved, direct comparison of the two options
using conventional performance metrics such as the prob-
ability of error is difficult. Hence, in this paper, we contrast
these two options by analyzing the Bayesian error expo-
nent performance of energy-based detection.

The main contributions of this work are as follows:

• The concept of Error Exponent with a Confidence
Level (EECL) is introduced, which captures the largest
exponent on the probability of error that can be
achieved if a fraction 1−q (with 0 < q ≤ 1) of theworst
channel states are discounted. The EECL at an individual
sensor is derived for a large class of fading distributions.
The traditional error exponent, which is a special case
of the EECL as q approaches 1, is shown to approach 0
under general fading conditions.

• The EECL for decentralized detection with N sensors
and when the FC uses the OR (1 out of N) rule is derived

3 Note that, at the time of writing this paper, in the US, spectrum
sensing is made optional in the IEEE 802.22 standard. However, in many
countries other than the US and European countries, reliable databases
may not be available [34]. In these cases, spectrum sensing is essential.
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under the Rayleigh fading and lognormal shadowing
channels. Also, the optimality of the OR rule among the
class of K out of N fusion rules is established, in terms
of the EECL.

• Closed-form lower bounds on the EECL are also derived,
for both Rayleigh fading and lognormal shadowing
channels. The bounds are easy to compute and become
increasingly accurate as q approaches 1.

• The theoretical development is used to successfully
address the question of NB versus. WB sensing, and a
rigorous analysis is presented. Specifically, if the ratio
of normalized NB and WB powers exceeds a threshold,
then NB sensing is better than WB sensing in terms of
the EECL, and vice versa.
We illustrate the efficacy of the EECL based design of

spectrum sensing through Monte Carlo simulations. The
EECL based design outperforms existing designs, in terms
of the probability of error, when a small fraction of the
worst channel states is discounted. Hence, the EECL based
approach faithfully captures the performance of detectors
in terms of the more commonly used performance metrics
also. Further, due to its ease of computation, the EECL helps
streamline the performance comparison between different
detection strategies. The improved sensing performance
can lead to better CR throughput and/or better primary
user protection in CR implementations. Note that, joint
design of the sensing scheme and the medium access
protocol to maximize the secondary throughput [35,36],
while an important topic of study, requires one to assume
a specific model for the temporal behavior of the primary
occupancy. Such a study is beyond the scope of this paper.

The rest of this paper is organized as follows. The prob-
lem set-up and the basics of error exponents are presented
in Section 2. The EECL at a single node is introduced and
analyzed in Section 3. Distributed detection is considered
in Section 4, where the EECL at the FC with the OR rule is
derived. The comparison between WB and NB spectrum
sensing in terms of the EECL is discussed in Section 5. Simu-
lation results are presented in Section 6, and Section 7 con-
cludes the paper. Proofs of the theorems and corollaries are
presented in the Appendix.

2. Systemmodel

We consider a decentralized detection set-up where N
sensors use the average energymeasured fromM indepen-
dent observations each as the test statistic formaking their
individual decisions between the signal absent (denoted
H0) and signal present (denoted H1) hypotheses [37,26,2,
38,39,3,4]. Such an energy-based test is known to be opti-
malwhen no knowledge about the structure of the primary
signal is available at the CR nodes [12].WhenM is large, us-
ing the Central Limit Theorem (CLT), the test statistic can be
well-approximated as being Gaussian distributed, result-
ing in the following hypothesis test at each sensor [40,41]4:

H0 : Vy ∼ N


0,

1
M


4 The hypothesis test here is a slightly modified version of the tests

in [40,41], in the sense that while the aforementioned references first
construct the energy in the received samples as the test statistic and then
apply the CLT to approximate its distribution, herewe directly present the
CLT-approximated statistics of the normalized received energy.
H1 : Vy ∼ N


|h|2 P,

1
M


, (1)

where Vy , 1
M

M
k=1 |Yk|

2
− 1 is the test statistic, and Yk

is the kth observation at the sensor. Also, N (µ, σ 2) rep-
resents a Gaussian distribution with mean µ and variance
σ 2. In writing the above, without loss of generality, we
normalize the receiver noise variance to unity. The aver-
age received power of the primary signal, P , is assumed
to be known at the nodes. The noise variance and average
received signal power can be estimated, for example, us-
ing a calibration phase, when the primary signal is known
to be absent and present, respectively.5 Furthermore, for
simplicity of presentation, we assume that the CR nodes
are sufficiently close to each other that P is the same at all
nodes [29,44]. In Section 4.1, we extend of themain results
to the case where the average received powers at the CR
nodes could be different. The channel gain, h, is assumed
to be random, unknown, and constant for the M observa-
tions. Its distribution will be discussed later, and this dis-
tribution will be used in designing the test to minimize the
probability of error, averaged over the channel statistics.
In (1), we have omitted the sensor index from Vy for no-
tational convenience, since the observations are assumed
to be independent and identically distributed (i.i.d.) condi-
tioned on the true hypothesis.

In the literature, various statistical models have been
proposed for the channel h, depending on the signal band-
width andpropagation environment. Asmentioned earlier,
when the primary signal is NB, the Rayleigh fading compo-
nent typically dominates the lognormal shadowing com-
ponents, and hence |h|2 can be modeled as exponentially
distributed [45,46].When theprimary signal is aWBsignal,
it spans multiple coherence bandwidths, due to which, the
Rayleigh fading components average out, resulting in h be-
ing a lognormal shadowing random variable [32,31]. Other
models include the Nakagami-m distribution, the Weibull
distribution, and the Suzuki distribution [31]. In this work,
we focus on the twomost commonly usedmodels, namely,
the Rayleigh and the lognormal shadowing distributions,
for the NB and WB fading cases, respectively. We assume
that the fading is i.i.d. across the sensor nodes. The case
where the fading instantiation is spatially correlated (see,
for e.g., [3,47]), is an interesting but independent problem,
and is beyond the scope of this paper. However, we note
that, under the i.i.d. fading assumption, our main results
can be extended to handle any of the fading models men-
tioned above.

We assume that the sensors transmit their binary de-
cisions to an FC through a finite rate, noiseless, delay-free
CR control channel, as in [28,29]. This simplifies the analy-
sis, and the corresponding EECL represents an upper bound
on the error exponent achievable in the general case. It is

5 In a more practical scenario, with an uncertainty in the estimate
of the noise variance [40–43], the above test in (1) can be designed
under a minimax criterion [23], and the detection threshold can be set
such that the worst-case probability of error across the range of possible
noise variance values is minimized. This corresponds to designing the
threshold by considering the noise variance to be highest value within
the uncertainty range.
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valid when the CRs use a low-rate dedicated control chan-
nel to forward their decisions to the FC. The FC combines
the individual decisions using the K out of N fusion rule to
detect the presence or absence of the primary signal. It is
known that, when the individual sensor decisions are i.i.d.
conditioned on the true hypothesis, the K out of N fusion
rule is optimal in terms of probability of error [23,48]. In
particular, we will focus on the 1 out of N fusion rule, i.e.,
the OR fusion rule, in the sequel. We will show that the OR
fusion rule has a certain optimality property in terms of the
error exponents. In the next section, we present the main
results on the EECL at an individual sensor. We extend it to
multiple-node decentralized detection in Section 4.

3. Detection at the sensors

We start by considering the single-sensor hypothesis
testing problem in (1). The conventional error exponent
is defined as limM→∞

− log pe
M , where pe denotes the

probability of error at the sensor, and is given byπ0pf +(1−
π0)pm, with π0, pf and pm denoting the prior probability
of hypothesis H0, the false alarm probability, and the
missed detection probability, respectively. As mentioned
earlier, in many practical applications, it is of interest to
analyze the performance of detectors when the received
signal power from the primary transmitter exceeds a
threshold (for example, in the IEEE 802.22 standard, it
is −116 dBm [49]). In terms of error exponents, this
corresponds to studying the error exponent when a small
fraction, say 0.1%, of the channel fade instantiations are
ignored. Motivated by this, in this paper, we consider
the EECL as a novel performance metric to evaluate and
compare the performance of NB andWB spectrum sensing
approaches [50]. Note that, the traditional error exponent
is obtained as a special case of the EECL, as a parameter
q defined in the sequel approaches unity. The EECL at a
single sensor is mathematically defined below. We extend
the definition to the N sensor case in the next section.

Definition 1. Let Sq denote a set of channel instantiations
such that P


|h|2 ∈ Sq


= q. The error exponent with a

confidence level q, denoted EECL(q), is the maximum error
exponent achievable conditioned on |h|2 ∈ Sq, where the
maximization is over all possible choices of Sq.

Now, in the single sensor case, it is immediate to see
that, among all possible choices for Sq, the highest error
exponent is achieved by letting Sq =


|h|2 : |h|2 ≥ |h0|

2,
where the threshold |h0|

2 depends on theminimumpower
level at which the primary signal detection performance
needs to be guaranteed by the CR.

The EECL can also be used to compare NB vs. WB sens-
ing when the detectors are designed, for example, to sat-
isfy a given missed detection probability constraint, β , as
follows. Pick 0 < α < β . For a fraction α of the chan-
nel states, the missed detection probability can be upper
bounded by unity. For the remaining fraction 1 − α of the
channel states,we set the detection threshold such that the
missed detection probability is at most β − α. Then, the
overall missed detection probability is upper bounded by
β . As will be shown in the sequel, discounting a fraction α
of the channel states allows one to achieve a positive ex-
ponent on the probability of error. Hence, if one detection
scheme has a larger EECL than another, the detector with
the larger EECL will have a significantly smaller false alarm
rate, and, consequently, better secondary throughput, for
the given missed detection probability constraint of β , as
the number of observations gets large. Hence, the EECL can
be used as a metric for the design, and performance com-
parison, of different detection schemes.

The main result of this section is stated as the theorem
below. It is valid as long as the distribution of the
gain of the channel from the primary transmitter to the
sensors is continuous and nonzero for infinitesimally small
arguments. To obtain the result, we use the fact that,
under a Bayesian setup, the optimal exponent on the
probability of error is achieved when the exponents on the
probabilities of false alarm and the missed detection are
equal [19, Chap. 11], [23].

Theorem 1. Let α , |h|2. The Bayesian hypothesis test
defined in (1) achieves an EECL(q) of (α0P)2

8 , whereα0 satisfies
P (α ≥ α0) = q. Further, the optimal detection threshold on
Vy asymptotically approaches α0P

2 as M gets large.

Proof. See Appendix A.1. �

Under Rayleigh fading, fα(α) = e−α, α ≥ 0, and hence,
P (α ≥ α0) = q leads to e−α0 = q, or α0 = − log(q).
Under lognormal shadowing, the cumulative distribution
function (cdf) of α is given by Fα(α) = 1 − Q ((log(α) −

µs)/σs), where Q (·) is the standard Gaussian tail function,
and µs and σs are the shape and scale parameters of
the shadowing distribution, respectively. Hence, α0 =

exp

σsQ−1(q) + µs


. Also, note that the both the error

exponent and the detection threshold are independent of
π0, the prior probability of hypothesis H0, as expected [19,
Pg. 389]. Therefore, the error exponent is unaffected by
uncertainties in the knowledge of π0. Conditioned on α >
α0, each individual sensor achieves an error exponent of
(α0P)2/8 on pf and pm. An important corollary to the above
theorem is that when q = 1, under the commonly used
fading models such as the Rayleigh, Rician, lognormal,
Nakagami distributions, etc., only α0 = 0 solves P (α ≥

α0) = 1, and hence, the error exponent with q = 1 is zero.
Another useful aspect of the above theorem is the

determination of the asymptotically optimal detection
threshold at an individual sensor, αminP

2 , where αmin is
evaluated in the next section.6 Due to its asymptotic
optimality,the local decision rule of comparing Vy to

αminP
2

will be assumed at all sensors in the next section, where
the EECL(q) performance at the FC with the OR fusion rule
is analyzed.

4. Detection at the fusion center

In this section, we consider an energy-based local
decision rule at the individual sensors with the threshold
set as αminP

2 , where αmin is a parameter to be optimized.We

6 For the case of a single CR node, αmin = α0 .
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consider theOR rule for combining the individual decisions
at the FC. We use the OR fusion rule because it can detect
the presence of the primary signal even if just one of the
sensors is not in a deep fade, and also because it possesses
an optimality property that we will show later in this
section. The main result of this section is stated as the
following theorem.

Theorem 2. When the individual sensors employ energy
detection and the FC employs the OR fusion rule, the EECL(q),
denoted ϵ

(N)
E , is given by ϵ

(N)
E =

(αminP)2

8 , where αmin satisfies

P


N
j=1


2αj

αmin
− 1

2

I 2αj
αmin

>1
 ≤ 1


= 1 − q. (2)

In the above, αj is the random channel power gain from
the primary transmitter to the jth sensor, and IA is the
indicator function, taking value 1 when the event A is true
and 0 otherwise.

Proof. See Appendix A.2. �

Note that αmin (and hence ϵ
(N)
E ) increases as N

increases. Larger EECL value implies faster decay rates
of the corresponding probability of error PE and hence
gives better sensing results. Also, the condition in (2) to
determine αmin does not require the fading coefficients
from the primary transmitter to the individual sensors
to be independent or identically distributed. The joint
distribution of the fading coefficients has to be used to
evaluate the probability in (2) to find the value of αmin,
and the solution can be cumbersome to compute in the
general case.When the fading coefficients are i.i.d., simpler
equations that determine αmin for the cases of Rayleigh
fading and lognormal shadowing are stated as the corollary
below.

Corollary 1. When the individual sensors employ energy
detection with threshold αminP

2 and the FC employs the OR
fusion rule, with i.i.d. Rayleigh fading channels between the
primary transmitter and the sensors, the EECL(q) is given by
(αminP)2

8 , where αmin satisfies
1 − exp


−

αmin

2

N
+

N
l=1


N
l


1 − exp


−

αmin

2

N−l
exp


−

αmin

2
l


× P


l

k=1

a2k ≤ 1


= 1 − q. (3)

In (3), ak is exponentially distributed with parameter 2
αmin

.
The same detector, under i.i.d. lognormal shadowing, with
a threshold of ℓminP

2 at the individual sensors, achieves an

EECL(q) of (ℓminP)2

8 , where ℓmin satisfies

PN
A +

N
l=1


N
l


PN−l

A P l
AcP


l

k=1


eyk − 1

2
≤ 1


= 1 − q. (4)
Table 1
Values of αmin and ℓmin for different q and N .

N q = 0.9 N q = 0.95 N q = 0.99
αmin ℓmin αmin ℓmin αmin ℓmin

2 0.39 0.53 2 0.26 0.41 2 0.11 0.26
3 0.66 0.75 3 0.49 0.61 3 0.26 0.41
4 0.88 0.94 4 0.69 0.78 4 0.42 0.55
5 1.07 1.12 5 0.87 0.94 5 0.56 0.68
6 1.24 1.29 6 1.02 1.08 6 0.70 0.79
7 1.39 1.45 7 1.16 1.22 7 0.82 0.91
8 1.52 1.60 8 1.29 1.36 8 0.93 1.01
9 1.65 1.77 9 1.41 1.50 9 1.04 1.12

10 1.76 1.92 10 1.52 1.63 10 1.14 1.23

In (4), yk has a truncated Gaussian distribution with mean
µs + log


2

ℓmin


and variance σ 2

s , truncated to [0, ∞). Also,

PAc , Q


−
µs+log


2

ℓmin


σs


, and PA , 1 − PAc .

Proof. See Appendix A.3. �

Note that both (3) and (4) need to be numerically solved
to obtain αmin and ℓmin, respectively. This, in turn, requires
the probability terms in the expressions to be evaluated.
To this end, we use the simple and tight approximation to
the cdf of the sum of Weibull random variates (with pa-
rameter c = 2) derived in [51] to evaluate the probabil-
ity term in (3). Also, we use the Pearson type IV distri-
bution approximation in [52] to evaluate the probability
term in (4). With this, the values of αmin and ℓmin are very
simple to compute; we illustrate the results in Section 6,
Table 1.

4.1. Extension to unequal average received signal powers

Recall that, in the above, we had assumed that the CR
nodes are sufficiently close to each other that P is the same
at all nodes. We now present an extension of our results to
handle unequal average received powers at the secondary
nodes. First, we consider the case of detection at individual
sensors. If the average received power at the ith sensor is
Pi, the EECL(q) of that sensor is (αminPi)2/8,whereαmin is as
defined in Theorem 1. Next, for the detection at the fusion
center, it is easy to see from the proof of Theorem2 that the
exponent on the false alarm rate is (αminPmin)

2/8, where
Pmin , min1≤i≤N Pi. The rest of the proof of Theorem 2 also
follows through, with P replaced by Pj in (17) and (18) in
AppendixA.2. Correspondingly, the condition onαmin in (2)
gets modified as:

P


N
j=1


Pj

Pmin

2  2αj

αmin
− 1

2

I 2αj
αmin

>1
 ≤ 1


= 1 − q. (5)

Note that, compared to (2), we have an extra (Pj/Pmin)
2

factor in the summation, since the average receivedpowers
are unequal. Hence, with the OR fusion rule, an error
exponent of ϵ

(N)
E = (αminPmin)

2/8 is achievable, where
αmin satisfies the condition in (5).
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4.2. Lower bounds on the EECL

In this subsection, we derive lower bounds on ϵ
(N)
E

for NB and WB sensing. These lower bounds are easy to
calculate and become tight as q → 1. The values obtained
from these lower bounds can also be used as a good
initialization for solving (3) and (4).

Corollary 2. In the set-up of Corollary 1, under i.i.d. Rayleigh

fading channels, with a threshold of αLB
minP
2 at the individual

sensors, a lower bound on the EECL(q) is given by (αLB
minP)2

8 ,
where αLB

min satisfies

αLB
min = 2


1 − q
CN

 1
N

,

with CN ,

N
k=0


N
k


π

k
2

0

1 +

k
2

 1
2k

. (6)

Under i.i.d. lognormal shadowing, with a threshold of ℓLBminP
2 at

the individual sensors, a lower bound on the EECL(q) is given

by (ℓLBminP)2

8 , where ℓLB
min satisfies

ℓLB
min = 2 exp

−

2σ 2
s log


1

√
2π


C ′

N

1 − q

 1
N
 ,

with C ′

N ,

N
k=0


N
k


π

k
2

(2σs)k0

1 +

k
2

 . (7)

Proof. See Appendix A.4. �

4.3. Optimality of the OR rule

In this subsection, we show that the OR fusion rule
satisfies a local optimality property. We show that, when
the detection threshold αminP

2 at the individual sensors is
chosen to satisfy (2), the OR fusion rule minimizes the
probability of error at the FC.

Theorem 3. For sufficiently large M, the OR fusion rule is
probability of error optimal for decentralized detection, when
the individual sensors employ energy detectionwith threshold
αminP

2 .

Proof. See Appendix A.5. �

5. Wideband vs. narrowband spectrum sensing

As discussed earlier, when the primary signal is a
wideband signal containing a strong pilot tone, spectrum
sensing can either be carried out by collecting the signal
energy over its entire WB or over a small bandwidth
around the pilot [32]. In this section, we characterize the
relative performance of these two schemes in terms of the
EECL. Let PNB and PWB denote the ratios of the energies of
the NB and WB signals to their bandwidths, respectively.
Typically, PNB is significantly larger than PWB.
5.1. NB vs. WB sensing at individual sensors

Let ϵNB and ϵWB represent the EECL(q) achieved under
NB and WB spectrum sensing at a single sensor, respec-
tively. From Section 3, given q, setting α0 = − log q and
ℓ0 = exp(σsQ−1(q) + µs) ensures P {α > α0} = P {ℓ >
ℓ0} = q. Now, NB sensing outperforms WB sensing in
terms of EECL, i.e., ϵNB > ϵWB, whenever

PNB
PWB

2

>


exp(σsQ−1(q) + µs)

− log q

2

. (8)

5.2. NB vs. WB sensing at the fusion center

Similar to the above, let ϵ
(N)
NB and ϵ

(N)
WB represent the

EECL(q) achieved by the FC under NB and WB spec-
trum sensing, respectively. For a given q, ϵ

(N)
NB > ϵ

(N)
WB if

(αminPNB)2

8 >
(ℓminPWB)2

8 , i.e., when
PNB
PWB

2

>


ℓmin

αmin

2

, (9)

where αmin and ℓmin satisfy (3) and (4), respectively.
Note that we have used the Rayleigh fading and the

lognormal shadowing assumptions only in evaluating the
numerical values of αmin and ℓmin above. That is, the above
procedure immediately extends to analyzing the EECL(q)
of other fading distributions such as Rician, Nakagami-
m, Weibull, Suzuki, etc., and the framework can be used
to compare NB and WB sensing under various fading
conditions.

Also note that, due to the difference in their band-
widths, the sampling rates under NB and WB fading can
be different. In the above, we considered the behavior of
the sensing performance with respect to M , the number
of observations at each sensor. However, the analysis can
be easily extended to study the behavior with respect to
the sensing duration, as follows. Let fs,NB and fs,WB de-
note the sampling rates of the NB and WB signals, respec-
tively. Then, a given spectrum sensing duration of Tss leads
to a probability of error approximately given by PE,NB ,
exp(−Tssfs,NBϵNB) and PE,WB , exp(−Tssfs,WBϵWB) in the
two cases.

Suppose fs,WB = Bfs,NB, where B is the ratio of band-
widths of the WB and NB signals. Thus, NB detection out-
performsWB detection in terms of the EECL with the same
confidence q and when both detectors sense for the same
duration, if

(αminPNB)2

8
> B

(ℓminPWB)
2

8
. (10)

For a given signal bandwidth, as B is increased (i.e.,
as the bandwidth of the NB signal is decreased), PNB also
increases relative to PWB, since the NB filter captures the
energy in the pilot tone more accurately. If the NB signal
consists of a pure pilot tone, the ratio PNB

PWB
increases linearly

with B. Thus, by using a large enough B, NB sensing can
be made to outperform WB sensing for a given sensing
duration, since the factor B appears quadratically in the
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Fig. 2. Trade-off between NB and WB sensing at a single sensor, with
µs = 0 in the WB case.

error exponent term, while it occurs only linearly in the
detection delay term. However, increasing B comes at the
cost of an increasing accuracy in the CR’s knowledge of the
frequency of the pilot tone in the primary signal.

6. Numerical results and simulations

In this section, we present simulation results to validate
the analytical development in the preceding sections, and
to illustrate the relative performance of NB and WB sens-
ing schemes. For the NB and WB cases, we denote the sig-
nal powers by PNB and PWB, and we let the channel gains
be Rayleigh distributed and lognormal distributed, respec-
tively. The prior probability was chosen to be π0 = 0.5
for all the simulations. For comparison with existing re-
sults, we extend the analysis in [14] to derive the proba-
bility of error with a confidence level, and then calculate
the EECL(q) from it. We also compare the performance of
our detector with the detector designed under the NP cri-
terion [32], for both NB and WB cases, as well as for single
sensor detection and decentralized detection with multi-
ple sensors.

6.1. Detection at the sensors

In Fig. 2, we plot EECL(q) as a function of the confidence
level q, for the NB and WB fading models, with PNB

PWB
=

3. In the WB fading case, we show the curves for three
typical values of the shadowing parameter σ 2

s . First, note
that all the curves approach an EECL of 0 as q approaches
1, i.e., the conventional error exponent is zero under both
NB and WB fading, as expected. As the confidence level
is decreased, the NB sensing outperforms the WB sensing.
Also, in the single sensor case, the design in [14] (denoted
by [LBC2011] in the legend) corresponds to using an NB
detector. The excellent match between our results and
those derived from [14] is clear from the plot.

Next, we simulated the probability of error with
confidence q = 0.9 at very low error probabilities, using
importance sampling [53]. Fig. 3 shows the performance as
Fig. 3. Variation of pe with a confidence q at a single sensor as a function
of SNR, under narrowband Rayleigh fading. Here, N = 1, π0 = 0.5, M =

106 . The curve labeled ‘Mismatched τ ’ corresponds to using π0 = 0.5 to
design the detector, when the actual π0 = 0.01.

a function of the average primary SNR, for various values
of q. The waterfall-type behavior of the curve indicates
a positive error exponent with a confidence level under
fading. Also, as mentioned earlier, an advantage of the
error exponent approach is that the threshold, τ =

α0P
2 ,

is independent of the prior probability π0. In the figure,
we see that the performance with τ =

α0P
2 matches well

with that obtained by using the near-optimal threshold
derived in [30]. We illustrate the effect of mismatched π0
in Fig. 3. The performance loss due to lack of knowledge
of π0 is over 3 dB at a probability of error of 10−2, when
M = 106. For lower values of M , the performance loss
would be much higher, because of the inverse square-root
relationship between the number of samples and the SNR
required to achieve a given performance [30].

6.2. Detection at the fusion center

We now consider the decentralized set-up with the OR
fusion rule for combining the individual decisions from
N sensors. In Fig. 4, we show the variation of the lower
bound on ϵ

(N)
E with confidence q = 0.99. The detection

threshold parameters αLB
min and ℓLB

min are obtained from (6)
and (7).We see that the lower bound closely approximates
the cross-over behavior of theNB andWBsensing schemes,
shown in Fig. 5. For obtaining the latter curve, the detection
thresholds are found by numerically solving (3) and (4) for
the NB and WB cases, respectively.

We plot ϵ
(N)
E as a function of the power ratio PNB

PWB
in

Fig. 6, for different values of q, and with N = 4. Both Figs. 5
and 6 show the cross-over between NB and WB sensing:
as PNB

PWB
is increased, NB sensing outperforms WB sensing.

Next, the variation of ϵ
(N)
E with the number of sensors N

is shown in Fig. 7, with the power ratio PNB
PWB

= 1. The
plot shows an approximately linear improvement in the
EECL(q) as the number of sensors is increased.

Next, we present simulation results of the probability of
error at the FC, PE , with the signal modeled as the sum of a
sinusoidal component and an AWGN component, varying
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Fig. 4. Comparison of NB andWB sensing at the fusion center in terms of
the lower bound on ϵ

(N)
E , with q = 0.99, µs = 0, σs = 1. The cross-over

points betweenNB andWB sensing closelymatchwith the corresponding
cross-over points of the EECL in Fig. 5.

Fig. 5. Comparison of NB andWB sensing at the fusion center in terms of
the EECL ϵ

(N)
E , with q = 0.99, µs = 0, σs = 1. Note the improvement in

EECL with increasing N .

ratio of their powers according to PNB
PWB

. The bandwidths
of the NB and WB signals are fixed as 1 kHz and 20 kHz,
respectively. The sensing duration is chosen as 20 ms. We
compute the probability of error with confidence q by
computing the probability of error for 1000 i.i.d. channel
states, and discounting a fraction 1−q of the channel states
that yield the highest probability of miss when averaged
over 10,000 noise instantiations. Under this set-up, we plot
the probability of error with N = 2, 4, 6 and confidence
level q = 0.99 in Figs. 8 and 9. From Fig. 8, we see that
the power ratio at which the cross-over between NB and
WB sensing occurs is roughly the same as the cross-over
points in the EECL plot of Fig. 5, i.e., the EECL does capture
the probability of error behavior of the detectors. In Fig. 9,
we compare the performance of our design with that of
the NP-based design adopted in [32,38], for both single-
sensor detection and decentralized detection, and for both
the NB and WB cases. The NP test is designed to meet a
Fig. 6. Illustration of the comparison of NB andWB sensing at the fusion
center in terms of ϵ

(N)
E , with N = 4, µs = 0, σs = 1, and for different

values of q.

Fig. 7. Illustration of the improvement in ϵ
(N)
E as a function of N , the

number of sensors, with PNB
PWB

= 1, µs = 0, σs = 1. As N gets sufficiently
large, NB sensing outperforms WB sensing.

false alarm probability target of 0.01. We see that, while
the probability of error with confidence q = 0.99 of the
NP test saturates as the average primary SNR increases, the
performance of our EECL-based design exhibits awaterfall-
type drop with increasing SNR. Note that, for the settings
in this simulation, the EECL of NB sensing is higher than
that of WB sensing. Since having a larger average primary
SNR is akin to having a larger number of observations at
the individual sensors, one would expect that NB sensing
should outperformWB sensing as the average primary SNR
increases; this is also corroborated by Fig. 9.

Finally, Table 1 shows the values of αmin and ℓmin for
different q and N . It can be seen that both αmin and ℓmin
increase with N and decrease with q. Using importance
sampling, the theoretical and experimental values of the
error exponents obtained for different values of P , q and N
are listed in Tables 2 and 3. We note the good agreement
between the theoretical and simulated error exponents,
even at very low exponent values.
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Table 2
EECL(q) at a single sensor, with N = 1 and Rayleigh fading. All values have to be multiplied by 10−5 .

P (dB) q = 0.9 P (dB) q = 0.95 P (dB) q = 0.99
Th Sims Th Sims Th Sims

−10 1.39 2.20 −2.25 11.84 14.28 0 1.26 2.32
−7 5.55 6.57 −1.5 16.11 17.64 2 2.84 4.39
−5 12.49 13.63 −1 21.05 22.30 3 5.05 7.34
−4 22.02 23.56 −0.5 26.66 28.23 4 7.89 9.36
−3 34.69 35.91 0 32.89 34.19 5 11.36 14.49
Table 3
EECL(q) at the FC, with P = −10 dB and Rayleigh fading. All values have
to be multiplied by 10−4 .

N q = 0.9 N q = 0.95
Th Sims Th Sims

2 1.94 2.11 2 0.87 0.88
3 5.41 6.12 3 2.97 3.52
4 9.73 10.28 4 5.93 6.34

Table 4
EECL(q) at the FC, withN = 4, P = −10 dB, i.i.d. Rayleigh fading in the NB
case and geometrically correlated lognormal shadowing in the WB case.
All values have to be multiplied by 10−4 .

ρcor q = 0.9 q = 0.95
ϵ

(N)
NB ϵ

(N)
WB ϵ

(N)
NB ϵ

(N)
WB

0 10.28 8.95 7.60 6.14
0.25 – 4.07 – 5.64
0.5 – 3.77 – 3.23
0.75 – 3.61 – 2.70

As mentioned earlier, we assume that the channels
from PU to CR nodes undergo i.i.d. fading. Even if the
sensors were close together, it is reasonable to assume
that the Rayleigh fading components are independent.
However, the nodes in the WB sensing case may undergo
correlated lognormal shadow fading. Table 4 illustrates
the performance of WB vs. NB sensing with geometrically
correlated lognormal shadowing. It can be seen that, as
the correlation increases, the EECL of the WB case drops.
Hence, in the cases where NB scheme outperforms theWB
scheme in the absence of channel correlation, it continues
to outperform theWB scheme even for nonzero correlation
values.

The performance of any distributed detection scheme
would degrade in presence of reporting channel errors, but
thismay not impact the fundamental tradeoff betweenWB
and NB detection schemes. To illustrate this, simulation
results with noisy reporting channels is presented in
Table 5. The channel between the individual sensors and
the FC is modeled as a binary symmetric channel with
error probability ebsc. It can be observed that the relative
performance of WB and NB sensing schemes is retained
evenwhen the reporting channels are noisy. As the channel
error rate increases, the reporting channel errors dominate
the performance, and, consequently, the EECL approaches
the same constant value in both cases, as expected.

7. Conclusions

In this paper, we analyzed the performance of energy-
based Bayesian decentralized detection for spectrum sens-
Fig. 8. Variation of the probability of error with a confidence level at the
fusion center with PNB

PWB
, for q = 0.99, µs = 0, σs = 1 and π0 = 0.5. The

cross-over of the probability of error between NB and WB sensing occurs
at roughly the same PNB

PWB
ratio as in the EECL plots.

Fig. 9. Comparison of the Bayesian, EECL based design considered in
this paper (curves labeled Bayesian) and Neyman–Pearson approach
in [32,38] (curves labeled Neyman–Pearson), in terms of the PE with
a confidence q = 0.99, as a function of the average primary SNR, with
µs = 0, σs = 1 and π0 = 0.5. The EECL based design shows a waterfall-
type behavior due to the positive error exponent, while the conventional
NP based design exhibits an error floor.

ing in cognitive radios, with the exponent on the proba-
bility of error as the performance metric. We introduced a
novel performance metric called the Error Exponent with
a Confidence Level (EECL), and derived the EECL at a given
confidence level q < 1. We used the EECL to answer the
question of whether it is better to sense for the pilot tone
in a narrow band, or to sense the entire wide-band signal.
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Table 5
EECL(q) at the FC, with N = 4, P = −10 dB and the link between each
sensor and FC is modeled as BSC with error probability ebsc . All values
have to be multiplied by 10−4 .

ebsc q = 0.9 q = 0.95
ϵ

(N)
NB ϵ

(N)
WB ϵ

(N)
NB ϵ

(N)
WB

0.0001 9.25 9.16 6.90 7.19
0.001 7.1 6.91 6.11 6.91
0.01 0.46 0.46 0.23 0.23

We also derived simplified expressions for finding the de-
tection threshold and the EECL for the i.i.d. Rayleigh fading
and lognormal shadowing cases. We validated the theo-
retical expressions through simulations. Futurework could
include incorporating correlation in the signal or noise, ex-
tending the results to allow for time-varying channels, and
optimally combining NB and WB spectrum sensing.
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Appendix

A.1. Proof of Theorem 1

It is straightforward to show that the likelihood ratio
test corresponding to (1) is monotonically increasing in Vy
(by examining the derivatives of the likelihood ratio with
respect to Vy), and hence, the optimum test reduces to
a threshold test on Vy itself. That is, it declares H1 when
Vy ≥ x, where x is the detection threshold. Let fα(α) denote
the pdf of α. Conditioned on A , {α ≥ α0}, the pdf of
α is fα|A(α|A) = fα(α)/P (A), α ≥ α0. By construction,
P (A) = q. The probability of error is given by

pe = π0Q (x
√
M) + π1

 x

−∞


∞

α0

fN


v − αP,

1
√
M


×

fα(α)

q
dαdv, (11)

where fN (x, σ ) is the Gaussian pdf with mean zero and
variance σ 2 evaluated at x, π0 , P (H0), and π1 ,
P (H1) = 1 − π0. To find the optimum threshold, we dif-
ferentiate the above w.r.t. x and equate to 0. After some
simplification, we get

qπ0

π1
=


∞

α0

exp

M

xαP −

α2P2

2


fα(α)dα. (12)

Let xM denote the solution to the above equation for a
given value of M .7 First, we show that xM converges to
α0P/2. To do this, we show that neither xM < α0P/2 nor
xM > α0P/2 are possible for large M , as they lead to a
contradiction. Define g(x, α) , xαP − α2P2/2. Note that
g(α0P/2, α) ≤ 0 for α ≥ α0. If xM < α0P/2, since g(x, α)

7 That a unique solution exists can be seen from simple monotonicity
arguments.
is monotonic in x, we have g(xM , α) < 0 for α ≥ α0.
Let gmax , maxα≥α0 g(xM , α), and note that gmax < 0.
Then, using gmax ≥ g(xM , α) in (12) results in the fol-
lowing upper bound on the right hand side (RHS): RHS ≤

exp(Mgmax)


∞

α0
fα(α)dα. Since gmax < 0, the upper bound

can be made as small as desired by choosingM sufficiently
large. Thus, if xM < α0P/2, the right hand side goes to zero
asM gets large, and hence, attaining equality in (12) is not
possible. Hence, xM must satisfy xM ≥ α0P/2.

Next, we show that xM ≥ x0 > α0P/2 also leads to
a contradiction. Consider α such that g(x0, α) > 0. This
corresponds to α < 2x0/P . By the assumption, we have
α0 < 2x0/P , so that, g(x0, α) > 0 forα0 ≤ α < 2x0/P . Fur-
ther, if g(x0, α) > 0 and xM ≥ x0, we have g(xM , α) > 0.
Therefore, there exists an ϵ > 0 such that g(xM , α) > 0 for
α0 ≤ α ≤ 2x0/P − ϵ. Let gmin , minα∈[α0,2x0/P−ϵ] g(xM , α),
and note that gmin > 0. Then, the right hand side in (12)
can be lower bounded as

RHS ≥

 2x0
P −ϵ

α0

exp (Mg(xM , α)) fα(α)dα (13)

≥ exp (Mgmin)

 2x0
P −ϵ

α0

fα(α)dα. (14)

Since gmin > 0, the above lower bound can be made as
large as desired by choosing M sufficiently large, since the
integral term is a strictly positive constant. This implies
that if xM ≥ x0 > α0P/2, the right hand side grows un-
bounded as M gets large, and hence, attaining equality in
(12) is not possible. Hence, xM converges to α0P/2 as M
goes to infinity.

Now, consider the exponent due to the false alarm term.
This is simply given by

ϵf , lim
M→∞

− log

Q (xM

√
M)


M
=

α2
0P

2

8
. (15)

In the above, Q (y) is the standard Gaussian tail probability
evaluated at y. The second equality above is obtained by
upper and lower bounding Q (y) for large y and showing
that both limits equal as M → ∞. Since the exponents
due to the false alarm and the missed detection are equal
in a Bayesian set-up [19, Chap. 11], [23], it follows that

the EECL(q) on the probability of error is α2
0P

2

8 , where α0
is chosen to satisfy P (α > α0) = q.

A.2. Proof of Theorem 2

Suppose that the hypothesis H0 is true. With the OR
fusion rule, a false alarm at any of the sensors results in a
false alarm at the FC. Since, conditioned on H0, the sensor
decisions are independent, the false alarm probability at
the FC, denoted by PF , is simply 1−(1−pf )N , where pf is the
false alarm probability at an individual sensor. Now, given
the detection threshold αminP

2 at the sensors, the exponent
ϵF at the FC is determined by the pf term in the expansion
of 1 − (1 − pf )N . Thus, the error exponent at the FC is the

same as that at the individual sensors, i.e., ϵF =
(αminP)2

8 .
Suppose that the hypothesis H1 is true. Conditioned on

αj, the channel power gain from the primary transmitter
to sensor j, the decision statistic Vy at the jth sensor is
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distributed as N

αjP, 1

M


. Since the jth sensor uses a

threshold of αminP
2 for detection, using well-known bounds

on the Q -function,8 it is easy to show that the missed
detection probability at the jth sensor conditioned on αj,
denoted pmj|αj , is given by

pmj|αj = P


Vy <

αminP
2

αj


= Q


√
M


αminP
2

− αjP


.
= exp


−

M
2


αjP −

αminP
2

2

I
αj>

αmin
2




(16)

where the notation f (M)
.
= exp(−Mβ) is used to mean

limM→∞
− log f (M)

M = β . That is, the jth sensor achieves an

error exponent of 1
2


αjP −

αminP
2

2
if αj >

αminP
2 , and zero

otherwise.
With the OR fusion rule, when hypothesis H1 is true,

the FC makes an error and declares H0 only if all the
sensorsmake an error. Hence, givenα1, . . . , αN , themissed
detection probability at the FC PM|α1,...,αN is given by

PM|α1,...,αN =

N
j=1

pmj

.
= exp


−

M
2

N
j=1


αjP −

αminP
2

2

I
αj>

αmin
2




. (17)

Now consider the case where α1, α2, . . . , αN are ran-
dom. The FC attains an EECL(q) of ϵM , provided

P


1
2

N
j=1


αjP −

αminP
2

2

I
αj>

αmin
2

 ≤ ϵM


≤ 1 − q, (18)

where the probability is taken over the distribution of
α1, α2, . . . , αN . The best error exponent is obtained, i.e., ϵM
is maximized, when the left hand side above equals 1 − q,
since, otherwise, ϵM (andαmin) can be increased to improve
the error exponent.

Finally, for optimal Bayesian detection, the exponent
associated with the false alarm andmissed detection must
be equal, i.e., ϵF = ϵM [19, Chap. 11], [23]. Hence,
substituting ϵM =

(αminP)2

8 in (18) and simplifying, we get
(2), which completes the proof.

A.3. Proof of Corollary 1

Let αmin and ℓmin denote the solution to (2) un-
der the Rayleigh fading and lognormal shadowing cases,
respectively. Let expn(λ) and LN(µ, σ ) denote the ex-
ponential distribution with parameter λ and the lognor-
mal distribution with parameters µ and σ , respectively.
Now, under Rayleigh fading, tj ,

2αj
αmin

∼ expn


2
αmin


,

while under lognormal shadowing, with a slight abuse of
notation, tj ,

2αj
ℓmin

∼ LN

µs + log


2

ℓmin


, σs


. Let

8 For example, y
1+y2

1
√
2π

e−
y2
2 ≤ Q (y) ≤

1
y
√
2π

e−
y2
2 .
Z ,
N

j=1


tj − 1

2 I{(tj−1)≥0}, for notational convenience.
From Theorem 2, note that we need to find αmin such that
FZ (1) = 1 − q, where FZ (·) is the CDF of Z .

P {Z ≤ 1}

=

N
l=0

P {l out of N tj′s are ≥ 1}

× P {Z ≤ 1|l out of N tj′s are ≥ 1}

=

N
l=1


N
l

 
P

tj ≤ 1

N−l 
P

tj > 1

l
× P


l

k=1

(tk − 1)2 ≤ 1

 tk > 1, k = 1, . . . , l


+ (P {tk ≤ 1})N , (19)

which should equal 1 − q by requirement, with tk ∼

expn
 2

αmin


for Rayleigh fading, and tk ∼ LN


µs +

log
 2

ℓmin


, σs

, for the shadowing, respectively. In the

Rayleigh fading case, by the memoryless property of
exponential random variables, it is easy to show that

P


l

k=1

(tk − 1)2 ≤ 1

 tk > 1, k = 1, . . . , l



= P


l

k=1

a2k ≤ 1


, (20)

where ak ∼ expn


2
αmin


are independent and exponen-

tially distributed. Since P {tk > 1} = e−
2

αmin , (19) reduces
to the expression in (3).

The proof for the lognormal shadowing case is similar
to the Rayleigh fading case, and follows by noting that

P {tk ≤ 1} = P {log tk ≤ 0} = Q


µs+log


2
ℓmin


σs


. Further,

P


l

k=1

(tk − 1)2 ≤ 1

 tk > 1, k = 1, . . . , l



= P


l

k=1


eyk − 1

2
≤ 1


. (21)

In the above, yk , log tk, and, due to the conditioning
on tk > 1, we have that yk has a truncated Gaussian

distribution, with pdf
N

µs+log


2

ℓmin


,σ 2

s


Q

−

µs+log


2
ℓmin


σs


for yk > 0 and

zero otherwise.

A.4. Proof of Corollary 2

Consider the left hand side of (3). Upper bounding the
terms in the expression would lead to a lower bound on
αmin, and, consequently, on the EECL(q). First, note that
1 − exp


αmin
2


≤

αmin
2 . Also, ak in (3) is distributed as

fak(ak) =
αmin
2 exp


−

αminak
2


, ak ≥ 0, and hence, fak(ak) ≤

αmin
2 . Thus, by replacing the pdf of ak with its upper bound,

we get



S. Gurugopinath et al. / Physical Communication 17 (2015) 94–106 105
P


l

k=1

a2k ≤ 1


=


l

k=1
a2k≤1,ak≥0

fak(a1)fak(a2)

· · · fak(al)da1da2 · · · dal

≤

αmin

2

l 
l

k=1
a2k≤1,ak≥0

da1da2 · · · dal

=

αmin

2

l Vl

2l
, (22)

whereVl =
π

k
2

0


1+ k

2

 is the volume of the l-dimensional unit

sphere, with 0(·) being the Gamma function. The 2l factor
in the denominator arises because only the volume of the
first orthant is relevant here, since ak ≥ 0. Substituting in
(3), we get a lower bound on αmin by solving

αLB
min

2

N

+

N
l=1


N
l


αLB
min

2

N−l 
αLB
min

2

l
Vl

2l

= 1 − q. (23)

The result in (6) follows from rearranging the above
equation.

The proof for the lognormal shadowing case is similar.
Starting from (4), using a well-known bound on the
Q -function, we upper bound PA as

PA ≤
1

√
2π

exp

−


log


2

ℓmin

2
2σ 2

s

 . (24)

Next, conditioned on yk > 0, it is easy to show that zk ,
eyk − 1 is distributed as

fzk(zk) =
1

(zk + 1)σs
√
2π

×

exp

−

(log(zk+1)−log(2/ℓmin))2

2σ 2
s


Q


− log(2/ℓmin)

σs

 ,

zk ≥ 0. (25)

Further, since ℓmin ≤ 1, setting zk = 0 in the right hand
side above leads to an upper bound on fzk(zk). Hence, we
have

P


l

k=1

z2k ≤ 1



≤

 1

σs
√
2π

exp

−

(log(2/ℓmin))2

2σ 2
s


Q

−

log(2/ℓmin)

σs


l

Vl

2l
. (26)

Substituting the upper bounds in (24) and (26) into (4), and
using the fact that PAc = Q


−

log(2/ℓmin)

σs


, and simplifying,

we get the result in (7).

A.5. Proof of Theorem 3

It is known that, with conditionally i.i.d. observations at
the sensors, the probability of error at the FC is minimized
by the K out of N rule, and the optimum K is given
by [48]

Kopt = min

N,


log


π0

1−π0


+ N log


1−pf
pm


log


1−pm
pf

 
1−pf
pm



 , (27)

where pf and pm are the false alarm and missed detection
probabilities, respectively, at the individual nodes. Now,
given the detection threshold αminP

2 > 0 at the individual

sensors, pf clearly decreases with an exponent (αminP)2

8 . On
the other hand, whenever α < αmin, the missed detection
probability of the hypothesis test in (1) is lower bounded
by 1

2 . Since the event α < αmin occurs with a nonzero
probability, the exponent on pm is 0. Thus,

log


π0
1−π0


+ N log


1−pf
pm


log


1−pm
pf

 
1−pf
pm


 → 1, (28)

since the numerator approaches a constant, while the de-
nominator is linearly increasing with M . Thus, for suffi-
ciently largeM , Kopt = 1, i.e., the OR fusion rule is optimal.
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